Insights from Unsupervised Clustering Into the Physical Properties
Transcription
Insights from Unsupervised Clustering Into the Physical Properties
INSIGHTS FROM UNSUPERVISED CLUSTERING ANALYSIS INTO QUASAR UV SPECTRA Credit: ESO/M. Kornmesser AYCHA TAMMOUR UNIVERSITY OF WESTERN ONTARIO GREAT LAKES QUASAR SYMPOSIUM 3 MAY 2016 SARAH GALLAGHER, GORDON RICHARDS, MARK DALEY, KAREN LEIGHLY & NUR FILIZ AK QUASAR WINDS edge-on view winds ~0.1c X-ray source Supermassive black hole accretion disk ~ 1016 cm 2 WIND SIGNATURES IN EMISSION LINES STRONG CIV LOW SHIFT WEAK CIV LOW SHIFT WEAK CIV HIGH SHIFT Richards et al. (2011) 3 X-ray vs. UV radiation UV photons drive the winds high energy photons over-ionize the gas & suppress the winds launching radius 4 OPEN QUESTIONS ARE THE WIND PROPERTIES UNIVERSAL AMONG ALL QUASARS, AND OUR VIEW IS ONLY A MATTER OF THE LINE-OF-SIGHT ORIENTATION TO THE WIND? DO THE WIND PROPERTIES CHANGE WITH QUASAR PROPERTIES, SUCH AS THE SHAPE OF THE IONIZING RADIATION? 5 QUASAR UV SPECTRUM high ionization intermediate ionization low ionization 6 LARGE DATASET MULTI-DIMENSIONAL PARAMETER SPACE PHYSICAL SPACE 7 K-MEANS ✦ ✦ ✦ Goal is to partition the parameter space into clusters of similar objects Create groups of equal variance, and minimize the withincluster sum-of-squares Repeat until the centroids do not move significantly 8 QUASAR UV EMISSION LINES Paris et al. (2014) Quasar Catalog :166,583 objects equivalent width, redBHWHM and blue-HWHM Sample: 1.6 < z < 2.2 S/N >3 EW error < 10% 9 4,110 quasars RHWHM K-MEANS APPLIED TO C IV Tammour A, Gallagher S. C., Daley M., Richards G. T., 2016, MNRAS,459, 1659 10 GENERATE MEDIAN COMPOSITE SPECTRA FROM EACH CLUSTER 11 COMPOSITE SPECTRA FROM THE C IV CLUSTERS 12 K-MEANS APPLIED TO THE C III] BLEND 13 COMPOSITE SPECTRA FROM THE C III] CLUSTERS 14 DIVERSITY IN BROAD ABSORPTION TROUGHS 15 DIVERSITY IN BROAD ABSORPTION TROUGHS SDSS BAL Quasar catalog (Gibson et al., 2009): 5035 objects measurements of BAL trough strength,Vmin,Vmax Our sample: 1.79 > z > 3.7 S/N >3 absorption in C IV Vmax Vmin 2,683 objects 16 K-MEANS APPLIED TO THE C IV TROUGH CIV-f: low velocities and low equivalent width CIV-a: high velocities and low equivalent width Tammour et al. (in prep) 17 K-MEANS APPLIED TO THE C IV TROUGH CIV-c and CIV-d: similar velocities but different equivalent widths Tammour et al. (in prep) 18 K-MEANS APPLIED TO C IV ABSORPTION TROUGH Tammour et al. (in prep) 19 high velocities & low equivalent width high equivalent width PROPERTIES OF CLUSTERS low velocities & low equivalent width 20 PROPERTIES OF CLUSTERS SOFT SED HARD SED 21 low fraction of lower ionization lines ~5% Si IV absorption ~0.5% Al III absorption high fraction of absorption in lower ionization lines ~50% Si IV absorption ~30% Al III absorption PROPERTIES OF CLUSTERS low fraction of lower ionization lines ~9% Si IV absorption ~1.5% Al III absorption 22 SOFT SED & REDDENED THICK WINDS CIV-d CIV-d ~ 1016 cm 23 SED & SOFT HIGH VELOCITY OUTFLOW CIV-a CIV-a ~ 1016 cm 24 HARD SED WEAK WINDS CIV-f CIV-f ~ 1016 cm 25 QUESTIONS CHOOSING NUMBER OF CLUSTERS choose the elbow of cost function vs. number of clusters EVALUATING THE CLUSTERS J= N X K X min(||xn n=1 k=1 b a s= max(a, b) 1= dense, well-defined cluster -1= less dense, overlapping µk ||2 ) TESTING THE STABILITY OF OUR CLUSTERS PROPERTIES OF CLUSTERS Tammour et al. (in prep) 30 PROPERTIES OF CLUSTERS Tammour et al. (in prep) 31