Spontaneous Symmetry Breaking and Goldstone`s Theorem
Transcription
Spontaneous Symmetry Breaking and Goldstone`s Theorem
Spontaneous Symmetry Breaking and Goldstone’s Theorem i • Exact symmetry: T , L = 0 (equations of motion); T i|0i = 0 (vacuum) i i • Explicit breaking: T , L 6= 0, e.g., L = L0 + L1 with T , L1 6= 0 • Spontaneous breaking: T i|0i = 6 0 • Coleman’s theorem: explicit breaking induces spontaneous • The Goldstone alternative: T i, L = 0 allows either – Symmetry unbroken (Wigner-Weyl realization): T i|0i = 0, or – SSB: T i|0i = 6 0 ⇒ massless Nambu-Goldstone boson (or Higgs mechanism for gauge symmetry) P529 Spring, 2013 1 Single Hermitian Field • No continuous symmetries; can impose discrete Z2 (φ → −φ): 1 2 µ2φ2 λφ4 V (φ) = + L = (∂µφ) − V (φ) , 2 2 4 2 2 ∂ ∂V 2 2 ~ = − µ + λφ φ −∇ φ=− 2 ∂t ∂φ • Lowest energy solution for classical field: φclass ≡ h0|φ|0i ≡ hφi (vacuum expectation value [VEV]) – h0|φ|0i = constant in x, minimizes V 2 ∂ V ∂V = 0, >0 2 ∂φ hφi ∂φ hφi – Require λ > 0 (V bounded below); µ2 arbitrary P529 Spring, 2013 2 φ(x) ν V (φ) −ν -d ν φ d x -ν – µ2 > 0: minimum at h0|φ|0i = 0, symmetry unbroken 2 p – µ < 0: h0|φ|0i = 0 is unstable; minima at ±ν ≡ ± −µ2/λ (φ → −φ symmetry spontaneously broken) – Define φ = ν + φ0; φ0 is ordinary quantum field (h0|φ0|0i = 0) 0 L (φ) = L (ν + φ ) = 0 V (φ ) = −µ4 |4λ {z } cosm. const. P529 1 2 2 (∂µφ0) − V (φ0) 02 03 λ 04 −µ φ + λνφ + φ | {z } | {z } 4 2 2 induced cubic 2 µ 0 =−2µ >0 φ Spring, 2013 3 λ λ ν • Can add explicit Z2-breaking terms (φ or φ3), e.g., V (φ) = µ2φ2 2 − aφ + λφ4 4 , a>0 – ⇒ h0|φ|0i = 6 0, even for µ2 > 0 (Coleman’s theorem) – For µ2 > 0 and a small: ν = hφi = a/µ2 + O(a3) – Typeset by FoilTEX – 1 0 V (φ ) = − a2 2µ2 + µ2 2 02 φ + λνφ 03 + – For µ2 < 0: global (true) minimum at ν = ν0 + P529 λ 4 a 2 2ν0 φ0 4 + O ( a2 ) Spring, 2013 4 A Complex Scalar • Complex scalar (λ > 0): † µ L0 = (∂µφ) ∂ φ − V (φ) , 2 V (φ) = µ φ φ + λ φ φ 2 † † – continuous global U (1) symmetry, φ → eiβ φ √ • Hermitian basis: φ = (φ1 + iφ2)/ 2 ⇒ O(2)symmetry i 1h 2 2 (∂µφ1) + (∂µφ2) −V (φ1, φ2) , L0 = 2 λ 2 µ2 2 2 2 2 φ1 + φ2 + φ1 + φ2 V = 2 4 cos β − sin β φ1 → φ2 sin β cos β (rotation; U (1) and SO (2) equivalent) P529 φ1 φ2 Spring, 2013 5 V (φ) V (φ) φ2 ν ! ! ! ! ! φ1 ! ! φ2 ! ! ! ! φ1 ! ! ! ! ! φ2 φ1 • µ2 > 0: minimum at ν1 = ν2 = 0 (Wigner-Weyl realization); degenerate φ1,2 (or φ, φ†), conserved charge, quartics related – Can add explicit breaking L = L0 − φ22 2 m21 = µ2, m22 = µ2 + P529 Spring, 2013 6 • µ2 < 0 and = 0 (Nambu-Goldstone realization): degenerate minima of Mexican hat potential along φ21 + φ22 = ν 2 ≡ −µ2 λ – Choose axes so that φ1 = ν + φ01, L= V = 1 0 2 ∂µφ1 2 −µ4 4λ 2 −µ + 1 2 φ012 >0 φ2 = φ02: 0 2 ∂µφ2 −V φ01, φ02 λνφ01 φ012 φ022 + + + λ 4 φ012 + 02 2 φ2 – m21 = −2µ2 > 0 and m22 = 0 (Nambu-Goldstone boson) – Can prove for any SSB of continuous global symmetry P529 Spring, 2013 7 • Add small explicit breaking −φ22/2 ⇒ unique vacuum (up to sign), with m21 = −2µ2, m22 = m21 • φ2 is pseudo-Goldstone boson (e.g., pions in QCD) P529 Spring, 2013 8 Spontaneously Broken Chiral Symmetry • Chiral fermion ψ = ψL + ψR (no mass term) and complex scalar φ: † † µ L = ψ̄Li 6 ∂ψL + ψ̄Ri 6 ∂ψR − hψ̄LψRφ − hψ̄RψLφ + (∂µφ) ∂ φ − V (φ) 2 2 † † with V (φ) = µ φ φ + λ φ φ – Chiral symmetry: φ → eiβ φ, ψL → ψL, – For µ2 < 0 (and λ > 0): φ1 = ν + φ01, LY uk 0 φ1 hν = − √ |{z} ψ̄ψ 1 + ν 2 scalar ψR → e−iβ ψR φ2 = φ02 h 5 0 − √ i ψ̄γ ψ φ 2 | {z } 2 pseudoscalar (ψ̄LψR + ψ̄RψL = ψ̄ψ and ψ̄LψR − ψ̄RψL = ψ̄γ 5ψ ) P529 Spring, 2013 9 ψL h √ 2 ν ψR – Massless Goldstone boson φ02 – Effective ψ mass: mψ = hν √ 2 – Scalar (pseudoscalar) couplings of φ1(φ2), strength √ h/ 2 = mψ /ν – Typeset by FoilTEX – P529 1 Spring, 2013 10 Possibilities for Continuous Symmetry Exact Lagrangian Symmetry ([UG, L] = 0) UG|0i = |0i U G |0 i = 6 |0i exact symmetry spontaneous symmetry breaking (Wigner-Weyl) (Nambu-Goldstone) degenerate multiplets conserved charges relations between interactions chiral: massless fermions gauge: massless gauge bosons Explicit breaking multiplet splitting, etc. chiral: fermions acquire mass P529 chiral: fermions acquire mass global: Goldstone bosons gauge: gauge bosons acquire mass by Higgs or dynamical mechanism ([UG, L] 6= 0) (global only) multiplet splitting, etc. Goldstone bosons acquire mass Spring, 2013 11