Connections and Bracing

Transcription

Connections and Bracing
Connections and Bracing
1
2
Forces On Structures
•
Forces from gravity, wind,
and seismic events are
imposed on all structures
•
Forces that act vertically are
gravity loads
•
Forces that act horizontally,
such as stability, wind and
seismic events (the focus of
this
discussion)
require
lateral load resisting systems
to be built into structures
•
As lateral loads are applied
to a structure, horizontal
diaphragms
(floors
and
roofs) transfer the load to the
lateral load resisting system
Structural Steel Frame Elevation
3
Initial System Planning
3
1
Rigid Horiz.
Diaphragm
(Floor or Roof)
1
(Adapted from AISC 2002)
2
•
The type of lateral load resisting system to be used in a
structure should be considered early in the planning stage
•
Lateral stability as well as architectural needs must be met
•
The three common lateral load resisting systems are:
1. Braced Frames
2. Rigid Frames
3. Shear Walls
4
Braced Frames and Rigid Frames
This presentation focuses on braced frames (left) and rigid frames (right)
5
Steel Frame Connection Types
The Specification for Structural Steel Buildings (AISC 2005) defines two types of
connections:
• Simple Connections (above left)
•
Moment Connections (above right)

Fully-Restrained and Partially-Restrained
6
Steel Frame Connection Types
(AISC)
•
All connections have a certain amount of rigidity
•
Simple connections (A above) have some rigidity, but are
assumed to be free to rotate
•
Partially-Restrained moment connections (B and C above)
are designed to be semi-rigid
•
Fully-Restrained moment connections (D and E above) are
designed to be fully rigid
7
Simple Connections
•
Designed as flexible connections
•
Connections are assumed to be free to rotate
•
Vertical shear forces are the primary forces transferred by the connection
•
Require a separate bracing system for lateral stability
•
The following few slides show some common simple framing connections
8
Common Simple Connections
Single Plate Connection (Shear Tab)
Double Angle Connection
A plate is welded to the supporting
member and bolted to the web of the
supported beam
The in-plane pair of legs are
attached to the web of the supported
beam and the out-of-plane pair of
legs to the flange or web of the
supporting member
(Green, Sputo, and Veltri)
9
Common Simple Connections
Shear End Plate Connection
Single Angle Connection
A plate is welded perpendicular to
the end of the supported web and
attached to the supporting member
One leg is attached to the web of the
supported beam and the other leg to
the flange or web of the supporting
member
(Green, Sputo, and Veltri)
10
Common Simple Connections
Seated Connection
An angle is mounted with one leg
vertical against the supporting
column, and the other leg provides a
“seat” upon which the beam is
mounted
A stabilizer connection is also
provided at the top of the web
Tee Connection
The stem of a WT section is
connected to the supported member
and the flange attached to the
supporting member
(Green, Sputo, and Veltri)
11
Moment Connections
•
Designed as rigid connections which allow little or no rotation

Used in rigid frames
•
Moment and vertical shear forces are transferred through the connection
•
Two types of moment connections are permitted:

Fully-Restrained

Partially-Restrained
12
Moment Connections
13
Common FR Connections
Welded Flange Plate Connection
Bolted Flange Plate Connection
Top and bottom flange-plates connect the flanges of the
supported member to the supporting column
A single plate connection is used to transfer vertical shear
forces
(Green, Sputo, and Veltri)
14
Common FR Connections
Bolted Extended End-Plate Connection
Welded Flange Connection
A plate is welded to the flanges and
web of the supported member and
bolted with high-strength bolts to the
supporting column
Complete-joint-penetration groove
welds directly connect the top and
bottom flanges of the supported
member to the supporting column
(Green, Sputo, and Veltri)
A shear connection on the web is
used to transfer vertical shear forces
15
Common PR Connections
PR Moment Connection – Wind Only
A double angle simple connection
transfers vertical shear forces while
top and bottom flange plates resist
moment forces produced by wind
Note that the size of the flange plate
is relatively small in comparison to the
beam flange
Top and Bottom Angle with Shear
End Plate Connection
Angles are bolted or welded to the
top and bottom flanges of the
supported member and to the
supporting column
A shear end plate on the web is
used to transfer vertical shear forces
16
Rigid Frames
•
Rigid frames, utilizing moment connections, are well suited for specific types
of buildings where diagonal bracing is not feasible or does not fit the
architectural design
•
Rigid frames generally cost more than braced frames
17
Braced Frames
•
Diagonal bracing creates stable triangular configurations within the steel
building frame
•
Braced frames are often the most economical method of resisting wind loads in
multi-story buildings
•
Some structures, like the one pictured above, are designed with a combination
braced and rigid frame to take advantage of the benefits of both
18
Temporary Bracing
•
Structural steel frames require
temporary
bracing
during
construction
•
Temporary bracing is placed
before
plumbing
up
the
structural frame
•
This gives the structure
temporary lateral stability
•
Temporary bracing is removed
by the erector
19
Temporary Bracing
•
In a braced frame, temporary bracing is removed after final bolt-up is complete
and the permanent bracing system is in place
•
In a rigid frame, temporary bracing is removed after final bolt-up is complete
20
Concentric Braced Frames
•
Bracing is concentric when the center lines of the bracing members intersect
•
Common concentric braced frames used in buildings today include:
 X brace (above left)
 Chevron (above right)

Two story X’s

Single diagonals
•
X bracing is possibly the most common type of bracing
•
Bracing can allow a building to have access through the brace line depending
on configuration
21
X Bracing
X Bracing
Roof
Floor
Floor
1st Floor
Typical floor plan with X bracing
X-braced building elevation
•
The diagonal members of X bracing go into tension and compression similar to
a truss
•
The multi-floor building frame elevation shown above has just one braced bay,
but it may be necessary to brace many bays along a column line
•
With this in mind it is important to determine the locations of the braced bays in
a structure early in a project
22
X Bracing
•
Connections for X bracing are located at beam to column joints
•
Bracing connections may require relatively large gusset plates at the beam to
column joint
•
The restriction of space in these areas may have an impact on the mechanical
and plumbing systems as well as some architectural features
23
Chevron Bracing
Chevron Bracing
Roof
Floor
Floor
1st Floor
Typical floor plan with Chevron bracing
Chevron
“V”
“K”
Elevation with several bracing
configurations
•
The members used in Chevron bracing are designed for both tension and
compression forces
•
Chevron bracing allows for doorways or corridors through the bracing lines in a
structure
•
A multi-floor frame elevation using Chevron bracing is shown above
24
Chevron Bracing
•
Chevron bracing members use two types of connections
•
The floor level connection may use a gusset plate much like the connection on
X braced frames
•
The bracing members are connected to the beam/girder at the top and
converge to a common point
•
If gusset plates are used, it is important to consider their size when laying-out
mechanical and plumbing systems that pass through braced bays
25
Eccentrically Braced Frames
Stiffeners
Link
Beam or Girder
Gusset
Eccentric
Brace
Eccentric brace with typical
brace to beam connection
(Adapted from AISC 2002)
•
Eccentric bracing is commonly used in seismic regions and allows for doorways
and corridors in the braced bays
•
The difference between Chevron bracing and eccentric bracing is the space
between the bracing members at the top gusset connection

•
In an eccentrically braced frame bracing members connect to separate
points on the beam/girder
The beam/girder segment or “link” between the bracing members absorbs
energy from seismic activity through plastic deformation
26
Eccentrically Braced Frames
•
Eccentrically braced frames look similar to frames with Chevron bracing
•
A similar V shaped bracing configuration is used
27
Eccentrically Braced Frames
(EERC 1997)
Eccentric single diagonals may also be used to brace a frame
28
Combination Frames
Chevron
braced
Moment
resisting
Moment frame
Bracing
Combination Frame
•
As shown above (left) a braced frame deflects like a cantilever beam while a
moment resisting frame deflects more or less consistently from top to bottom
•
By combining the two systems, reduced deflections can be realized
•
The combination frame is shown above right
29
Combination Frames
O = Combined Frames
X = Chevron or “K” Bracing
 = Moment Resisting
(AISC 1991)
•
The plot shows the moment resisting frame alone, the braced frame alone, and
the combined frame
•
The same wind load was used for each frame model
30
31
References
Material has been adopted from:
Earthquake Engineering Research Center, (EERC). (1997). W. G. Godden
Structural Engineering Slide Library. Godden J119. Available at:
http://nisee.berkeley.edu/bertero/html/recent_developments_in_seismic_design
_and_construction.html. Viewed August, 2004.
Green, P. S., Sputo, T., and Veltri, P. (n.d.). Connections Teaching Toolkit – A
Teaching Guide for Structural Steel Connections. American Institute of Steel
Construction, Inc. Chicago, IL.
32