Instabilities in Hydrodynamics 2012 Laurette TUCKERMAN laurette

Transcription

Instabilities in Hydrodynamics 2012 Laurette TUCKERMAN laurette
Instabilities in Hydrodynamics 2012
Laurette TUCKERMAN
[email protected]
Fluid Dynamical Examples
Extreme Multiplicity in Cylindrical
Rayleigh-Bénard Convection
(K. Borońska & L. Tuckerman)
Hof, Lucas & Mullin, Phys. Fluids (1999)
Results from Time-Dependent Simulations
two-tori
torus
mercedes
four rolls
pizza
dipole
two rolls
three rolls
CO
asym three rolls
Ra
(U, V, W, T ) = 4 × Nr × Nθ × Nz = 4 × 40 × 120 × 20 = 384 000
Complete Bifurcation Diagram
Thresholds from Conductive State
m=1
m=2
m=0
m=3
Pizza: Bifurcations from m = 2 mode
.......
..... .
.....1860
.
....
.|.
1849
sssssssssssssssssssss
sssss
s
s
s
ss
sss
ss 2500
sss
s
ssss
ss
ssss
s
.. ..
.. ..
.. ..
.. ..
2500
.. ..
.. ..
.. ..
.. ..
.. ..
.. ..
. .
1879 2353
2700
2700
Trigonometric
3000
3000
=⇒
5000
5000
10 000
Rolls
.....................Four
.
.. ....
...
..
..
19 500
.
.
..
..
.. 23 130
..
..
..
.. Pizza
..
..
..
..
..
..
..
19 440
.. Conductive
..
.
22 660
.....................
....
...
10 000
Rolls
Tori: Bifurcations from m = 0 mode
.......... ..
...... ...........
..
..... 1870 ....
.
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
2360
...................
.....
..... 2330
1862
2300 2328
3100
5000
3100
5000
.......
.
.
.
.
.
.... ....
.....
...
.
...
..... .....
..... .
3076 ...........
.
... .
|
3076
..
..
..
..
..
..
..
4918
5000
5000
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
5438
9000
Two-tori
........
......
....
..
.
.
.
.
...
......... 12 711
9000
9000
12 700
18 000
30 000
One-torus
9000
12 700
|
12 711
18 000
Conductive
Stability of the m = 0 branches
Flowers and Automobiles: Bifurcations from m = 3
Mercedes
.
.......
.
.
.
.
.
...
.....
...
.....
....
4634 ........
.
5000
5000
...................
.....
.. 2100
....
.|
1985
............
.. ...
.
4650
....
..
.....
4103
|
4103
4650
|
4634
5000
5000
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
5503
7000
7000
7000
10 000
20 000
........
......
....
10 000
..
.
.
.
.
....
........ 18 762
30 000
Cloverleaf
Mitsubishi
10 000
Marigold
7000
10 000
20 000
|
18 762
Conductive
Stability of the m = 3 branches
Dipoles: Bifurcations from m = 1 mode
Asymmetric
Three Rolls
Three rolls
.............
.............. ......
.
.
.
.
.
..
... .. 1832
2100
...
.
..... ............................
. ..
........ 1832
2100
...
. 1828
2300
2500
2300
2500
..
..
..
..
3000
8000
..
..
..
...
..
..
..
..
3000
8000
..
..
.
3762
.....
.....
.. .....
21h
100
.. .h
h....
..
....
..
...
..
.
30 000
..
..
..
..
..
..
..
..
10 000 .
20 000
.. 30 000
..
..
..
..
...
..
..
Tiger ..
..
..
..
..
...
..
..
.
Conductive
..
..
..
..
21 078
22 125
Isolated Branches: two rolls and CO
Two Rolls
......
.
.
.
.
.....
10 000
...
....
..
8677 ......
...
10 000
20 000
30 000
20 000
30 000
CO
7200
9100
10 300
Many roads lead to two rolls
four rolls
asym. three rolls
two rolls
A XISYMMETRIC S PHERICAL C OUETTE F LOW WITH
σ = 0.18
C.K. Mamun & L.S. Tuckerman
A XISYMMETRIC S PHERICAL C OUETTE F LOW WITH
σ = 0.18
Faraday instability
Faraday (1831): Vertical vibration of fluid layer =⇒ stripes, squares, hexagons
In 1990s: first fluid-dynamical quasicrystals:
Edwards & Fauve
J. Fluid Mech. (1994)
Kudrolli, Pier & Gollub
Physica D (1998)
Oscillating frame of reference =⇒ “oscillating gravity”
G(t) = g (1 − a cos(ωt))
G(t) = g (1 − a [cos(mωt) + δ cos(nωt + φ0)])
Flat surface becomes linearly unstable for sufficiently high a
Consider domain to be horizontally infinite (homogeneous) =⇒
solutions exponential/trigonometric in x = (x, y)
Seek bounded solutions =⇒ trigonometric: exp(ik · x)
X
Height ζ(x, y, t) =
eik·xζ̂k (t)
k
Oscillating gravity =⇒ temporal Floquet problem, T = 2π/ω
X j j
ζ̂k (t) =
eλk tfk (t)
j
Height ζ(x, y, t) =
X
eik·xζ̂k (t)
k
Ideal fluids (no viscosity), sinusoidal forcing =⇒ Mathieu eq.
∂t2ζ̂k + ω02 [1 − a cos(ωt)] ζ̂k = 0
ω02 combines g, densities, surface tension, wavenumber k
ζ̂k (t) =
2
X
e
j
λk t
fkj (t)
j=1
Re(λjk ) > 0 for some j, k =⇒ ζ̂k ր =⇒ flat surface unstable
=⇒ Faraday waves with wavelength 2π/k
Im(λjk ) eλT waves
period
0
1 harmonic
same as forcing
π/ω −1 subharmonic twice forcing period
Floquet functions
0
-0.001
-0.002
-0.003
0
within tongue 1 /2
subharmonic
µ = −1
0.006
(ζ-< ζ >)/ λ
(ζ-< ζ >)/ λ
0.001
XX
XX X
X X
X X
X
X
X
XX
XXXXXXXXXX
X
X
X
X
X
X
X
X
X
X 1
X 3
t/T X 2
X
X
X
X
X
XX XX
XX
X
X
X
X
XXX XX
X
XX
X X
X X
X
XXXX
X
XXX
XXX
XX
XX
X
X
X
X X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2
3
X 1X
X
X
X
X
X
X
t
/
T
X
X X
X X
X X
X
X
XX
XX
X XX
XXX
XXX
XX
XXX
XX
X X
X
0.004
X
X
X
X
X
0.002XXXXXXX
X
0
-0.002
0
within tongue 2 /2
harmonic
µ = +1
From Périnet, Juric & Tuckerman, J. Fluid Mech. (2009)
0.03
XX
XXX
XX
XX
XX
X X
X X
X
X
X X
X X
X
X
0.01
X X
X
X
XXXX
X
XX
XX
X
XXXX
XX
X XXXXXX
X
XXXXXXXXXXX
X
X
X
X
X XXXXX
X XX XXXXX
X X
0
XXXX
X XXXXXXX2
X X 3
0
X
X X 1 XXXX t / T
X
X
X
X
X
XXX
X
X
XX
-0.01
X
X X
X
X X
-0.02
X
XX
XXX
0.02
(ζ-< ζ >)/ λ
XXX
XX X
X
X X
X
0.002
X
XXXXXXXXXX
X
0.003
-0.03
within tongue 3 /2
subharmonic
µ = −1
Hexagonal patterns in Faraday instability
From Périnet, Juric & Tuckerman, J. Fluid Mech. (2009)
Cylinder wake
Ideal flow
with downstream recirculation zone
Von Kármán vortex street (Re ≥ 46)
Laboratory experiment
(Taneda, 1982)
Off Chilean coast
past Juan Fernandez islands
von Kárman vortex street: Re = U∞d/ν ≥ 46
spatially:
two-dimensional (x, y)
(homogeneous in z)
temporally:
periodic, St = f d/U∞
appears spontaneously
U2D (x, y, t mod T )
Stability analysis of von Kármán vortex street
2D limit cycle U2D (x, y, tmod T ) obeys:
∂tU2D = −(U2D · ∇)U2D − ∇P2D +
1
Re
∆U2D
Perturbation obeys:
∂tu3D = −(U2D (t)·∇)u3D −(u3D ·∇)U2D (t)−∇p3D +
1
Re
∆u3D
Equation homogeneous in z, periodic in t =⇒
u3D (x, y, z, t) ∼ eiβz eλβ tfβ (x, y, t mod T )
Fix β, calculate largest µ = eλβ T via linearized Navier-Stokes
From Barkley & Henderson, J. Fluid Mech. (1996)
mode A: Rec = 188.5
βc = 1.585 =⇒ λc ≈ 4
mode B: Rec = 259
βc = 7.64 =⇒ λc ≈ 1
Temporally: µ = 1 =⇒
steady bifurcation to limit cycle with same periodicity as U2D
Spatially: circle pitchfork (any phase in z)
mode A at Re = 210
mode B at Re = 250
From M.C. Thompson, Monash University, Australia
(http://mec-mail.eng.monash.edu.au/∼mct/mct/docs/cylinder.html)
transition to mode A
initially faster than exp
=⇒ subcritical
transition to mode B
initially slower than exp
=⇒ supercritical
Describe via complex amplitudes An, Bn
amplitude and phase of mode A, B at fixed instant of cycle
2
4
An+1 = µA + αA|An| An − βA|An| An
2
Bn+1 = µB − αB |Bn| Bn
Numerical and experimental frequencies
From Barkley & Henderson, JFM (1996)
Solution to minimal model
From Barkley, Tuckerman
& Golubitsky, PRE (2000)
Interaction between A and B:
An+1 =
Bn+1 =
µA + αA|An|2 + γA|Bn|2 − βA|An|4 An
µB − αB |Bn|2 + γB |An|2 Bn
As Re is increased: mode A =⇒ A + B =⇒ mode B

Similar documents