Statistical Shape Analysis Ian Dryden (University of Nottingham) 3e
Transcription
Statistical Shape Analysis Ian Dryden (University of Nottingham) 3e
http://www.stat.sc.edu/~dryden/course/ild-ch-04.pdf Statistical Shape Analysis Ian Dryden (University of Nottingham) Session I Dryden and Mardia (1998, chapters 1,2,3,4) [email protected] http://www.maths.nott.ac.uk/ ild 3e cycle romand de statistique et probabilités appliqués Introduction Motivation and applications Size and shape coordinates Shape space Shape distances. Les Diablerets, Switzerland, March 7-10, 2004. 1 In a wide variety of applications we wish to study the geometrical properties of objects. 2 An object’s shape is invariant under the similarity transformations of translation, scaling and rotation. We wish to measure, describe and compare the size and shapes of objects Shape: location, rotation and scale information (similarity transformations) can be removed. [Kendall, 1984] Size-and-shape: location, rotation (rigid body transformations) can be removed. 3 Two mouse second thoracic vertebra (T2 bone) outlines with the same shape. 4 Landmark: point of correspondence on each object that matches between and within populations. Different types: anatomical (biological), mathematical, pseudo, quasi From Galileo (1638) illustrating the differences in shapes of the bones of small and large animals. 5 6 Bookstein (1991) Type I landmarks (joins of tissues/bones) Type II landmarks (local properties such as maximal curvatures) Type III landmarks (extremal points or constructed landmarks) T2 mouse vertebra with six mathematical landmarks (line junctions) and 54 pseudo-landmarks. 7 Labelled or un-labelled configurations 8 1 3 A B 2 3 2 1 3 1 C 2 Traditional methods D 3 1 2 - ratios of distances between landmarks or angles submitted to multivariate analysis 2 3 3 E - the full geometry usually if often lost F 1 1 2 - collinear points? Six labelled triangles: A, B have the same size and shape; C has the same shape as A, B (but larger size); D has a different shape but its labels can be permuted to give the same shape as A, B, C; triangle E can be reflected to have the same shape as D; triangle F has a different shape from A,B,C,D,E. - interpretation of shape differences in multivariate space? 9 10 Geometrical shape analysis Rather than working with quantities derived from organisms one works with the complete geometrical object itself (up to similarity transformations). In the spirit of D’Arcy Thompson (1917) who considered the geometric transformations of one species to another Pioneers: Fred Bookstein and David Kendall Summaries of the field are given by Bookstein (1991, Cambridge), Small (1996, Springer), Dryden and Mardia (1998, Wiley), Kendall et al (1999, Wiley), Lele and Richstmeier (2001, Chapman and Hall). We conside a shape space obtained directly from the landmark coordinates, which retains the geometry of a point configuration at all stages. 11 12 The map of 52 megalithic sites (+) that form the ‘Old Stones of Land’s End’ in Cornwall (from Stoyan et al., 1995). MR brain scan 14 0.4 13 b 13 12 0.2 11 n 10 Braincase 0.0 9 l 8 7 6 na -0.2 5 pr 4 1 -0.4 -0.4 3 2 -0.2 0.0 Face st 0.2 ba o 0.4 Ape cranium Handwritten digit 3 15 16 250 200 150 100 •S •S •S •S 50 • S S •S (b) 0 (a) • •• S S 0 50 100 150 200 250 Electrophoretic gel matching Face recognition 17 Proton density weighted MR image 18 Cortical surface extracted from MR scan 19 20 OUR FOCUS: landmarks in real dimensions is a matrix ( ) Invariance with respect to Euclidean similarity group (translation, scale and rotation) = Size.... Any positive real valued function for a positive scalar . 203 Pseudo-landmarks on the cortical surface of the brain such that 22 21 Centroid size: " # An alternative size measure is the baseline size, i.e. the length between landmarks 1 and 2: " & ' ! ( & # $ % & $ ) % 0 % ' % where and ( & # # $ & % * ' ) , % 1 ) This was used as early as 1907 by Galton for normalizing faces. + , . / - Other size measures: square root of area, cube root of volume , ! - Euclidean norm, - + identity matrix, , vector of ones. , 23 24 Landmarks: Shape coordinates: % 3 3 2 3 2 1 1 1 4 5 2 ) Bookstein shape coordinates (1984,1986) (For two dimensional data) Fixed coordinate system 100 200 • • • 6 0 100 200 Im(z) 0.5 0 100 200 -0.5 0.0 0.5 Re(z) ' > @ 3 3 3 & 7 8 9 = : ; ; 9 9 < 1 ? A 1 1 1 < 26 3 • • -20 -10 0 -20 -10 0 2 • -0.5 Shape: 10 20 10 20 • • Re(z) 9 • • • -200 -100 25 100 200 • • 0.0 • • 3 2 3 0 Re(z) 1.0 100 200 0 Im(z) 2 1 • -200 -100 • • • • -200 -100 1 • • Re(z) 2 3 • • • • 0 0 -200 -100 3 1 Im(z) • -200 -100 Are angles appropriate.....?? 1 6 • • -200 -100 Im(z) Local Coordinate system 100 200 vs 1 2 -20 -10 0 10 20 (b) 10 20 1.0 -20 -10 0 10 20 (a) • 0.5 • 2 3• 1 • • 2 -0.5 1 0.0 -20 -10 0 3 • • -20 -10 0 10 20 (c) -0.5 0.0 (d) 0.5 In real co-ordinates: % $ B C D D D G E F F ; 9 G ; 9 H I 9 ; 9 H F J J I G F ; H J J I ; H I K L M H G N ) $ O C D D D G E F F 9 G ; 9 H J J I ; F H I ; J J G ; F H I 9 ; 9 H I K L M H where & $ P , G F Q Q Q B C D U G ; 9 H I F J R S J G ; H I G . O C D T G 9 N H ; N and G M N G $ U The outline of a microfossil with three landmarks (from Bookstein, 1986). T N 27 28 0.8 slog • 65 • 84 • 75 • • • • • • • • • • • 0.36 0.32 0.5 • • • • • • • 0.6 U • • • •• • • • • • 0.75 • Y 0.4 • • • 0.4 0.3 • • • •• • • 0.2 • • • • •• U • • • •• • • • • • 0.65 0.5 • 60 • • • • • 65 • • •• • • 64 9.2 • • • • • • • • • • • • V • • • 0.55 0.44 • X ••• • • • 72 • • • • • 8.2 • 0.45 • 67 • • • • • 71 • • • • • • • • • • • 0.40 V • • • • • • 76 • 71 • 84 • 74 0.6 0.44 • • • • 8.8 • 8.6 • 100 V 0.40 • • • • 8.4 9.0 0.36 • • 8.2 0.7 • 88 • 92 0.32 • 87 • 88 • 84 8.4 W • 100 • 88 8.6 8.8 9.0 9.2 W 0.45 0.55 0.65 W 0.75 A scatter plot of (U+1/2) for the Bookstein shape variables for some microfossil data. (Bookstein, 1986) 29 2 30 4 1 0.5 a d E 5 _ 3 v 0.0 VB 0 ` \ ] 1 g f b A O B 2 e -1 F 6 -2 -0.5 ^ -2 [ -1 [ 0.0 u [ 0.5 0 UB b c -0.5 \ 1 ] 2 Z A scatter plot of the Bookstein shape variables for the T2 mouse data. 31 The shape space of triangles, using Bookstein’s coordinates . All triangles could be relabelled and reflected to lie in the shaded region. h 3 8 i 8 32 Kendall’s shape sphere (1983) (triangles only) 3 Isosceles triangles 1 Equilateral (North pole) 2 θ=0 Unlabelled Right-angled Kendall’s shape coordinates φ=5π/3 Remove location % 3 3 φ=2π/3 θ=π/2 φ=0 φ=π/3 Flat triangles (Equator) % j k l j m j 1 1 1 j - ; θ=π 1 & 2 % 3 j @ 3 & 7 o p q 3 & n n A 1 1 1 1 ; Reflected equilateral (South pole) % j A mapping from Kendall’s shape variables to the sphere is Simple 1-1 linear correspondence with Booklstein S.V. (equ. 2.11 of book) For triangles Kendall’s SV sends baseline to ' s q ' 3 P P 7 n A ! ! r , n ) A , , 3 u 3 r 2 j t s s o s o o ) ) , and , s o q P P 7 n ) n ) ) ) , , so that % u o o v 2 j ) ) ) 33 Kendall’s spherical shape shape variables then given by the usual polar coordinates w x 3 u , t x Kendall’s Bell are w 3 34 w , 2 . w x 3 , j 3 t where is the angle of latitude and is the angle of longitude. t w > y y z > y x { t z 35 36 Bookstein coordinates - 3D Landmarks The Schmidt net for 1/12 sphere # % 3 # 3 # 2 P 2 # 2 - ) w } & | % 3 & 3 & P & | t t t 7 3 x > y y 3 > y { 7 7 7 z - t ! 1 ~ ) % o , @ ' & 3 3 3 ) -1.0 -0.5 0.0 C • t ' A B C C • • A BA B C C C • C A • B• A B A AB • B C C • C C A B C C A •B A • AB • AB •AB • B C C A • B C CA • B • • C C A B • B A BA • BA C • B A C A •B C C A • B C A •B C A • BA • B • B A C A •C B • B A C A •CB A •CB A •CB • B A C A •C B -1.5 A •CB A •CB 0.0 1 ) where is a (a function of rotation matrix ) and A A % 3 3 P ) % t ' 3 A • CB , > 3 > t 3 r 3 > 3 > 3 - , r - ) -0.5 1 • B A C A % 0.5 P P % 7 3 P 3 P 7 > 7 - ) where P > 7 , P and > P 7 & & 7 for @ ) . 3 3 1 1 1 38 37 Goodall-Mardia QR shape coordinates Helmertized landmarks ( k l t D matrix) SIZE AND SHAPE (JOINTLY) 3 k (a) (b) 4 3 is lower triangular Bookstein 3D coordinates SHAPE: r 39 40 Shape coordinates 1. FILTER OUT TRANSLATION: SHAPE SPACE....Kendall (1984) a) Shift centroid to origin b) Take linear orthogonal contrasts, e.g. Helmert contrasts c) Shift baseline midpoint to origin 2. RE-SCALE: 1. Remove location (Pre-multiply by Helmert sub-matrix) k l where th row of the Helmert sub-matrix by, is given @ a) Re-scale to unit centroid size b) Re-scale to unit area c) Re-scale to a standard baseline length d) Re-scale to minimize ‘distance’ to a template 3 & @ 3 3 & ' 3 & > 3 3 > @ 3 l @ ' & < o 1 1 1 1 1 1 ; , and the 3. REMOVE ROTATION: & @ is repeated times, ' 3 3 , a) Rotate baseline to horizontal b) Rotate to minimize ‘distance’ to a template times and zero is repeated . @ @ ' Note 1 1 1 ' , , (centering matrix) so (centroid size) l = l k - 1 Bookstein shape coordinates: 1c/2c/3a Kendall shape coordinates: 1b/2c/3a Procrustes shape coordinates: 1a/2d/3b 42 41 Dimensions.... 2. Remove size (rescale) Original configuration: l k 1 l Centered configuration: is the PRESHAPE ( ' % % ) 4 F ; I ; Preshape: ' ' , 3. Remove rotation Shape: t ' ' ' , r 4 ' , 3 is the SHAPE of . 43 Shape space is non-Euclidean 44 SHAPE SPACES Write position where $ , for the pseudo-singular value decom, and S N % % $ F Assume sions] . [ points in o F . Let Euclidean dimen- F ¡ ¡ ; I ; I N ¢ H I N Q Q Q N © $ % ¤ , $ ¥ £ ¤ R E R R ¡ ¡ ¨ ¨ ¡ ¢ § ¢ © % ¢ ¦ H H K ¤ Q Q Q Q Q Q ¢ R E R R ¡ ¡ ¢ R ¡ § ¢ ¦ ¢ H H K Le and DG Kendall (1993, Annals of Statistics) : is a unit radius % -sphere. t ' Theorem On as , : t , the Riemannian metric can be expressed £ ¤ ª F ¢ I is the complex projective space 5 ) . ; ) D " ® ¢ " ® ¢ " ° G « ¬ « « $ G : t has a singularity set of dimenand is NOT a homogeneous space. G G F ¡ ¡ ¡ D z ; I G G G ¡ ¡ D ± D G G ) sion t ¡ ¡ ¡ ; ' H ¢ G G H ¯ ¯ ¤ " ® ¢ § " ® H D % G For spheres. the space spaces t are topological G ¡ ± D N ¢ ² H where H are co-ordinates for D . % F ± ; I 45 Planar case: dimensional data t 46 PLANAR CASE: Procrustes/Riemannian distance t 5 ) Complex configurations ; r ) 3 3 3 % j m j m 1 1 1 j m - Helmertized landmarks · · · 3 3 % % m m 1 1 1 m % 3 3 4 5 > % m j k l j j 1 1 1 j ; - ; Now multiplying by with centroids . · 3 j ¸ ¸ # ´ ³ t s 3 s 4 3 µ 4 > 3 z rotates and rescales j Shape distance satisfies · 3 ¹ j m m . So, k · · ' ' # $ % # # * j m ¸ j ¸ m · 3 m ¹ ³ m j º º ³ · · ' 4 5 > # * ! j k ' 3 j # m * j ¸ ! ¸ m ) where is the set representing the SHAPE of . This is a complex line through the origin (but not including it) in dimensions. The union of all such sets is the complex projective space j # m . · # m m ' , 5 ) means the complex conjugate of · NB is the modulus of the complex correlation between and . ¹ · m j m ) ; NB: A : ¹ is the great circle distance on t ) , 5 . r ) ¶ ) ; 47 48 Complex configurations 3 3 % j m j m 1 1 1 j m - Bookstein co-ordinates: ' & % j m j m @ · ' > 3 3 3 & 8 1 ? A 1 1 1 ' % j j m m Session II ) Kendall co-ordinates: Procrustes analysis Tangent coordinates Shape variability Shape models Tangent space inference Shapes package. @ · & % & 3 3 3 & n j j A 1 1 1 r ; where % 3 3 % j 1 1 1 j l j m - ; Linear relationship: » » t % 8 n where . % l ! is lower right l t t ' ' partition of l For A : . t · · P P 8 ! A n r 49 50 PROCRUSTES ANALYSIS PLANAR PROCRUSTES ANALYSIS Juvenile (———) Adult (- - - - - -) 3000 Two centred configurations , both in , u · 2000 % • 3 3 • 1 1 1 3 1 1 u 1 ¼ , with 5 ¼ 3 · % · and u · u 1000 • ½ > ½ • • • • • • • • • -1000 , • y 0 • • • , • • • [ • u - transpose of the complex conjugate of ] ½ u • • • • Match -2000 -2000 -1000 0 1000 2000 onto · using complex linear regression u 3000 3000 x # À 2000 · u o p ¾ o ¿ o Á , 1000 • • · 3 o •• Á y , •• •• 3 0 o • •• •• • • • • M -2000 · 3 , -2000 Á •• -1000 •• • • -1000 0 1000 2000 3000 - ‘design’ matrix - similarity transformation pa # M x 3 o p ¾ À ¿ ¼ rameters Register adult onto juvenile 51 52 Procrustes match = least squares Procrustes fit Minimize the sum of square errors 0 · · · · ·  ½ u ½ r · ½ u ½ 3 u Á ) ' u ' Á 1 M Procrustes residual vector ·  s u ' M Full Procrustes fit (superimposition) of on · Minimized objective function u 0 · s 3 > u ½ u ' u · · ½ ½ · u ½ ) r (not symmetric unless # À · ½ u ) · ½ u Ä ·  · 3 o p ¾ o ¿ Initially standardize to unit centroid size.... , M à à à à where Full Procrustes distance: · u # È À % , ½ ½ u Æ Ç · 3 u ' ' ¿ ' p ¾ É À ; · u i.e. à M M M % N N Ê N Ë Ì Ì Ì Ì · u · ½ ½ u ) Ì Ì L ' Ì > o p Ì Í 1 3 ¾ · · , Ì Ì u u Î ½ / . Å / . ½ Å Ã w à · · ½ ½ u ' u 3 % à · · ½ · · ½ u ½ u ¿ ) 1 L r à 53 54 d /2 ρ FULL Procrustes distance - full set of similarity transformations used in matching Æ P Ç d F PARTIAL Procrustes distance lation and rotation ONLY - matching over trans- Æ Â 1 For fairly similar shapes they are very similar, as P Æ Æ Ç 1 P Æ o ρ/2 o ¹ ¹   In this course for simplicity we shall concentrate on FULL Procrustes matching. Section of the pre-shape sphere 55 56 dF Procrustes residuals from the match of different from onto d/2 ρ onto · are u · 2000 3000 u • • 1000 • • y • • 0 1/2 •• •• •• -1000 1/2 • • • • •• •• •• • -2000 • ρ -2000 -1000 0 1000 2000 3000 x JUV to ADULT (above): ADULT to JUV: w ? Æ Ç 1 ? Ï Ã ' ? 1 ? Ï 1 A , , Ð Ã > ¿ à 1 . ¿ , , Ð Section of the SHAPE SPHERE FOR TRIANGLES, illustrating the relationship between , and , w 1 Ñ Ò ? Ó Ã A Æ , r , , , ¹  57 58 CONFIGURATION MODEL Random sample of configurations the perturbation model · · 3 % Female (left) and Male (right) gorilla skulls # À from Õ 3 Ô 1 1 1 × Ø · # # # o 3 # ¿ o 3 Á 1 , 200 200 where # 4 ¿ w 1 1 3 Ô , - translations - scales - rotations are independent zero mean complex random # Ö 3 p Ö 4 5 t y # 100 100 > # y 0 0 y Á 4 5 { z errors is the population mean configuration. -100 -100 Ø -300 -200 -100 x (a) 0 100 -300 -200 -100 x 0 100 AIM: to estimate (b) Ø - the shape of Ø Procrustes mean: Mean shape? Shape variance/covariance? Õ / . Å È " Ø Æ Ø Ç · # ) 3 1 Ù # $ % à 59 60 Consider to be centred: · # . · > # , - (Kent, 1994) Procrustes mean shape inant eigenvector of Ø is the dom Procrustes fits: match à to · # Ø Ã Õ Õ " " · · · · ½ ½ ½ # # # # 3 # # j j r # $ % # $ % Ø ·  · · · · ½ ½ # # where the shapes. · # # 3 3 3 p 1 r 1 1 Ô # # , are the pre- · # j 3 3 # 3 3 p 1 r 1 1 Ô , , à % Õ NB Arithmetic mean: . has same shape as ·  # $ % # * Õ Ø Proof We wish to minimize Õ Õ Ã Ø Ø · · ½ # ½ # " " Æ Ø Ç · # 3 ' ) Í Ø · Ø · , # Î ½ ½ # # $ % # $ % Ø Ø ½ Ø Procrustes residuals Ø ½ ' Ô 1 r Õ " Therefore,  · s #  · ' , ÝÞ 3 # # 3 ßà 3 3 p 1 1 1 Ô , # $ % Ô / . Å Ú Û Ø Ø Ø ½ 1 Ü Ü $ % Ù Ã Hence, result follows. 62 61 0.4 0.4 0.6 0.6 Procrustes fits (Generalized Procrustes analysis) •• •••••••••••• ••• •• ••••••••••••• ••••••••••• •• • • •••••••••••••••• • ••••••••••••••• •• -0.6 -0.6 -0.4 -0.4 -0.2 ••••••• •••••••• ••• • • ••••••••••••• •• -0.2 •••••••••••••• • • ••••••••• ••• ••••• • ••••••• •••••••••• •••••••••• •• • 0.0 0.2 •• ••••••••••• •••••••• ••• 0.0 • ••••••••••• • •••• 0.2 • ••••••••••••••••• •• ••• ••••••••••••• -0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 Male Gorillas Female gorillas 63 -0.4 -0.2 0.0 0.2 0.4 0.6 Other mean shape estimates: 150 Bookstein mean shape 100 h 8 y 0 1.0 50 Take sample mean of Bookstein coordinates 22 2 22222 2 22 222• 22222222 22 222 2 ã ã ã ã ã ã ã 88 88 888 8 88•888888 88 8888 88 8 â â â ã ã â â â â 0.5 -50 â 3333 3 33 3 333•333 3333 3 33 3 ä ä ä ä 0.0 -100 ä 7• ä 4• -150 v á 55 55555 555555 555555 5•55 5 å å å å -50 0 x 50 100 150 å å -0.5 -100 å 6 6666 66 66666 66•6 66666 6 66 6 1 1111 66 111 1111 1 1 11 1 1 1 1•1 111 111 -1.0 -150 The male (—-) and female (- - -) full Procrustes mean shapes registered by GPA. -1.0 -0.5 0.0 0.5 1.0 u Female Gorillas 64 65 [In Book chapter 12] MDS mean shape (Kent, 1994; Lele 1991) 1.0 0.5 88•8 8 88888888 88 8888 8 88 888 88 8 Obtain average squared Euclidean distance matrix 22222 2 2 22222 222 222• 222222 2 2 2 0 % let 3 333333333• 3333 3333333 333 (centred inner product matrix) 0 ' æ v 0.0 ) 7• 4• Let 3 % ç be the scaled eigenvectors 3 1 1 1 ç è -0.5 5 5555 555 5 55555 •5555 5 5 55 -1.0 6 6 6166 6666 16 •6 6666 6 66666 6 1166 6 1 1 1 1• 111 1 11 11 1 1111 1 111 1 -1.0 -0.5 0 0 % ç 3 3 ç 3 1 1 1 ç ) 0.0 0.5 1.0 (invariant under reflections too) u Male Gorillas IMPORTANT: If shape variations small the mean shape estimates are approximately linearly related. i.e. Multivariate normal based inference will be equivalent to first order. (Kent, 1994) 66 67 The partial Procrustes tangent coordinates for a planar shape are given by Tangent coordinates # À Ä (1) ½ ' 3 4 3 % q Consider complex landmarks pre-shape 3 3 % j m j m 1 1 1 j m ¼ q with + Ö Ö j Ö ; / . Å . Partial Procrustes tangent where coordinates involve only rotation (and not scaling) to match the pre-shapes. w ' ½ Ö j à % 3 3 % ¼ j j 1 1 1 j m l m j l j 1 r ; Let be a complex pole on the complex pre-shape sphere usually chosen as an average shape. Ö Note that and so the complex constraint means we can regard the tangent space as a real subspace of of dimension . The matrix is the matrix for complex projection into the space orthogonal to . Below we see a section of the shape sphere showing the tangent plane coordinates. ½ > q Ö Let us rotate the configuration by an angle to be as close as possible to the pole and then project onto the tangent plane at , denoted by . Note that minimizes . w Ö / . Å Ö # w À ½ ' Ö ' j Ö j ) à t ' ) ) ; ' ½ % + Ö Ö ; Ö 69 68 PROCRUSTES TANGENT SPACE Procrustes tangent co-ordinates : of at the pole v ze ' é ¹ iθ iθ ze β where is the Riemannian distance between the shapes of and , and is the optimal Procrustes rotation to match to . t > { y γ z ¹ vF r é T M RX cos ρ A diagrammatic view of a section of the pre-shape sphere, showing the partial tangent plane coordinates and the full Procrustes tangent plane coordinates . Note that the inverse projection from to is given by q # À Ä Ç q q j # À % Ä (2) ½ ' 3 q j q o ) 4 5 q Ö j L ) 1 ; , The rays from the origin in Procrustes tangent space correspond to minimal geodesics in shape space. 70 Hence an icon for partial Procrustes tangent coordinates is given by . ê l ¼ j 71 -0.54-0.48 0.07 0.10 -0.10 -0.06 -0.18 -0.10 0.14 0.17 0.1450.170 • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • •• ••• •• • • • •••• • • •• •• • • ••• ••• • ••• • • • ••• ••• • • ••••• ••••• ••••••• • ••••••••••• • ••••••• • • •••••••• •• • •••••• • •• ••••• • ••• • •• • • ••••••• • • •• • • • •• • ••• • • • •• •••• •••••• •• • ••• ••• •• • •• • •• •• • • • ••• • •• • •••• •• • •• • • ••• ••• • • •• •• ••• • • • • • • • • • • • • • • • •• • •• • •• • • • ••• • • •• • ••• • •• • •• •• • • •• • • • •• • ••• •• •• • • •••• • •• • • ••• • • •••••••••• • • • ••••••• •• • ••••••••• • • •••••• • • • • • • • • • • • • • • • • • • •• ••••••••• • • x1 • •• •••••••••• •••••••• ••• • • • • • • • • • • • • • • • • • • • •• • • • • ••• • • • • •• • • •• • •• • • • •• •• • • • •• • • •• • •• • •• • • •• • •• • •• • •• • •• • ••• • • •• • • • • • • • • • • • • • • •• • •• •• • •• •• • • • • • • •• • •• • • • • • •• • ••••••• • •• •••••• ••• • • •••••• • ••• •••••• • ••••• ••• • •••• • • •••• • • •• •• •••• • • • • ••••••••• •• ••••••••• • •••••••• •• •••••••• ••••• •• • x2 • •••• • • ••• • • • ••• • • • •• • ••••••••• • ••• • ••••• • • •• • ••• •• • • •• • • •• •• • •• •• • • •• •• •••• • • ••••• • • • • • • • • • • • • •• • • • • • • • • • • • • • • •• • • • • • • • • • • •• • • •• • • ••• •• • • • • • • •• • •• •• •• •• • •••••• •• • ••• • • • • ••• ••• • x3 • • •••••••• •• •• ••••••• •• • • •••••••••• •• • ••• ••••••••• •••••••••••••• • ••••••••••••• • •••••••••••• •••••• • ••••• • • • • ••••• •• •••• ••• • •• ••••• ••••• •• • • •• • •• • • • • • •• • • • ••• •• • • • • ••• • •• •• •• • • • • •• •• • • ••• •• •• • •••• •• • • • •••••• • • •• •••• •• • •••• •• •• •• • ••• • •••• • • •• • ••••• • • • •• •••• • • •• •••• •• •••••• • •• • •• •• •••• •• • • • • ••• • •• •• •• • • ••• • • ••••• • • ••••••• • • ••• •• • •• •• •• • •• •••• • • • •••• ••• •••• •••• • •• •• • ••• • • ••• • •• • • • •• •• • x4 • • •• • • •••••• • • • • ••• •• • • • •• • • • • • • • • • • • • • • • • • • • •• • • ••• •• •••• ••• • • •• • ••• • • • • •• ••• ••• • •••• •• • ••••• • ••• •• • •••• ••••• • • • ••• ••• ••• • ••• •••••••• • • •••••• • • •••••••• •• • • ••• •••• ••• •• ••• • •••• • • ••• • • • •••••• • • • • • • • • • • • • • • • • • • • • • • • • • • • ••• • ••• • x5 ••• • • •• • • • ••• •• • •• • • ••••• ••• • • • •• • • • ••• •• • • • •••• • • • • • • • • • • • • • • • • • • • • • • • • • •• •• • • •• •• • • •• •• • ••• • • • •• • •• • •• • • • • • • •• ••• •• •• •• •• • x6 ••••••• • •• • •• • ••••• • •• ••• • •••••• •••• • • •• •• •• •••••••• • • •• • ••••••••• • • •• ••••• •• • •••••••••••••• •• • ••• • •• •••••• • • •••••••• • •••••••••• • ••••••• •• •• ••••••••• • ••••• ••• ••• • • • •••• •• •• • • • • • • • • • •• • •• • • • • • • • •• •• • • •• •• • • •• • • •••• •• • • •• ••• •• • •••• • • •• •• ••• • • •••• • •• • • •••• •• • ••••• ••• • ••••• •• ••••• • ••• • • • • • • • • • •• • • y1 • • • •••• •• •• ••• •• • • •• •• ••• ••••• •• •• ••••• • ••••• ••••••••• • •••••••• • • •••••••• • •••••• • • ••••••• • • • • ••••••• •• • •• • • ••• • • ••• •• •• •• ••• • • •• • ••• • • • •• •• •• • • • • • • • • • • • • ••• • •• • • • •• •• •• •• • • •• ••• • • •• ••• • •••• •• ••• • •••••• ••• • • •••• • • •• • y2 ••••••••••••• • • • ••••••••••• ••••• ••• ••• • • •••• ••••• •••••• •••••••••• •• ••••••••• • ••••• • ••• ••• • •••••••• • •••••••• • ••••••••• • •••••••• • • • ••• • • • • • • • •• • • • • • •• • •• • •• •• • • • • • • • • •• • •• •• •• •• • • • •• • • • • • • • ••• • • • • •• • • • •• • •• • •• • • • • • • •• • ••• • ••••• • • • • • ••• •• •••• • • • • • • ••• •• • •••• • ••••• • • ••• • y3 •• ••••••••••••• ••••••• ••••••••• • •••••••• • ••••••• ••• ••••• • ••••• ••• ••• •• • •• •• ••• •• • • • •••• • • • ••• ••• • • •• •••••• • •••••••••• • • •• •• • •••• • • • • • • •• •• •• • • • • •• • • • • • •• • • • •• •• •• • • • • • •• • ••• • ••••••• • •••••• • •••• ••• • ••• • •• ••••••• • • •••••• •••• •• •••••• • • ••• ••• • • •••••• ••• • • ••••• • • • • • • • • • • • • • • • • • • • • • ••••• •• •••••• • ••• • • •• • ••• ••••• •••• •••• ••••• • • • • •• • •••••• • • • ••• ••• •••• • •• • • •••• ••• • • •• • • • •• • •• • y4 •• • •• • •• • •• • •• • •• • • •• • •• • •• • ••• •• • • • •• • • • • • • • • • • • • • • ••••• • • •• •• ••• • •••• • • ••• ••• • • •••• • • •••• •• • • •••• ••• • •••• •• • • • • • • • •• • • ••••• • •••••••• •• •• ••••• •• ••• •• • •• ••••• • •••• • • •• • • • •• • • • • y5 • • •••• ••• • • • •• •• • • •••• • •• ••• • • •••••• • ••••••• • ••• •••••• • •• ••••••• • •••• •• ••• •• • • ••• • • • • • • • ••••• • •••• • •• ••• • •• • • • •••• • • • • •• ••• • • ••• • • ••• • ••• • • • • • •• • • • • •• • • ••• •• • ••• • • •• ••••• • ••• • • •• • ••••• • ••• ••• • •• • •• •• •• • ••• • • • •• • • • • • • • • • • • • • •• • • • •• • • •• •• • • •••• • • •• •• • •••• • • • •••• • • •• •• •• ••• • •• • •• • y6 •• • • • • • • • ••• •••••• • • ••• • •• • • •• •• ••• • •• • ••• • • •• ••• • •••• • ••• • ••• • • • •• •• • • •• • •• • •• • • •• •• • •• • • • • • •• •• • •• •• • •• • 165 180 0.46 0.52 -0.02 0.02 -0.05 0.0 -0.18 -0.10 0.34 0.44 -0.47 -0.44 165 180 ë ì + ++ ++ ++ ++++ ++ -0.6 6 -0.4 -0.2 0.46 0.52 -0.18 -0.10 0.34 0.44 2 0.1450.170 1 0.14 0.17 0.0 -0.2 + ++ ++ ++ +++++ +++ ++ -0.4 +++ ++++++++ ++++++ -0.6 -0.05 0.0 -0.10 -0.06 + +++ +++ + ++ ++ 3 -0.18 -0.10 0.4 0.2 ++ + ++ ++ ++ + + + 5 -0.020.02 0.07 0.10 4 + ++ +++ ++ + + +++ ++ + ++ ë -0.47 -0.44 0.6 -0.54-0.48 s 0.0 0.2 0.4 0.6 Pairwise scatter plots for centroid size ( ) and the coordinates of icons for the partial Procrustes tangent coordinates for the T2 vertebral data (Small group). Icons for partial Procrustes tangent coordinates for the T2 vertebral data (Small group). 3 2 u 72 73 The Euclidean norm of a point in the partial Procrustes tangent space is equal to the full Procrustes distance from the original configuration corresponding to to an icon of the pole , i.e. q j m q l Æ ¼ Ö For practical purposes this means that standard multivariate statistical techniques in tangent space will be good approximations to non-Euclidean shape methods, provided the data are not too highly dispersed. Ç 3 q m ¼ j l Ö 1 Important point: This result means that standard multivariate methods in tangent space which involve calculating distances to the pole will be equivalent to non-Euclidean shape methods which require the full Procrustes distance to the icon . Also, if and are close in shape, and and are the tangent plane coordinates, then Full Procrustes tangent coordinates Ö An alternative tangent space is obtained by allowing scaling by of the pre-shape in the matching to the pole . In the above section % l ¼ Ö > ¿ % q q ) ) Æ % q ' Ç % 3 Æ % 3 % Ö 3 q í í ¹ í )  ) ) ) (3) 74 1 j - sample covariance matrix of some tangent coordinates , O Shape variability # q Õ Overall measure " , # ' # q q ' q q O ( ( ¼ # $ % Ô % where . # q q * ( Õ Õ % " Æ Ç Æ Ø Ç · # é Ô 3 ) - eigenvectors of with eigenvalues 1 ; : principal components (PCs), & # $ % O Ö Ã ³ ³ % ³ 1 1 > 1 è ) Æ Ç Ç î ï ð ñ î > > PC score for the th individual on the th PC is: @ é 1 p @ ò # Æ Ç ï ð ñ & ' # 3 3 3 3 3 ó 3 î & q q p ( ¼ > > Ö 1 1 1 Ô 1 1 1 , ? PC summary of the data in the tangent space is 1 > , é PCA in tangent space to shape space è " ò # # q q & 3 & o ( Ö & - PCA of Procrustes residuals - PCA of Procrustes tangent coordinates (project so to obtain part that is orthogonal to its rotations) - NB for observations close to we have $ % Ø ·  s ' # # for à # 3 . 3 p 1 1 1 Ô q s , and Ø # Standardized PC scores: à % ³ Ø s # ô @ ò # & # & 3 3 3 3 3 ó # p q & ) í 1 1 1 Ô 1 1 1 1 L r , , à 75 76 Mouse vertebra example: (PC1 = 69%) Mouse vertebra example: 0.6 Procrustes registration for display 4 + ++ ++ ++ +++++ +++ ++ 1 2 -0.6 -0.4 -0.2 0.0 + ++ ++ ++ ++++ ++ -0.6 6 5 -0.4 -0.2 0.0 0.2 0.4 • • 77 0.4 2 • 0.0 (a) 0.6 3 1 • -0.6 -0.4 -0.2 -0.6 õ • 6 0.2 • 0.2 0.2 0.0 +++ +++++++ ++++ +++ -0.4 -0.2 •4 -0.6 -0.4 -0.2 0.0 + + ++++ + +++ 3 0.6 0.6 ++ + ++ ++ +++ + + 5 0.4 0.2 0.4 + ++ +++ ++ + + +++ ++ + ++ 0.4 0.6 • • • • • -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 (b) 78 Mouse vertebra example: (PC1 = 69%) Bookstein registration for display Important: If using Bookstein superimposition to calcuate then strong correlations can be induced.....can lead to misleading PCs -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 O 4 • 5 3 • • 1 2 • • • 6 • • • • • No problem with Procrustes registration, Kent and Mardia (1997) • -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 (a) (b) 79 T2 small vertebra outlines 80 5 ++++++ ++ +++ ++ + 0.0 Æ -0.3 -0.1 0.1 -0.3 -0.1 0.1 0.3 -0.3 -0.1 0.1 0.3 0.3 0.3 ••• •• •• •• • •••• •••• ••• ••••••• •• •••• ••••••••••••• -0.3 -0.1 0.1 ö -0.3 -0.1 0.1 ••••• •• •• •••• •• ••••• •••••• •••• •• •••• •••••••••••• -0.3 -0.1 0.1 •••• •• •• •••• •• ••••• ••••• •••• •••• •••• ••••••••••• -0.3 -0.1 0.1 -0.3 -0.1 0.1 0.3 0.3 0.3 0.3 -0.3 -0.1 0.1 0.3 0.0 0.1 0.3 •••• ••• •• •••• •••• •••• •• •••••••• •••••• ••••••••• •••• -0.3 -0.1 0.1 0.3 0.3 -0.3 -0.1 0.1 0.3 0.3 0.3 0.3 -0.3 -0.1 0.1 •••• •• •• •••• •• ••••••••• ••••• ••• •••• •••••••••••• -0.3 -0.1 0.1 ö 0.3 -0.3 -0.1 0.1 0.3 ••••• •• • •••• •• ••••••••• ••••• ••• •••• •••••••••••• -0.3 -0.1 0.1 -0.3 -0.1 0.1 ••••• •• • •••• •• ••••• ••••• •••• ••• •••• •••••••••••• -0.3 -0.1 0.1 0.3 0.3 0.3 -0.3 -0.1 0.1 •••••• •••• •••• ••••• ••••• •••••••• •••• ••••••••••••• -0.3 -0.1 0.1 0.3 •••••• ••• •• •••• •••••• ••••••• •••• •••• ••••••••••••• -0.3 -0.1 0.1 0.3 -0.3 -0.1 0.1 6 -0.1 •••••• ••• •• •••• •••••• •••••••• •••• •••• ••••••••••••• -0.3 -0.1 0.1 0.3 -0.3 -0.1 0.1 -0.1 1 -0.2 -0.3 -0.1 0.1 ••••••• •••• ••• •••••• ••••• •••• ••••• •••• ••••••••••• ++ + ++ ++++ ++++ ++ ++ + -0.2 •••••• •• ••• •• •••••••••• •••• ••••• •••• •••••••••••• -0.3 -0.1 0.1 0.3 0.2 Ç > 0.3 ••••• •••••••• ••••••••• ••••• •••• ••• •••• •••••••• ••• 2 + +++ ++ + ++ + + ++++ ++ + ++++ +++ ++ ++++ é ••• ••••••••• ••••••••• •••••• •••• •••• •••• ••••••• ••• -0.3 -0.1 0.1 3 ++++++++ + + +++ -0.3 -0.1 0.1 0.1 -0.3 -0.1 0.1 0.3 4 +++ ++ +++ ++ ++++ ++ ++ + 0.3 0.2 PC1: 65% PC2: 9% > 1 Ò 81 82 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.0 0.1 0.2 0.3 0.2 0.3 -0.3 -0.2 -0.1 (a) 0.3 -0.3 -0.2 -0.1 0.0 (b) 0.1 +++++++ + + + + + + + + + +++ + ++ + + ++ ++ + ++ +++++ ++ ++ + ++ ++ + ++ ++ +++ +++++++ -0.3 -0.2 -0.1 0.0 0.1 +++++++ + + + + + + + + + +++ + ++ + + ++ ++ + ++ +++++ ++ ++ + ++ ++ + ++ ++ +++ +++++++ 0.1 ++ + + + + + + ++ •+•••••••• +++ + ••+ ++ ++ ++ ++ +•••••• ••+•+ + + + + ++ ++ •••++ + •••• ++ ++ +• + + •••• + •+ + ••+ •++ + + + • • • •+• + + + + •+•+• •+ •+ + +••++ • + • + + • + • + + •+ •+ •+ ++ +•+•+•+•++ + •+•+ • + + • + • • • • •+•+ • • ++ •++ •••+ ••+•+ •+••+ •+ ••+ •••++ •++ •+ •++ •++•++•+ ••+ •++ •+ •+•+ + • • • •+• • • ++ •+ ++ + ++ •++ •+ +•++•+ ••••• ++++ ++ -0.3 -0.2 -0.1 0.0 0.2 0.1 -0.3 -0.2 -0.1 0.0 0.3 0.2 0.3 0.3 0.2 0.1 -0.3 -0.2 -0.1 0.0 ++ ++ +++++ + +++ + + +++ ++++ + ++ +++ + ++ •••+ ++ +++ • + • + •+ + + + ••••••••••+ • + • • + • • •+ + + +••+•••+ + ••+ •••••• •+ •+ •••+•••++••+ •+ ++•+ •••••• ••••••• ••••••+••+•+•+ ++++++ +++++•+•+ •••++•+ • •+•+++++++++++ +++++ •••••• • ++ ++ + •••+•+ • ++ ++ ++++ ++•••••+ ++++ + •••+ •+••••••• ••+ •+•+++ ++++ +++ + •++ • ••• ••+•+•+•+•+ ++ +++ •+•++ + •++ ++ +++ + • ++ •+ ++ •+•+ + ••••++•+• +++++ •++ +++ •++ • •+++•••• 0.2 0.3 -0.3 -0.2 -0.1 0.0 (a) 0.1 0.2 0.3 (b) 83 84 Pairwise plots: -1.5 + ÷ -1.0 + ++ + + + + s + + 0.0 0.5 1.0 1.5 + + + + + + + +++ + + + + + + + + + + + + + + + + -0.5 + + + + +++ + + + + + + + + + + + + ++ ++ + + + + + + ++ + ++ + + + + + + + + + + ø + + + 480 500 520 540 560 580 600 620 0.04 0.05 0.06 0.07 0.08 0.09 + + + + ø + + + 0.04 0.05 0.06 0.07 0.08 0.09 ++ ++ + ++ +++ + + + + + + + + +++ + + + +++ ++ +++ ++++ +++ + +++++ + + + + + + + + + + + ++ + + + + ++ + + + + + + ++ + + + + + + + + ù + 0.5 + + + ++ + + + + + + -0.5 + + ++ -1.0 + + + + + + + + score 2 + + + + + + + + + + + + + + ++ + + + + + + + + + ++ ++ + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + ++ + + + ++ + + + + + + + + + + + + + + + + + + + ++ + + + + + score 1 + + + + + + + + + + + + + +++ 0 + + + + + + + -2 + + 1 + + + + + 1.0 + + + + + ++ +++ + + 1.5 + ù + + + + + + + + + + + 2 0.2 + + + + ++ ++ ++ +++ + + + + + + ++ + + + + + + + + + + + + + +++ + + + + ++ + + + + + + + + + + ù score 3 + + ++ -1 + + + 0 (b) + + ++ + + + + + + + + + 1 ÿ + + + + + ú û û + + + + + + û 480 500 520 540 560 580 600 620 + -2 -1 0 1 + -2 0.0 + + + + + + (a) + + + -1 + + -0.2 + + + + + + + -1.5 0.2 + + + + + + + + + + + + + + 2 + + + + + + ++ + + + + + + + + + + + + + + + + dist + + + + + ++ + 0.0 + + + + -0.2 + + + + 0.0 0.0 0.2 +++ + ++++ + + + + + + ++ + + + + +++++ ++++ +++ ++ ++++++ ++++ ++++ +++ -0.2 -0.2 0.0 0.2 + + + ü 2 -2 -1 ý 0 þ 1 ü 2 Size, shape distance, PC scores 1, 2, 3 85 86 Pairwise plots: -10 0 10 20 30 -30 -10 0 10 20 30 -30 -10 0 10 20 30 -30 -10 0 10 20 30 -10 0 10 20 30 0.2 0.3 0.4 0.5 0.6 0.7 -30 • • • •• ••• • • • • •• •• • • • •• • • • -10 0 10 20 30 -10 0 10 20 30 • -10 0 10 20 30 -30 -10 0 10 20 30 -10 0 10 20 30 -30 -10 0 10 20 30 2 1 -1 -30 -30 -30 -30 -10 0 10 20 30 •• • •• • • • • • •• •• •• •••• • • • • • • • • -10 0 10 20 30 -30 -30 -10 0 10 20 30 -10 0 10 20 30 -10 0 10 20 30 • -30 -10 0 10 20 30 -30 -10 0 10 20 30 •• • •• • •• •• • •• •• • •• • • • • • • • • • •• • • • • • • • • • • •• • • • • • •• •• • • • • • • • • • • ù • 55 50 • • • • • • • • • •• •• • • • • • ÿ • • • • • • • •• •• • • • • 45 • • • • • • • • •• • • • • • • • • •• •• ••• • • • •• • • •• • • •• • • • • • • • • • • • • • • ••• • • • • • • •• • • • • • • • •• • • 40 • • ••• • • • • • • • • • •• • • • • • •• • score 2 • •• • •• • • • • • • • • • • • • • •• • • • • • • • • • • • • • • •• • • •• • • • • •• •• • •• • • • • • • • • • • • ø • •• • • • • • • • • • •• • • • • ••• • • • • • • 2 1 -10 0 10 20 30 • •• • • • •• •• • •• • • • • ••• • • •• • • • • • • • •• • ••• • • • • • • • • • • • ••• • •• • • • • • • • • • •• • •• • • • • • • • • • • • • • • • • • • • • •• • •• • • • • • • • •• • • • • • •• • • •• • • • • • • • • • • • • •• • ù score 3 • • • • • • • •• • • • • • ÿ • • • • • • •• • • • • •• • • • • • • • • • • • • • • • •• • •• • • • • • •• • • • •• • •• • • • • • • • • • • • •• • • • • • • • • score 4 • • •• • • • • • • • • • •• • •• •• • • • • • • • •• • • •• • • • • • • • • • • • •• •• • • • • • • • • ••• • • • • • • • • • • • •• • • •• • • • •• • • • ••• •• • •••• • • • • • • • • • • • • • •• • • • • •• • • • • •• • • • • • • • • •• • • • • •• •• • •• • •• • • • • • • • • • • • • • • 0 -30 • •• • • • ÿ -30 -30 -1 -10 0 10 20 30 -30 -10 0 10 20 30 • • • • • • • • • • • -2 -30 -30 -30 -10 0 10 20 30 -10 0 10 20 30 -10 0 10 20 30 -30 • • • • • 2 • •• • • • • • • • • • • • • • • • • • • • • • • •• • • • ••• ••• • •• • score 1 • • • •• • • • • •• • • • •• • • ••• •• • • •• • • • • • • • • • • •• • • •• •• • • ü 1 • -2 -30 -30 -30 -30 -10 0 10 20 30 •• •• • • • • • • ù • • ÿ 0 -10 0 10 20 30 -10 0 10 20 30 -10 0 10 20 30 -10 0 10 20 30 -10 0 10 20 30 -30 -30 • • • • • • • •• • • ••• • •••••• •• •• • • • • • • • • • • • •• • ••• • • • • •• • • •• •• •• • • • • • •• • • • • • ••• • • • ••••• •• • 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • -1 • • • • • •• • • • • •• • •• • • • • • • • • •• • • • • • • • •• •• • • • • • • • -2 • • •• • •• 35 -10 0 10 20 30 -30 2 • • • • • • • • • • •• • • • •• • •• • • ü 1 • • •• • dist • þ 0 • • •• • •• • -1 • • • • • • • • -30 -10 0 10 20 30 -30 -10 0 10 20 30 -30 -10 0 10 20 30 -30 -10 0 10 20 30 -30 -10 0 10 20 30 -30 -30 -2 • • •• • • •• • • • • • • •• • •• • • • • •• • • s 3 -10 0 10 20 30 2 0.2 0.3 0.4 0.5 0.6 0.7 -30 1 -10 0 10 20 30 0 -10 0 10 20 30 -30 -1 -10 0 10 20 30 -30 -10 0 10 20 30 -30 -2 -10 0 10 20 30 2 -30 1 -10 0 10 20 30 -30 -10 0 10 20 30 -30 -10 0 10 20 30 -30 0 -10 0 10 20 30 Size, shape distance, PC1: 50%, PC2: 15%, PC3: 13%, PC4: 8%, PC5: 4% -1 -30 -30 -10 0 10 20 30 -30 -30 -10 0 10 20 30 Digit 3 data • • • • • 2 • ÿ • • • • • •• • • • • •• • • • • • • • • •• • • • • -10 0 10 20 30 -30 -10 0 10 20 30 -30 -10 0 10 20 30 -30 -10 0 10 20 30 40 45 • • •• 50 55 • ú • • -2 -1 • • • • •• • • û • • •• • • • •• • • ••• • • • 0 þ 1 2 • • • • • • • • • • • • ••• • • • • • • • • • • •• • • • • • • • • • • • •• • • • • • • • • •• • • •• • • • • • • • • score 5 • • • 3 • • • • • • • 0 • • • • 35 • • • • • • •• • • • • • • ••• • • •• • -1 •• • -1 0 1 ü -2 -10 0 10 20 30 • • • 2 -2 ý -1 0 1 2 -30 -10 0 10 20 30 -30 -10 0 10 20 30 -30 -10 0 10 20 30 -30 -10 0 10 20 30 -30 -10 0 10 20 30 -30 -30 -10 0 10 20 30 -30 -10 0 10 20 30 Æ Ç t > é 1 Ñ -0.4 + + + 0.4 + + -0.4 0.0 0.4 -0.4 0.4 0.4 -0.4 0.0 0.4 0.0 0.4 + + + + ++++ + + + ++ -0.4 0.0 0.4 -0.4 0.0 0.4 + + + + ++++ + + + ++ -0.4 0.0 0.4 0.0 0.4 ++ + + + ++ + + ++ + + -0.4 0.0 • • ++ • • • -0.4 -0.2 0.0 ++ • + + + • + •+ • + + • + • + + + + • + •• + + •• • • ++ • • • + • • -0.4 0.0 • • + + + •+ +• +• • •• • • + + + • +++ + ++•••+ ++ • •• •+• • • • •• • • + • • • -0.2 0.4 0.0 -0.4 0.4 -0.4 0.0 + + + + + ++ + + ++ ++ + + + + ++ + + + + + + -0.4 0.4 0.4 0.0 -0.4 0.4 0.0 0.4 0.4 0.0 0.0 0.0 -0.4 + + + + + + ++ + + + ++ -0.4 -0.4 -0.4 0.4 0.0 -0.4 0.4 0.0 -0.4 0.4 + + + + + + ++ + + + ++ + + ++ + + ++ + + + + + -0.4 0.4 0.0 0.4 0.0 -0.4 0.0 -0.4 ++ + + + + ++ + + + + + + + + + + + ++ + + + ++ + + + + ++ ++ + + + + + -0.4 0.4 0.4 0.4 0.0 0.0 0.0 -0.4 -0.4 -0.4 0.4 0.4 0.0 -0.4 0.0 + + + + + + ++ + + + + + + + + + + + ++ + + + + + -0.4 0.4 0.4 0.4 + + ++ + + ++ + + + + 0.0 0.0 0.4 0.0 0.4 0.0 0.0 0.0 -0.4 + + -0.4 -0.4 0.4 + + ++ + + + ++ + + + 0.0 -0.4 0.4 0.4 + ++ + + ++ + + + + + + -0.4 + 0.0 0.4 + + ++ + ++++ + + + 0.0 0.0 0.4 -0.4 -0.4 + + 0.0 0.0 0.0 + + ++ + ++++ + + -0.4 -0.4 0.4 0.4 0.0 + -0.4 0.4 + + -0.4 -0.4 0.0 0.4 -0.4 + + ++ + ++ + + + + + 0.0 + + -0.4 0.4 -0.4 0.0 + + + ++ ++ + + + 0.4 + + + + ++ + + + + + 0.2 0.4 • •++++••• + + + + • -0.4 • • -0.2 0.0 0.2 • • + • • • +++ + ++ •+ •• + + + + • • • ++ ++ •• • • ++++•• •••++++ • • • + +++ •• • •+ ••• ++ • + + • + + + ++ +••• + ++ + + •• •++ ++ 0.2 0.4 + 0.0 0.0 0.0 0.4 0.0 + 0.4 + + + + • ++ • ++ • •• • + ••• +++ •+ • • +•+ + +• + + + + + ++++••• ++ •• ++ -0.2 -0.4 0.0 + + + + + + ++ + + + + + ++++ + -0.4 0.4 0.4 • •• ++ ++ -0.4 0.4 0.0 + + + 0.4 0.0 + + + -0.4 0.4 0.0 -0.4 0.4 + + + + + + ++ + + + + + -0.4 -0.4 ++ + + + 0.2 0.4 0.4 + 0.0 0.0 0.0 0.0 0.4 0.0 -0.4 0.4 + + + + + + ++ + + + ++ -0.4 -0.4 -0.4 -0.4 0.4 0.4 + -0.2 0.0 0.0 0.0 0.4 0.0 +++ ++ + ++ + + ++ + -0.4 -0.4 -0.4 0.4 0.0 -0.4 0.4 0.0 -0.4 0.4 0.4 0.4 + + + -0.4 0.0 0.0 + + + + ++++ + + + + + 0.4 -0.4 -0.4 + + + + + + ++ + + + + + 88 0.2 0.4 0.4 +++ + + ++ + + + ++ + 0.0 0.0 0.0 ++ + + ++ + + + + + + + 0.0 0.4 -0.4 -0.4 -0.4 0.0 + ++ + + + ++ + + ++ + -0.4 0.0 0.4 0.4 0.0 0.4 -0.4 ++ + + + + ++ + + + + + -0.4 + + -0.4 ++ + + + + ++ + + + -0.4 0.0 0.4 87 -0.4 -30 • •• • • ••• • • 1 • • • • • -0.4 -0.2 + + + + • • + + •• 0.0 ++ •• • • 0.2 0.4 0.4 + + + ++++ + + + + ++ -0.4 0.0 0.4 89 90 HIGHER DIMENSIONS Ordinary Procrustes analysis (match tred)....Minimize: 0 to % - cen PERTURBATION MODEL: ) ð 3 % ' ' % 3 ¿ ) ¼ ) Ö Â , ) ) # Solution: Ø # # ¿ o # o # ¼ Ö , > Ö Can estimate the shape of by GPA (generalized Procrustes analysis): by minimizing Ø Ã h i ¼ à where h h Õ % i % 3 ¼ 3 i 4 ¼ " Æ Ç Ø ) ) # 3 ) with a diagonal matrix. Furthermore, . / # $ % % ¼ 3 ¿ . / Least squares approach. Iterative algorithm needed for dimensions ) à % % ¼ à t The minimized sum of squares is: % Æ Ç 3 % ) 3 ) ) ) ) 92 -20 0 20 40 60 •••••• -60 -20 0 20 40 60 ••• ••• • ••• ••••• -60 -20 0 20 40 60 ••• • •••• ••• ••••••• ••••• ••• -60 -20 0 20 40 60 (a) •••• •••••• •••• -60 -20 0 20 40 60 (b) ••••• ••••• ••• ••• -60 ••••• -60 •••• ••••• ••••• -20 0 20 40 60 •••• ••••• (b) -20 0 20 40 60 (a) ••••• • •••• •••••• -60 ••••••••• -60 -60 -20 0 20 40 60 ••••••• -20 0 20 40 60 ••••• •••••• •••••• ••••• •••••• •• -60 •••••• ••••• -20 0 20 40 60 • ••• •• •••••••••••• • -60 -20 0 20 40 60 91 (c) Male macaques -60 -20 0 20 40 60 (c) Female macaques 93 0.6 0.6 -0.2 +•+• +• •+ -0.6 -0.6 •+ + • • +• + 0.2 +• + • +• -0.2 0.2 •+ +• +• -0.6 -0.2 0.2 0.6 -0.6 -0.2 0.2 0.6 (b) 0.2 0.6 (a) +• +• +• +• • •+ + -0.6 -0.2 •+ -0.6 -0.2 0.2 0.6 (c) Male ( ) Female (+) PC1 (47%) for Males: +/- 9 s.d. 94 95 Hierarchy of shape spaces Original Configuration remove translation Different approaches to inference: Helmertized/Centred remove scale remove rotation Pre-shape Size-and-shape remove rotation 1. 2. 3. 4. 5. remove scale remove reflection Marginal/offset distributions Conditional distributions Directly specified in shape space Distributions in a tangent space Structural models in the tangent space Shape remove reflection Reflection size-and-shape Reflection shape 96 97 Preshape distributions (2D) Shape distributions: offset normal approach 2D - complex notation: [ > j 3 ½ % j 3 j 1 1 1 j - ] ( j , 3 j ½ j where j , - - 3 complex Bingham (Kent, 1994) 3 Û ô ½ ç j j j is Hermitian. NB: shape analysis. ç # j À so suitable for ç j 2 2 1 1 (b) (a) NB: MLE of modal shape is identical to the PROCRUSTES (least squares) mean Mean triangle with independent isotropic zero mean normal perturbations with variance . Ø complex Watson (special case of c. Bingham) ) Û Ø Ø ô ½ ç j ½ j j 98 99 DIFFUSIONS AND DISTRIBUTIONS Offset normal density (wrt uniform measure) (Mardia and Dryden, 1989; Dryden and Mardia, 1991, 1992) Diffusion of points in Euclidean shape (WS Kendall): Û Æ Ø t t Æ Æ Ø # # ' # 3 3 3 p ' 3 ' ' 3 o æ 1 1 1 1 t ¹ ¹ , , , ) ; where Ø p j ) Ø Ø Ø # ' p * j , and ) r ( ) ) × & & º Ornstein-Uhlenbeck process for Euclidean points independent size and shape diffusions [with random time change for shape: size ]. Computer algebra package developed through this work. º Æ & ' * # $ # 2 # 9 is the Laguerre polynomial. Æ ) r S Parameters: Size and shape, and shape diffusions in : 2k-4 mean shape parameters : concentration parameter. Ø ó (Le). Shape density at time : (from previous slide). 100 101 Controls: 0.6 Maximum likelihood based inference 0.2 0.4 • ••••••••• • ••• • •••••••• •••••• • • •• ••••• •• ••• •• ••••• •••••• • •••••••• • • •••••• • • • • • • ••• 0.0 • •• •••••••• •••• •••• ••••• •••••• -0.6 -0.4 -0.2 ••••• •••••• -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.6 Schizophrenia patients: 0.2 0.4 •••• • •••••• •••••••• ••• • 0.0 ••• • •••••• • • •••• • •••• ••••••••• • •••••••• • ••• •••• -0.6 -0.4 -0.2 ••••••••••• • ••••••••••• • ••• ••• • •••• ••••• •••••••••• ••••••• • -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 102 Schizophrenia study (Bookstein, 1996; Dryden and Mardia, 1998) landmarks in 2D: Controls and Schizophrenia patients 103 INFERENCE: Multivariate normal model in the tangent space (to pooled mean) % A Ô , , Ô Hotelling’s test ) , | | ) · # % 3 3 & 3 3 q ) Isotropic offset normal model: independent individuals Inference: maximum likelihood all mutually independent and common covariance matrices @ 3 3 % 3 3 3 p 1 1 1 Ô 1 , 1 1 Ô , ) · 3 q ( ( 3 - sample means - sample covariance matrices 1.0 O CS 0.5 Mahalanobis distance squared: 0 S C · · ' ' q 3 q ( ( ( ( B ¼ ) 0.0 ; x S C x -0.5 where C S SC SC SC t % % ' o B o O Ô Ô Ô Ô r SC S C ) SC Under -1.0 SC ) equal mean shapes... l S -1.0 -0.5 0.0 0.5 1.0 % ' % ' o Ô Ô Ô Ô 0 , ) ) ) t % % ' o Ô o Ô Ô Ô ) ) ï LR test . Monte Carlo permutation test, p-value: 0.038. ï t > A 1 > 1 Õ Õ % > ? ) , ) < ) = ; ; N under .[ l = dimension of the shape space] S 104 105 Pairwise plots: Gorilla (female/male): $ $ $ $ $ $ $ $ t 0.03 0.05 0.07 $ ! $ $ $ > 3 A Ô $ $ % % Ô $ $ $ $ ) $ $ $ $ $ t -2 -1 0 1 2 t & ' $ % $ , $ $ mm m mm m mm m mm m m mmmm m mm mm m mm mm ff f f ff fff fff ffffff f f ffff f m fm f m ffm mm f f m mf f m mm f f f f ffmmf fff fm m m m m m m f f ff f f m m fmm mm m f ff m m mm m mm m m mm m m m m mm mm mmm m mmm f f ff ff f ff f f f ff f f ff ff ffff f f f f f f ff f ff f f m f f f fff m f f f ff f fm mmm m mm ff f m mm m m f mmmf m m mm m m mm -3 -2 -1 0 1 2 m mm m m mm m mmmmm mm m mmm m mm m m m m m m mm mm mm m mm mmm m mm mmmmm m m mm m f f f f ff f ff f f fff fffff ff f f ff fffff f f f f f f f ff ff f ffff ff fff f f m m ff m ff m f f mm m m f f f mf m f m m f f f m m mf f f fmm m m f ff f f mm ffmff mm m mf f ff mm fm fm m m m m mmm f fffm mfmfm m ff ff f ff m m m m m m f f fmm f m ff f f mm m mmff f f m mm m m m mmmm m mmm mm mm mmm m m mm mm mm mm m m m m mmm mm m mm mm m m mm m fm fm fm fm f f f f f ff f ff f f f ff ff ffff fff fff ffff fff ffff f f f f f f f f ff f ff f f f f ff f f ff f fff f ff f f m f f f f f f m f f ff f m m f ff ff f f ff ffff m fm mm m mf mm m m mffmff m mm m m mm f mfm m f f f m m mm f mm f f m mm m m mm m mm mm m mmm mm m m mm m f f f f ff f ff f f f f fff fff m m f ff f f fffffff f f f fff f m f ff mf f f fmf m m m m m fm m m m f f f mm m m fm m fm f mm m m m mm f m m m mm mf m m mmmmm m m m mmm m mm m m f f mmm m m m m m m m m mm mm ff f m m m m f f ff f m m m score 12 m mmm fm f f ff ff ff fm f f f f ff f $ $ $ $ $ $ $ $ $ $ $ $ $ $ f $ $ $ f $ $ $ $ $ $ $ $ $ $ f $ $ $ $ $ $ $ $ $ $ $ $ score 2 $ $ t " $ $ 1 Ò -3 -2 -1 0 1 2 % v # > 1 Ò > > > 1 , ) $ $ $ $ $ $ $ $ $ $ $ N $ $ $ $ $ $ $ ' $ $ $ $ The test statistic is and $ $ $ $ $ $ f $ $ 240260280300 s 4 2 0.03 0.05 0.07 -2 -1 0 1 2 m m mm m mm m mm m m mmmm mm mm mm m mm m m m mmmm m mm mm mm mm mm mmmmm m m m m m mm m m m m m m m mmmmm mm m m m m mmm m m m mm m m f fff fffffff f fff f f f fff ffffffff ff f ff ff ffffff fff ff f ff f fff ffffff f ff f ff f f f ff ff ff fff f f f m m m ff mm f m f f mm f mf f m f ff m m f m m ff m mff mm f m m mf f ff m m f dist ff f m m m f ff f m mm mm f f mf f m mm m f f f f f f f m mmm m f ffff f fm mm m ff fffff m m m m m mmf m f ff mm ff mm mm ff fffffff mm m fmm fm m mm f f m mm m f ffff f m m mm f m f mff m m mm m m m mm m m m m mmm mm m m m m m m mm m mm m m mm m mm m mm m m m mmm m m mmm mm m m mm mmmm m mm mm m m mm m f fmm fm mf f score 9 mmmm m mmf f f f ff ff f f ff f f f f fffffffff fff f f ff fff ff fff f fff f f fff ff ffff fffff ff fffff f f f ff f f ff ff f f f f f ff ff f ff f f ff f f f f f fff f m ff f f f f ff f fffff m m ff f f m m m f ff m f mf ff f f f f f ff fff f ff ff m ff f f f score 11 mm mm m m mm mmm mmm m mfm m m f f f f f mmmm mm fff f mmm fmmf f m m m m m ff mm m f m m mfmm mm mm mm m mmm m mm mm m mm m m mmm m mm m mm m m m m f f f f f f f f f f m f m f f m ff f ffm f f ff f fff ff f f fffff ffffffff ff ff ff f f f ff ff f fff f f ff f f f mf f f f f f f ff fff f m mm f mm mm m mf fm f m f m mm m mm m m f f fff mm m m mf f ffm f m f f f ff f m m m mm m mfm m mm mmmmm mfm m m m m mm mf mf f f m f f m mm m mm mm mm mmm mm mm m m mmm m mm m m m m m m mm m m mm mm m m m mm m m m m f f m f f mmm m m mm m mmm m m m mmm mm m mm m mm m m mm m m mm m mm m m mm mmmm m m m mmm m m ff m mm fm mm m fmf f m mmm f ffff ff m f fm m m mm m fm m m fm f ff f m mf f m f fff f m f f m m mm m m ff f f fm f f f f fffff ff fffm m mm m fm fmmm fff f f fffff mmmmm fm f f fff ffff f mm fm f f m m m m f f f f fff f f ff f ff f ff ff ff f f f f f f f ff f f f f f ff f f m m f f ff f m m f ff f f f fff f f f ff f f fm f f f f f ff ff m f mf f m ff ffm fffff f f fm ff fffffffff fm mmm m mfm f m mm mm mmmm fffm m m m f f f fffffff fm m fmm f ff m m mm m fm fmfm mf f f ff f ff m m m mm m mfm f fff m mm m m m mm m m mm mm mmmm m f m mf f ff f m f f m m f f m m m m m mm m m mm m mm m m m mm m m m mmm m m m m mm m 240260280300 -2 0 2 4 dimensions t -2 0 Ñ -2 -1 0 1 2 3 m m m mm mmm mmm m f m mm fmf fff m m mf m m m f mm m m m ff ffffff fff f m f f f f ff f ff f f ff m fmf f f f ff f fff f fff ffffm f f fff f m f f m m m fm f m f fm f m f mfm m m f m f m m ff ff ffm m mm ffm mm fm ff f score 1 m m mm m m m m m ff f mm m f f m m m m m m m mm m m m mm mm m -2 -1 0 1 2 3 -3 -2 -1 0 1 2 $ $ $ $ $ $ $ -3 -2 -1 0 1 2 landmarks in Size, shape distance, PC scores in direction of mean difference $ $ $ $ $ $ % $ ' 106 107 Goodall’s F test: If ( then + Comparing several groups: ANOVA Õ Õ Æ Ø Ø Ç % 3 Õ Õ ) ) < ; = Balanced analysis of variance with independent random samples from groups, each of size . Let be the group full Procrustes means and is the overall pooled full Procrustes mean shape. A suitable test statistic is ) < Õ < Õ Ã Ã Æ < ) Ø Æ ) = Ç * Ø Ç 3 # % 3 # o # * $ % # * $ % ) ) < = 3 % Under : l Ã Õ 3 1 à @ & ) 1 3 & 1 3 3 1 1 1 Ô - , ï ï - Õ Õ S Ô F ) < ; = I N - Ô Ø Ø & Schizophrenia data: à landmarks in A dimensions t à , Õ . Æ Ø Ø Ç 3 # # * $ % 3 % ) ' Ô Ô Õ . Õ , Ô Ô Ô - 1 , Æ Ø Ç Ã Ã ) , ' & & * Ô $ % # * $ # 3 & % ) , t t t ' à Under l equal mean shapes: S ! 1 Ñ , and ! > > ï 1 Ñ í ï 1 Õ . Õ . Õ % , , ) ) N % , ) + , F ; F I ; I N Permutation test: p-value = 0.04 and reject for large values of the statistic. l S Hotelling’s ) test p-value = 0.66 108 109 By analogy with analysis of variance we can write Complex Watson inference: Õ " " Ø # Ø 3 u & 3 o ¹ ) j ¹ ) # $ % & $ % à à à Two independent random samples from and from . We wish to test between Ø Ã Õ 3 % 3 j / 1 1 5 1 3 j Õ u % 3 3 1 1 u 5 3 1 " " Ø # / 3 u & 3 o ) # $ ¹ j o ) % & $ ¹ à / Ø / Ø / where is the overall MLE of if the two groups are pooled, and is analogous to the between sum of squares. Since, Ø % 3 à l æ % l Ó S Ø Ã # 0 à where , (i.e. represents the shape corresponding to the modal preshape . For large it follows that Ø Ø Ø t > y 1 { Ø æ z Õ " " Ø # Ø 3 u & , 3 o Õ v ) ¹ j ) ¹ í % ) t Õ # $ % & $ % F F ) à à ; à " I ; à " Ø # / 3 u & 3 , o Õ v ) ¹ j ) ¹ í ) t # $ % & $ it follows that % F F ) ; I I Õ and we also have " " Ø # Ø 3 u & 3 ' o æ ¹ ) j ¹ ) Õ # $ % & $ % à à à " à " Ø # / 3 u 3 & , o Õ v ¹ j ) ¹ ) í ) t Õ # $ % & $ % F F ) ) ; à I ; I à " " Ø 3 # / ' u 3 & , v ¹ ) j ¹ ) í 1 ) t # $ % & $ % ) ; à à 110 111 Bayesian approach to inference 2 Õ z 3 % 3 3 7 1 1 1 7 º 3 2 2 Õ % 3 3 7 Therefore, under we have l 1 1 1 3 z 7 3 1 4 3 2 2 2 Õ 3 % 3 3 z 3 S 7 1 1 1 7 t ' o Ô æ Õ Ø / e.g. Data complex Watson( , known ) Prior complex Bingham ( known) Ø # 3 u & 3 o # $ % & * $ % * ) # ¹ j ¹ ) ) j Ø Ã Ã Õ v v í F ) F ) ) ; ; I ; I N and so we reject for large values of . Using Taylor series expansions for large concentrations l S ) % % % Ø / 3 3 Ø Ø 3 o Õ æ í Ô ) ¹ ; Õ z ; % 3 3 z % 3 3 ; j à 1 1 1 j ( j 1 1 1 j Ã Õ º and so for large the test statistic is equivalent to the two sample test statistic of Goodall (1991). 6 Û 7 5 " Ø Ø Ø ½ ½ Ø ½ # o 8 9 # ) ( j j : # $ % Û Ø Ø ½ 3 o Conjugate prior MAP: dominant eigenvector of o r 112 I EDMA (Euclidean distance matrix analysis) [Lele, 91+, Stoyan, 91] : form distance matrix ( inter-landmark distances (ILDs)) matrix of pairs of Estimate & 3 u & 2 : population form distance matrix Ø Ø / . Then @ 3 & 3 & 3 + 3 3 1 1 1 ) , ) 0 ' u ' u = 3 o 2 ; 2 < ; ) < ) ) ; ) ) ) < ; < ) (4) r ) = Ø Ø / / ' ' o ; < ) ; < ) ; ) < . Moment estimator The smoothed Procrustes mean of the T2 Small data: (Top left) , (top right) , (bottom left) , (bottom right) . ³ v / = . 0 0 ³ > ' > > ) ) ) 1 1 ; < ; < ; < , ³ ³ > > 1 > , , Removes bias. Estimate of mean reflection size-and-shape 0 ? ? = 3 3 ; < ; < ) à 113 114 EDMA-II (Lele and Cole, 1995) EDMA-I test (Lele and Richtsmeier, 1991) and estimates of average form distance matrix for each group A Ù Form ratio distance matrix 0 # à * 3 & # & # (5) * & 1 r à Scale by group size measure Test statistic: / 0 # Ø / & # # 0 3 @ Ø / & 3 3 @ & # & (6) r à à N à à = Largest entry in arithmetic difference of scaled matrices N Use bootstrap procedures. More powerful than EDMA-I 115 116 Rao and Suryawanshi (1996) B : form log-distance matrix shape log-distance matrix is B B B ½ ' ( 3 ¼ , , % t " " B B ; ( # & 1 Average reflection shape ' # $ % & $ # % , 0 Û B Ø ½ Average form log-distance matrix is 1 Ã Õ Å " B Ø Æ , # 3 % 3 # $ % C ) Ô Ã where and Æ is the distance between landmarks for the th object . % # 3 ) % # p ) Average reflection size-and-shape 0 Û B Ø 1 à 117 For small variations estimates of mean shape or sizeand-shape are all very similar...(Kent, 1994) SIZE-AND-SHAPE Distance based (+): Invariance under translation and rotation (not scale) Landmarks not necessarily needed (eg. maximum breadth) Perturbation model: Consistent estimation under general normal models Ø # # o # 3 o # 3 3 3 p ¼ Distance based (-): Ö , Invariant under reflections 1 1 1 Ô , ALLOMETRY The relationship of shape given size Visualization not straightforward A choice of metric for averaging needs to be made 118 119 Microfossils: 0.40 • 0.44 • • • • • • • • 0.44 • 0.40 0.36 • • • • • • • • U 0.32 • • • • • • 8.2 0.75 0.65 • •• • • • • • • • • V • • Y • • 0.45 0.7 • • • • • 0.55 0.8 • • • 0.6 V • • •• • • • • 76 • 71 • 84 • 74 • • • • 100 V • • • • 84 • 75 • • • • • 87 • 88 • 84 • 65 • • • • •• • • • 92 • • • •• •• • • • 88 • • • 100 • 8.4 X • • • 88 • • • • • • • • • • • • • • • • • • • • 8.2 • • ••• 8.8 • • • • 8.6 • slog • • • • 9.2 0.36 • • 9.0 0.32 8.4 Bookstein’s (1996) Microfossils 8.6 8.8 9.0 D 9.2 0.45 0.55 0.65 0.75 • 71 • 67 Regression: • 72 0.5 • 64 Å h • 65 1 % i 1 ¿ o ¿ C C • 60 ) 0.4 t 0.3 0.4 0.5 ) Tthe fitted values (with standard errors) are , , and 0.2 Å 3 % o 0.6 1 % > > > % ' > t > > > ¿ U 1 Ò Ò 1 1 1 t t à 1 ' à > > > > ¿ 1 Ò 1 A 1 1 , ) ) à à i i 8 versus h h t Å o Significant linear relationship between 8 , r and i . C 120 121 T2 Small mouse vertebrae data -0.02 • • •• • s • • •• • • • • • • • • • • • • •• • •• • • • 0.05 •• • • -0.10 -0.05 0.0 • • • • • • •• • PC1 • ••• • • • • • •• • • • • • • • • • 0.02 0.0 •• • • •• • • • • 165 170 175 180 185 • • PC2 • • • • • • • •• • • • • • • • • • •• • • • • • • • • ••• • • • • • Also see: • • •••• • Library of shape analysis routines. • • • • • http://www.cran-r-project.org • • • • • ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • •• • • • • Shapes package in R: • ••• • • • • • • • • • • -0.02 • •• • • • • • • • • ••• • • • • •• • • • • • • • • •• • • • • • • • • • • • • •• • • • • •• • • • •• • • • • 0.02 • •• • • •• • • 0.0 • • 165 170 175 180 185 0.05 • 0.02 0.0 -0.04 -0.02 0.0 -0.10 -0.05 • • -0.04 -0.02 0.0 • • PC3 • • http://www.maths.nott.ac.uk/ ild/shapes 0.02 NB: Approx. linear relationship between PC 1 and centroid size. 122 123 DEFORMATIONS AND THIN-PLATE SPLINES The thin-plate spline is the most natural interpolant in two dimensions because it minimizes the amount of bending in transforming between two configurations, which can also be considered a roughness penalty. The theory of which was developed by Duchon (1976) and Meinguet (1979). Consider the landmarks , on the first figure mapped exactly , on the second figure, i.e. there into are interpolation constraints, t Session III: , @ & 3 3 3 1 1 1 , u 3 3 # 3 p 1 1 1 , t Deformations Shape in images Temporal shape Shape Regression Discussion @ (7) t u & & ; 3 ; E s 3 3 3 3 1 , and we write for the two dimensional deformation. Let & % E 1 3 1 , & 3 E @ & E 3 3 ¼ 3 1 1 1 , ) * 3 % u % u u ¼ ¼ 1 1 1 1 ) so that and 1 1 ) are both * matrices. t A pair of thin-plate splines (PTPS) is given by the bivariate function % 3 ¼ E E E ) ô (8) ò 3 o o ¼ 125 124 where ones. The matrix # where is and t ò ' % 3 3 1 1 ' 1 3 ¼ , and & 3 # ' & is the -vector of , F , J I Å , 3 > 3 (9) ) Í C > 3 GH > > > > K ¼ > , 1 The parameters of the mapping are and . There are interpolation constraints in Equation (7), and we introduce six more constraints in order for the bending energy in Equation (14) below to be defined: t " t ô o t ¼ is symmetric positive definite and so the inverse exists, provided the inverse of exists. Hence, t t t F F F F 3 % , I J I J * I J * I J ; , % GH GH GH GH ô 3 > > > > K K ¼ K K ¼ ; , > ¼ > > > ¼ % > 3 (10) > ¼ ¼ 1 say. Writing the partition of as ; % % % , % The pair of thin-plate splines which satisfy the constraints of Equation (10) are called natural thin-plate splines. Equations (7) and (10) can be re-written in matrix form ) 3 % L ; ) % ) ) M % where is , it follows that F F % * I % F J I J * I J ô % (12) * ¼ % , ¿ L GH GH GH ô 3 > > > K K ¼ K ¼ 3 3 ¿ (11) ) ) ¼ M à à , % > > > ¼ ¼ giving the parameter values for the mapping. If ; 3 exists, then we have % % and so the rank of the bending energy matrix is % % N N % N % N 3 ¼ ¼ ; ; N % ; N % ; N % 3 ¼ ¼ ¼ ; ; N % ) ; N It can be proved that the transformation of Equation (8) minimizes the total bending energy of all possible interpolating functions mapping from to , where the total bending energy is given by ; % ) (13) % ' 3 ¼ ) ) A % ' % ' . * ; ; N where , using for example Rao (1973,p39). 3 , P and Using Equations (12) and (13) we see that are generalized least squares estimators, and % ¿ à ¿ E ) à & & & ) ) ) " E E E ) t ) ) ) u o > % 3 o ' ¿ ¿ 2 1 ¼ ) ) 1 u & $ % Q Q R u S T 2 ) T 2 T ) ) = à à Mardia et al. (1991) gave the expressions for the case when is singular. (15) A simple proof is given by Kent and Mardia (1994a). The minimized total bending energy is given by, T T matrix The matrix where O % P . / æ O % (14) 1 There are three constraints on the bending energy matrix > 3 > ¼ ¼ O æ O , . / % ¼ E % æ T is called the bending energy æ T * * ¼ 1 (16) In calculating a deformation grid we do not want to see any more bending locally than is necessary and also do not want to see bending where there are no data. Early transformation grids modelling six stages through life (from Medawar, 1944). Early transformation grids of human profiles 126 127 TRANSFORMATION GRIDS Following from the original ideas of D’Arcy Thompson (1917) we can produce similar transformation grids, using a pair of thin-plate splines for the deformation from configuration matrices to . * A regular square grid is drawn over the first figure and at each point where two lines on the grid meet the corresponding position in the second figure is calculated using a pair of thin-plate splines transformation , where is the number of junctions or crossing points on the grid. The junction points are joined with lines in the same order as in the first figure, to give a deformed grid over the second figure. The pair of thin-plate splines can be used to produce a transformation grid, say from a regular square grid on the first figure to a deformed grid on the second figure. The resulting interpolant produces transformation grids that ‘bend’ as little as possible. We can think of each square in the deformation as being deformed into a quadrilateral (with four shape parameters). The PTPS minimizes the local variation of these small quadrilaterals with respect to their neighbours. # u # 3 # 3 3 p E 1 1 1 Ô U Ô U , (a) (b) 128 Consider describing the square to kite transformation which was considered by Bookstein (1989) and Mardia and Goodall (1993). Given points in dimensions the matrices and are given by t * It is found that F F > J I > > > > J I > > 3 J J ¼ 1 Ò ? L J J ' > > > > ' > > > (17) > , t 1 G Ñ A 1 Ñ A 1 Ñ A 1 Ñ A G M ' > ' > , , , , * 1 G ? G 3 , , t GH > GH 1 ' > ' K K 1 ? ô > , 3 , + t > > ) 1 , ? , We have here and so the pair of thin-plate splines is given by , where F % J I 3 E E E ¼ > ¾ J ) J (18) G J > 3 % ¾ G E 3 , G v GH > ¾ & " K t > > ' ' & o E 1 Ñ A 1 > ¾ , , & $ % ) where and . In this case, the bending energy matrix is t " ! t > ¾ ! 1 A , t t 1 Ò Ò " Note that Equation (18) is as expected, because there is no change in the direction. The affine part of the deformation is the identity transformation. F , I ' J ' J J , , , , , , , , , , , , , , , G % % ' ' G > > æ , O 1 Ñ A GH 1 ' ' , K ' ' 129 2 2 0 1 • -1 • • -2 -2 -1 • • • 0 1 • • 0 1 2 -2 -1 0 1 2 1 • • 0 • • • • -2 -2 -1 0 • • -1 1 2 -1 2 -2 -2 -1 0 1 2 -2 -1 0 1 2 Transformation grids for the square (left column) to kite (right column) (after Bookstein, 1989). In the second row the same figures as in the first row have been rotated by and the deformed grid does look different, even though the transformation is the same. ? m on the first figure at a different orientation, then the deformed grid does appear to be different, even though the transformation is the same. This effect is seen in the Figure where both figures have been rotated clockwise by in the second row. ? m -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 8000 9000 A thin-plate spline transformation grid between the control mean shape estimate and the schizophrenia mean shape estimate. 10000 11000 12000 13000 6000 6000 (left) We see a square grid drawn on the estimate of mean shape for the Control group in the schizophrenia study. Here there are junctions and there are landmarks. (right) we see the schizophrenia mean shape estimate and the grid of new points obtained from the PTPS transformation. It is quite clear that there is a shape change in the centre of the brain, around landmarks 1, 9 and 13. 8000 7000 8000 9000 10000 11000 12000 • • • • •• • •• •• • 7000 8000 9000 10000 11000 12000 6000 6000 10000 11000 12000 13000 • •• • • •• • • •• 9000 (b) • • •• • • •• •• • 8000 (a) • • • ••• •• •• • 10000 11000 12000 13000 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 9000 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 9000 • •• • • • • • 10000 11000 12000 13000 • • • • 9000 ••• • • • • • 8000 • • • • • 10000 11000 12000 13000 • 8000 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 We consider Thompson-like grids for this example (above). A regular square grid is placed on the first figure and deformed into the curved grid on the kite figure. We see that the top and bottom most points are moved downwards with respect to the other two points. If the regular grid is drawn 7000 8000 9000 10000 11000 12000 6000 7000 8000 9000 10000 11000 12000 • • • • • • • •• • • • 7000 8000 9000 10000 11000 12000 t ! > Ô U A > Ñ Ò A , 130 A series of grids showing the shape changes in the skull of some sooty mangabey monkeys 131 Here we have labelled the eigenvalues and eigenvectors in this order (with as the smallest eigenvalue corresponding to the first principal warp) to follow Bookstein’s (1996b) labelling of the order of the warps. The principal warps do not depend on the second figure . The principal warps will be used to construct an orthogonal basis for re-expressing the thin-plate spline transformations. The principal warp deformations are univariate functions of two dimensional , and so could be displayed as surfaces above the plane or as contour maps. Alternatively one could plot the transformation grids from to for each , for particular values of and . Note that the principal warps are orthonormal. PRINCIPAL AND PARTIAL WARPS ³ % Bookstein (1989, 1991)’s principal and partial warps are useful for decomposing the thin-plate spline transformations into a series of large scale and small scale components. * Consider the pair of thin-plate splines transformation to , which interpolates the from points to ( ) matrices. An eigen-decomposition of the bending energy matrix of Equation (14) has non-zero eigenvalues with corresponding eigenvectors . The eigenvectors are called the principal warp eigenvectors and the eigenvalues are called the bending energies. The functions, 4 u 4 ) ) * t æ ³ % y y 1 3 1 3 & 3 & ¼ ô % ) ; 3 ) ) % ô % ô P 1 ô @ ³ y o O ³ u P Ö Ö 1 1 1 Ö ) ; % 3 3 3 P Ö Ö 1 1 1 The partial warps are defined as the set of bivariate functions , where Ö ) ; @ & é ' A 3 3 3 1 1 ' 1 A , * ³ * ³ ò & & & & & & & ¼ é @ ¼ Ö ¼ Ö Ö 1 ò & 3 3 3 ' 3 & The th partial warp scores for fined as @ ¼ Ö 1 1 1 A , are the principal warps, where . ò ' % 3 1 3 1 1 ' (from * ) are de * @ ¼ ó & % 3 ó & & ¼ 3 3 3 ' 3 ¼ Ö 1 1 1 A , ) 0.6 •• •• 0.0 • -0.4 -0.2 0.0 -0.2 • • • • •• 0.2 • 0.2 • -0.6 " • -0.6 -0.6 P •• -0.4 0.0 -0.2 • • • •• •• -0.4 Since 0.4 0.6 0.4 0.4 • 0.2 and so there are two scores for each partial warp. 0.6 132 ; ò & 3 ¼ é -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0.0 V 0.2 0.4 0.6 0.6 0.4 • • •• • •• 0.0 • •• 0.2 0.4 0.2 • • • •• • -0.4 @ 0.0 we see that the non-affine part of the pair of thin-plate splines transformation can be decomposed into the sum of the partial warps. The th partial warp corresponds largely to the movement of the landmarks which are the most highly weighted in the th principal warp. The th partial warp scores indicate the contribution of the th principal warp to the deformation from the source to the target , in each of the Cartesian axes. 0.6 % -0.2 $ -0.4 & -0.2 -0.6 -0.6 @ @ -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 @ * The five principal warps for the the pooled mean shape of the gorillas 133 0.2 0.4 0.6 -0.4 -0.2 ö 0.0 0.2 0.2 0.0 0.4 0.6 -0.6 -0.2 0.0 0.2 0.4 -0.2 0.0 0.2 0.4 0.6 -0.2 0.0 0.2 • • •• • • • • -0.4 -0.4 -0.6 -0.4 -0.6 -0.4 -0.4 0.4 0.4 • • • •• • •• 0.2 • • • •• • •• -0.6 A thin-plate spline transformation grid between a female and a male gorilla skull midline. -0.4 -0.6 -0.6 (b) -0.6 0.6 0.6 0.0 • • •• • • • • -0.2 0.2 0.0 -0.2 -0.4 -0.6 -0.2 0.6 -0.4 0.0 (a) • •• • •• •• -0.2 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.2 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.4 0.6 0.4 0.6 0.4 -0.2 -0.4 -0.6 • -0.6 0.6 • • • • •• 0.4 • • •• 0.2 • 0.0 • • •• -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.0 0.2 • • •• • • •• 0.6 -0.6 -0.4 -0.2 ö 0.0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 Affine and partial warps for Gorilla (Female to male mean shapes) 134 135 RELATIVE WARPS m m 0.06 f f f m f f 0.02 f f f 0.02 ff m f m m ff f m m mm f ff m mf mf m f f f m fm m m m m mm m f mm f f f mm m m 0.0 0.0 f f -0.06 -0.04 -0.02 m f -0.06 -0.04 -0.02 0.02 f ff 0.0 -0.06 -0.04 -0.02 f 0.04 0.04 f f f f ff f f f ff ff f ff f f mm f m m m ff m f m m m m m m m fm m m mm m m m m mfm m f m 0.04 0.06 0.06 Principal component analysis with non-Euclidean metrics m f m mm m m mm m mm m m mm m mff f mm m mf m f mm m m m f f f fm f f fm f f ff f f mff f ff f f f f f Define the pseudo-metric space -vectors with pseudo-metric given by 0.0 0.02 0.04 0.06 -0.06 -0.04 -0.02 0.0 ó m 0.02 0.04 Æ 0.06 -0.06 -0.04 -0.02 0.0 0.02 as the real ð 3 ð 0.04 % -0.06 -0.04 -0.02 Æ è 3 % ' % ' 3 0.06 ¼ 2 2 W 2 2 2 2 ; ) ) ) where and are -vectors, and is a generalized inverse (or inverse if it exists) of the positive semi-definite matrix . % ó 2 2 0.0 0.02 0.06 0.06 -0.06 -0.04 -0.02 0.0 0.02 0.0 0.02 m f fm ff m f ff fffff m fm m m mm f f f f ff ff m f mm m f m m mm f fmf ff m fm m mm m m m -0.06 -0.04 -0.02 0.0 0.04 0.04 0.04 0.06 -0.06 -0.04 -0.02 0.02 f mm mm f m m m mf m f mf m fm f m mm ff f m m ff f m fm fm m ff m f m f f ff ff m m ff f m ff mf -0.06 -0.04 -0.02 -0.06 -0.04 -0.02 0.0 0.02 0.04 0.06 ; m ) 0.04 0.06 m f f f ff f mff fm mmm f mff fffmf m mm ff fm fm mm m fm fm f f fmf m mm m m ffm mm mm f f -0.06 -0.04 -0.02 0.0 0.02 0.04 0.06 The Moore–Penrose inverse is a suitable choice of generalized inverse. If is the population covariance matrix of and , then is the Mahalanobis distance. The norm of a vector in the metric space is Æ ð % 3 % 2 2 2 2 ) Affine scores and the partial warp scores for female (f) and male (m) gorilla skulls. ) 2 % Æ ð ð 3 > ¼ 2 2 2 2 ; 1 ) L We could carry out statistical inference in the metric space rather than in the usual Euclidean + 136 137 Appendix). The first few PCs in the metric space (with loadings given by the eigenvectors of space (after Bookstein, 1995, 1996b; Kent, personal communication; Mardia, 1977, 1995). A simple way to proceed is to transform from to in Euclidean space. For example, consider principal component analysis (PCA) of centred in the metric space. Transformvectors ing to the principal component (PC) loadings are the eigenvectors of Æ ð è 4 3 2 u % % 4 % ) ) ; L ; 9 L 2 ) ; L ) can be useful for interpretation, emphasizing a different aspect of the sample variability than the usual PCA in Euclidean space. If our analysis is carried out in the pseudo-metric space, then we say the our analysis has been carried out with respect to . ó Ô Õ % 3 3 2 1 1 1 2 % u # # 2 ) ; L Õ " , u # u # ¼ 1 J # $ If a random sample of shapes is available, then one may wish to examine the structure of the within group variability in the tangent space to shape space. We have already seen PCA with respect to the Euclidean metric, but an alternative is the method of relative warps. Relative warps are PCs with respect to the bending energy or inverse bending energy metrics in the shape tangent space. % Ô Denote the eigenvectors ( -vectors) of as (assuming ), with corresponding eigenvalues . The principal component scores for the th PC on the th individual are @ ó & 3 Ö J J 3 3 1 1 ó ó y ' 1 Ô , , ³ @ & 3 3 3 1 1 ó 1 , J @ p % s # & u # # & 3 3 & ¼ 3 ó p ¼ Ö Ö ) ; 2 1 1 1 1 L , J J So, the (unnormalized) PC loadings on the original which are the eigenvectors of data are , where (using standard linear algebra, e.g. Mardia et al., 1979, % & Ö ) ; L % Õ % % J Consider a random sample of shapes represented by Procrustes tangent coordinates (each is # # * $ % # Õ ) ; 2 2 ¼ ) L ; 9 Ô L 9 Õ 3 q 1 a -vector), where the pole is chosen to be an average pre-shape such as from the full Procrustes mean. The sample covariance matrix in the tangent plane is denoted by and the sample covariance matrix of the centred tangent coordinates is denoted by . In our examples we have used the covariance matrix of the Procrustes fit coordinates. The bending energy matrix is calculated for the average shape and then the tensor product is taken to give , which is a matrix of rank . We write for a generalized inverse of (e.g. the Moore– Penrose generalized inverse). 3 % q 1 1 Ø t t with the eigenvalues of with corre. The eigenvecsponding eigenvectors are called the relative warps. The tors relative warp scores are ³ ' ) 3 3 # Ö 1 1 1 Ö ) ; 3 % 3 # ç 1 1 1 ç ) ; t ) 3 3 + t # q æ % ¼ 1 ; # l # 1 ) O 3 1 2 ³ 3 % X 0 3 @ p 1 1 1 ¸ Ô t æ æ t # & & + æ t ) æ 2 ) 3 1 1 ' 1 3 3 3 1 L , , Important remark: The relative warps and the relative warp scores are useful tools for describing the non-linear shape variation in a dataset. In particular the effect of the th relative warp can be viewed by plotting O X ' æ ) " ) 3 p ç ; O 3 # ¼ t " , @ æ ; ) ) 0 We consider PCA in the tangent space with respect to a power of the bending energy matrix, in particular with respect to . Ø % Z ô 3 & & ) ) ¼ l æ ç Y L L ) for various values of , where 0 ô æ O # 0 0 Let the non-zero eigenvalues of be with corresponding eigenvectors and æ 0 ¸ æ " ) ) ) 3 ) ) ¼ ; æ Ö ; Ö 1 ; L 3 ³ ; ) ; % 0 L L L ; ) $ % 3 3 % # Y 1 1 1 Y ) ; ) ; ç 1 1 1 ç ) ; # 0 0 " ) ³ ; 3 ) ¼ æ ) Ö ; Ö ; ; L ; ; L The procedure for PCA with respect to the bending energy requires and emphasizes large scale 1 o $ ) % ; , 1 1 Ô 1 variability. PCA with respect to the inverse bending energy requires and emphasizes small scale variability. If , then we take as the identity matrix and the procedure is exactly the same as PCA of the Procrustes tangent coordinates. Bookstein (1996b) has called the case PCA with respect to the Procrustes metric. 1 ' , 1 > S æ + ) t t > f m •• • (b) 1 0.6 -0.050.0 0.050.100.15 + -0.15 ++ -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 (b) • • • • -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.2 0.4 m f m f f f m m m f mm m m mm f mf f f fff f ff f f f f m mm m mm m fm f f ff f mmm f f f f mm m -0.15 -0.4 ++ m m m + -0.6 (a) 0.2 •• -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 + + -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.0 + ++ 0.0 • , 0.2 + -0.6 -0.6 -0.4 -0.2 • (a) 0.6 + • -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 Relative warps: 0.4 0.6 0.4 ++ •• -0.02 0.0 0.020.040.06 -0.4 -0.2 0.0 0.2 + • • • • -0.050.0 0.050.100.15 -0.06 • • f f m m fmffffff f f f f mm mm mm mm fmf f ff mf m m m m m mfm f f f ff m f m mm mm m -0.06 -0.02 0.0 0.020.040.06 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 1 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 ) • • • • • •• • •• •• -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 (a) (b) Deformation grids for the two uniform/affine vectors for the gorilla data. Relative warps: 1 ' , 138 139 0.05 0.0 -0.05 f m f ff m m fffff ff f f f f mm m f f f f fm m mmmm mm ff m f mmmm m m f f f m m m m mf -0.05 [ 0.0 [ Prior distribution for configuration 0.05 • • • • • • • • -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 Relative warps: 1 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 Geometrical object description = SHAPE + REGISTRATION • •• • where REGISTRATION = LOCATION, ROTATION and SCALE • •• • Use training data to estimate any parameters -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 > 140 141 Deformable templates: Grenander and colleagues Point distribution models (PDM) Cootes, Taylor, et al. Bayesian approach CASE STUDY: Object recognition: face images - Prior model for object shape and registration using SHAPE ANALYSIS [example from Mardia, McCulloch, Dryden and Johnson, 1997] - Likelihood for features measuring goodness-of-fit (feature density) Bayes Theorem Posterior inference 142 143 LANDMARKS or FEATURES Grey level image 3 + u 2 Scale space features (e.g. Val Johnson, Duke; Stephen Pizer et al, UNC Chapel Hill, USA) Convolution of image with isotropic bivariate Gaussian kernel at a succession of ‘scales’ ( ) 3 3 u 3 u 2 ) 2 3 ) o o u J 9 J 9 2 T T ) ) 3 u T 2 T Æ Æ < = ' % 3 u ' = , % F + 2 ] ] ; I t = = < = \ z Q ) ) ) Use 2D FFT ‘Medialness’ : Laplacian of blurred scale space image 144 Feature density (likelihood) Pilot study - Face Identification: Choose landmarks on the medialness image at scales 8, 11, 13 ! ñ a a ñ b b × / Å ^ Å Ú . / _ × 3 × × × < F @ ( I = # $ ` % º Johnson et al. (1997) motivate this as mimicking a human observer. Features are treated as independent High medialness at feature high density Treat non-feature grey levels as independent, uniformly distributed (like a human observer ignoring those pixels). 145 Parameters # need to be specified 146 Registration parameters Location Ø Original raw face data 3 ) 9 9 9 Ø 3 Rotation • • c y • e 7 3 •• c • ) Isotropic scale 18 • g h f 4 g h 0 50 3 0 d 5 6 2 22 222 5 2222 6 6 55555 7 77 6 6 555 7 666 6 5 777 77 6 9 74 63 8 44 3 9989 8 89 44 4 333 33 988 9 4 9 8 33 989 44 8 2 • 100 y w 1 11 11 1111 • 1 d 50 200 150 J 100 J 150 200 ) J 0 50 100 150 200 0 50 x 100 150 200 x 3 ¿ ) Ë Ë Hyperparameters from training data (10 faces) 3 3 3 J 9 3 c 3 c 3 estimated 3 J 9 Ë Ë 147 Bookstein registered data Least squares Procrustes approach 0.0 • • • • • ••• • -1.5 • -0.5 • •• • •• •• • ••• •••••• ••• 0.0 • • • •• • • • • • • •• • • • ••• • • •••••••• •• ••••• •••• • •• • • • -0.2 0.0 •• • •• •• • • • • • •• • • • •• • •••• • • • •• •• • 0.0 v -1.0 • • ••• •• • • • • • -0.2 • i ••• •• • •• • • -0.4 -0.5 0.2 • • • •• ••••• • • ••• •• ••• 0.4 148 -0.4 0.5 0.2 0.4 u 149 150 First five PCs (explaining 54.4, 29.9, 6.0, 3.7, 2.7% of variability in shape). • •• 0.0 0.0 • • • -0.4 0.0 • 0.0 0.4 • 0.4 0.4 0.4 • • • • 0.0 • • • • • 0.4 • -0.4 • 0.0 0.4 • • • • • -0.4 0.4 0.4 0.4 • • • -0.4 • 0.0 0.4 •• • -0.4 -0.4 0.4 • • • • •• 0.0 0.2 0.4 -0.4 0.0 0.2 0.4 • • • • • • • -0.4 • • • • • • 0.0 • 0.4 • • 0.0 • • 0.4 • • • -0.4 • 0.0 • • • •• 0.0 -0.4 • • 0.0 • • • -0.4 • • 0.0 • • 0.4 • -0.4 • 0.4 0.4 • • 0.0 • -0.4 • • • 0.0 • -0.4 0.0 0.4 • 0.0 • -0.4 -0.4 • • • • -0.4 • • -0.4 • 0.0 • -0.4 0.4 0.0 • • • • -0.4 •• 0.0 0.2 0.4 0.0 0.2 0.4 0.4 0.0 -0.4 0.4 • 0.0 • • • • -0.4 • • • 0.0 0.4 0.4 • • • 0.0 • -0.4 • • • • • -0.4 • • • -0.4 • • 0.0 • 0.0 • • • 0.4 • • 0.4 -0.4 • • • • 0.0 • 0.4 0.0 • • • • • 0.0 -0.4 0.4 0.4 • • -0.4 • • -0.4 • • -0.4 0.4 0.4 0.0 -0.4 0.4 -0.4 • • 0.0 • 0.4 0.0 -0.4 0.4 0.0 -0.4 0.4 0.0 -0.4 0.4 • 0.4 • • • 0.4 • • • •• • 0.0 0.2 0.4 • 0.4 0.0 -0.4 0.4 0.0 -0.4 0.4 • •• -0.4 • • • -0.4 • • 0.0 • 0.4 • • • • 0.0 0.2 0.4 • • 0.4 • • 0.0 0.0 • • • -0.4 0.4 0.0 • • • • -0.4 • • • • 0.4 -0.4 • •• • • • • 0.4 • -0.4 • 0.4 0.4 0.0 0.4 • 0.0 • 0.4 • • • 0.0 • • •• 0.0 • • • 0.0 • • • • -0.4 • • 0.0 • -0.4 0.0 • • • • 0.4 • • 0.4 • -0.4 0.0 -0.4 • • -0.4 • • •• • • • •• • -0.4 0.4 • • -0.4 • • Vector plot from mean to 3 S.D.s for first three PCs -0.4 0.0 • 0.4 • -0.4 • •• -0.4 • • • -0.4 • • • • • • -0.4 • • 0.0 • 0.0 • • • • -0.4 • -0.4 • •• 0.0 0.4 0.0 • • • -0.4 0.0 • • • -0.4 0.4 0.0 • 0.4 • • 0.4 • • -0.4 • 0.0 • 0.0 • • • 0.0 • -0.4 0.4 0.0 • • • • 0.4 • • -0.4 •• 0.4 0.0 • 0.0 0.4 -0.4 • • -0.4 • • 0.4 •• • • • • • -0.4 0.0 • 0.4 -0.4 • 0.0 • • • • 0.4 • • • 0.0 • • -0.4 -0.4 -0.4 -0.4 0.0 • -0.4 0.0 -0.4 0.4 • •• 0.4 0.0 • • 0.0 -0.4 0.4 -0.4 • • • -0.4 0.0 • •• 0.4 • • • • -0.4 • • • 0.0 0.4 0.4 -0.4 0.0 0.2 0.4 -0.4 0.0 0.2 0.4 • • • 0.0 0.4 151 152 .... FACE PRIOR Draw samples from posterior using MCMC Assume registration and shape independent Multivariate normal prior model (configuration density): ^ Å Ú . / Object recognition: maximize posterior to obtain most likely configuration given the image Ø Ø w ô z z 3 3 3 ô 3 % 3 3 ¿ 1 1 1 è J 9 m b b m m a a m j j j Straightforward Metropolis-Hastings algorithm k j } p n k × s × = a b = = = * r ¸ < ~ = ) ) l q l ) ) l o l ; = = = = < = \ \ \ Proposal distribution: independent normal centred on current observation, with varying variance (linearly decreasing over 5 iterations, then jumping back up) \ ( o Bayes theorem ^ Å Ú . / q Posterior density: / Å Update each parameter one at a time z @ º ^ Å Ú . / 3 / Å ^ Å Ú . / z ( @ º 153 154 chainsx[i, ] 128 132 136 chainsx[i, ] 78 80 82 84 Translations, scale, rotation, PC1, PC2 0 500 t 1000 1500 u 2000 u 2500 1500 u 2000 u 2500 1:nsim 950 chainsp 1000 1050 1100 1150 Results: MCMC output for face 2 (in training set): Posterior, Prior, Likelihood x x x w t 500 1000 900 0 1:nsim v 0 t 500 1000 1500 u 2000 u 2500 chainsx[i, ] -2 90 94 98 1:nsim v t 0 500 1000 u 1500 u 2000 2500 chainsx[i, ] -0.04 0.0 0.04 -6 -8 chainspr -4 1:nsim t 500 1000 u 1500 -10 0 u 2000 2500 1:nsim t 0 500 1000 u 1500 u 2000 2500 0.0 chainsx[i, ] -0.8 1000 1050 1100 1150 1200 t 0 500 1000 u 1500 u 2000 2500 -0.5 -1.5 chainsx[i, ] 1:nsim 950 chainsli 1:nsim t 500 1000 u 1500 900 0 u 2000 2500 1:nsim t 0 500 1000 u 1500 u 2000 2500 1:nsim 155 MAP estimate overlaid on scale 8 t 0 500 1000 u 1500 u 2000 250 0.0 1.0 2.0 chainsx[i + 6, ] PC3,...,PC8 2500 -2.5 200 -1.0 1:nsim chainsx[i + 6, ] 156 t 0 500 1000 u 1500 u 2000 2500 150 1.5 0.0 -1.5 chainsx[i + 6, ] 1:nsim t 0 500 1000 u 1500 u 2000 2500 S 1:nsim S 100 1.0 2.0 t 0 500 1000 u 1500 u 2000 S 50 • S -1 0 1 2 t 0 500 1000 u 1500 u 2000 S • • 2500 1:nsim chainsx[i + 6, ] • S -0.5 chainsx[i + 6, ] • y • •• S S • S 2500 -1 0 1 2 chainsx[i + 6, ] 0 1:nsim 0 0 t 500 1000 1500 u 2000 u 50 100 150 200 250 2500 1:nsim 157 158 Shape distance to training set.... Procrustes distance and Mahalanobis ¹ IMAGE REGISTRATION Procrustes 7• 5• 3• 1• 6• 9• 8• • 10 4• 2• 0.0 dist 0.05 0.10 0.15 0.20 z 2 4 6 8 10 image no. | 1• 3• 7• 4• 5• 8• 6• 9• 3 dist 4 5 6 Mahalanobis • 10 { 0 1 2 2• 2 4 6 8 10 image no. 159 160 IMAGE AVERAGING Consider a random sample of images con, from a poptaining landmark configuration ulation mean image with a population mean configuration . We wish to estimate and up to arbitrary Euclidean similarity transformations. The shape of can be estimated by the full Procrustes mean of the . Let be the landmark configurations deformation obtained from the estimated mean shape to the th configuration. The average image has the grey level at pixel location given by Õ % 3 3 ç 1 1 1 ç Õ % 3 3 1 1 1 ç Ø Ø ç Ø (a) (b) Õ % 3 ½ 3 # 1 1 1 E Ø p Ã Õ " ½ ( , # # ç ç # $ E 1 (19) % Ô (c) 161 162 (a) (a) (b) (c) (d) (b) (e) (c) Images of five first thoracic (T1) mouse vertebrae. 163 164 SHAPE TEMPORAL MODELS Stochastic modelling of size and shape of molecules over time: HIGH DIMENSIONAL. Practical aim: to estimate entropy. Use tangent space modelling. 2 0 −3 PC score 1 0 1000 2000 3000 4000 3000 4000 3000 4000 3000 4000 2 0 −3 PC score 2 time 0 1000 2000 2 0 −3 PC score 3 time An average T1 vertebra image obtained from five vertebrae images. 0 1000 2000 2 0 −2 PC score 4 time 0 1000 2000 time 165 166 REGRESSION The minimal geodesic in shape space between the shapes of and where [Riemannian distance] is given by: * * ò > { 3 ¹ S Temporal correlation models for the principal component (PC) scores of size and shape. [AR(2)] Non-separable model - different temporal covariance structure for each PC but constant eigenvectors over time. Improved entropy estimator based on MLE, interval estimators. Properties of estimators under general correlation structures, including long-range dependence. * ò ò ò , ò ' ~ ò 3 > y é ò - S S S } where is symmetric (i.e. Procrustes rotation of on ). * - is the optimal é - * é - Temporal shape modelling directly in shape space. Practical regression models: tangent space regression through origin fitting geodesics in shape space. ¶ 167 SMOOTHING SPLINES Smoothing spline fitting through ‘unrolling’ and ‘unwrapping’ the shape space . ) On the Procrustes tangent space at time , the shape space is rolled without slipping or twisting along the continuous piecewise geodesic curve in . The piecewise linear path in the tangent space is the unrolled path. S ) Spline fitting in : unrolling the spline to the tangent space at is the corresponding cubic spline fitted to the unwrapped data. ) S Le (2002, Bull.London Math.Soc.), Kume et al. (2003). A point off the curve is unwrapped onto the tangent plane. Piecewise linear spline in . piecewise geodesic curve ) Σ2 k β (t) α2 Y α1 * (t) (t 0) Σ k2 * α1 α2 β Y* 168 ò y o 169 NONPARAMETRIC INFERENCE The full Procrustes mean is a consistent estimator of ‘extrinsic mean shape’ (Patrangenaru and Bhattacharya, 2003) Central limit theorem for and a limiting distribution for a pivotal test statistic confidence regions. Bootstrap confidence interval for mean shape based on a pivotal statistic - NEEDS CARE in a non-Euclidean space. Coverage accuracy of bootstrap confidence region . Ø Ã Ø DISCUSSION ) Ã Ô At all stages geometrical information always available Statistical shape analysis of wide use in many disciplines. ) ; Great scope for further application in image analysis, e.g. medical imaging. Bootstrap sample hypothesis test (not necessary to have equal covariance matrices in each group). Need to simulate from the null hypothesis of equal mean shapes, and so the individual samples are moved along a geodesic to the pooled mean without changing the inter-sample shape distances. Simulation studies indicate accurate observed significance levels and good power. Non-landmark - curve - data 170 Selected References to papers: DG Kendall (1984,Bull.Lond.Math.Soc), Bookstein (1986,Statistical Science), WS Kendall (1988,Adv.Appl.Probab.), DG Kendall (1989,Statistical Science), Mardia and Dryden (1989, Adv.Appl. Probab; 1989, Biometrika), Dryden and Mardia (1991, Adv.Appl,Probab) Dryden and Mardia (1992, Biometrika) Goodall and Mardia (1993, Annals of Statistics), Le and DG Kendall (1993, Annals of Statistics), Kent (1994, JRSS B), Le (1994, J.Appl.Probab.), Kent and Mardia (1997, JRSS B), Dryden, Faghihi and Taylor (1997, JRSS B), WS Kendall (1998, Adv.Appl.Probab.), Mardia and Dryden (1999, JRSS B), Kent and Mardia (2001, Biometrika), Le (2002, Bull.London.Math.Society), Albert, Le and Small (2003, Biometrika). 172 171