Radiative Neutrino Mass and Dark Sector
Transcription
Radiative Neutrino Mass and Dark Sector
Radiative Seesaw Model and Dark Sector Mayumi Aoki Mayumi Aoki (Kanazawa U. ) Exploring the dark sector March. 17, 2015 1 Contents I. Introduction II. Neutrino Mass III. Radiative Seesaw Model IV. Multicomponent DM V. Radiative Seesaw Model with Multicomponent DM VI. Summary Mayumi Aoki Exploring the dark sector March. 17, 2015 2 Neutrino Neutrino oscillation data indicate that neutrinos have masses and mix with each other. 2-flavor: P⌫↵ !⌫ = sin2 2✓ sin2 m2ij L 4E - Neutrino Flavor States ⇔ Mass States νe, ν!, ντ ν1, ν2, ν3 - The neutrino mixings are given by Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. µ Jcc = (ē, µ̄, ⌧¯) ⌫↵ = UPMNS 2 3 X µ (1 UP M N S ⌫i (↵ = e, µ, ⌧ ) i=1 c12 c13 = 4 s12 c23 c12 s23 s13 ei s12 s23 c12 c23 s13 ei Mayumi Aoki T )U (⌫ , ⌫ , ⌫ ) 5 1 2 3 P MNS s12 c13 c12 c23 s12 s23 s13 ei c12 s23 s12 c23 s13 ei Exploring the dark sector i 3 s13 e s23 c13 5 ⇥ diag(1, ei'1 , ei'2 ) c23 c13 cij=cosθij , sij=sinθij March. 17, 2015 3 Neutrino Neutrino parameters - Masses and Mixings ∆m212 ~8×10-5 eV2 , |∆m322|~ 3×10-3 eV2 θ12~30°, θ23~45°, θ13~10° Σmν <0.23 eV ∆mij2=mi2 - mj2 Neutrino oscillation experiments Cosmological data - Mass Hierarchy (Sign of ∆m322 ) : unknown Normal hierarchy : ∆m322 > 0 Inverted hierarchy : ∆m322 < 0 normal Normal inverted Inverted - CP phases (Dirac δ, Majorana 𝜑1, 𝜑2 ) : unknown NH : -115° < δ < -60° , IH: +50° < δ < +130° for θ23=45° T2K, arXiv:1409.7469[hep-ex] Mayumi Aoki Exploring the dark sector March. 17, 2015 4 Beyond the Standard Model Physics beyond the SM Neutrino Mass and Mixings mν~0.1eV How we can naturally explain the small masses with less fine tuning? Dark Matter - The dark matter is inferred to exist. - The DM contributes 27% to the energy density of the Universe. Galaxy rotation curves Gravitational lens Dark Energy 68% Bullet Cluster Dark Matter Matter 5% 27% These two problems are related ? Mayumi Aoki Exploring the dark sector March. 17, 2015 5 Neutrino Masses Effective dimension 5 operator φ φ νL fij 0 0 Li Lj ⇥ ⇥ m = ij νL fij fij 0 2 ⇥⇥ ⇤ ~0.1eV O(10 14 ) GeV 1 Seesaw mechanism Minkowshi 77; Yanagida 79; Gell-Man et al. 79; Glashow 80; Mohapatra, Senjanovic 80 Type I Right-handed neutrino NR L= = 1 ˜ = i⌧2 (NR )c M NR + h.c. 2 p ◆✓ c ◆ ✓ 0 p vy/ 2 ⌫L c NR NR vy T / 2 M yL ˜ NR ⌫L Φ0 ⇤ νL ν - The lighter neutrino masses are v2 y2 m⌫ ' 2M Mayumi Aoki Exploring the dark sector Φ0 × νL NR N March. 17, 2015 6 Type-I Seesaw v2 y2 m⌫ ' 2M - If y ~O(1), M~1014 GeV mν = 0.1 eV 0 10 y 10 10 Low scale seesaw → Within LHC reach M -6 10 10 10 -4 -8 - If y ~ ye, M~100 GeV Mayumi Aoki -2 D= 10 m Leptogenesis Far from experimental reach -10 -12 -9 10 -6 10 Exploring the dark sector -3 10 0 10 3 6 10 10 M [GeV] 9 10 March. 17, 2015 10 12 15 10 7 Type-I Seesaw LHC signal - The NR production can happen only through ν-NR mixing. T. Han and B. Zhang , PRL97 (2006); F. del Aguila, J. A. Aguilar-Saavedra and R. Pittau, JHEP 0710 (2007); A. Atre, T. Han, S. Pascoli and B. Zhang, JHEP 0905 (2009). - Both opposite-sign and same-sign lepton pairs are produced. - The cross section can be observable only if ν-NR mixing > 0.01. del Aguila et al. JHEP 0710 (2007) 047 Mayumi Aoki Exploring the dark sector March. 17, 2015 8 Type-I Seesaw v2 y2 m⌫ ' 2M - If y ~O(1), M~1014 GeV mν = 0.1 eV 0 10 y 10 10 Low scale seesaw 10 - If y ~10-7, M2,3~1 GeV y ~10-12, M1~keV → Warm DM M -6 10 → Within LHC reach Mayumi Aoki -4 -8 - If y ~ ye, M~100 GeV νMSM -2 D= 10 m Leptogenesis Far from experimental reach 10 -10 -12 -9 10 -6 10 -3 10 0 10 3 6 10 10 M [GeV] 9 10 10 12 15 10 Asaka, Shaposhnikov, PLB620 (2005) etc Exploring the dark sector March. 17, 2015 9 Type-II, Type-III Type II Type III Konetschny, Kummer 77; Cheng, Li 80; Gelmini, Roncadelli 81 SU(2)L triplet scalar ∆ (Y=2) ⇥ ⇥ = + / 2 SU(2)L triplet fermion Σ (Y=0) ++ ⇥ + / 2 0 Φ0 He et al. 89 0 = Φ0 ● ∆0 ⇥ / 2 Φ0 × νL νL νL + 0 Φ0 * ⇥ / 2 ⇥ νL Σ0 m⌫ ' 2hh LHC 0 hµv 2 i= p 2M 2 m⌫ ' qq’→∆++∆− −, ∆±±∆∓ v2 T 1 Y⌃ Y⌃ 2 M qq’→ Σ+Σ-, Σ±Σ0 leptonic mode ∆++→ll, ∆-→lν Mayumi Aoki m∆++ ≳ 400 GeV Σ+ → Wν, Σ0 → Wl Exploring the dark sector mΣ ≳ 250 GeV March. 17, 2015 10 Radiative seesaw model An alternative way to obtain the small mass is the radiative seesaw mechanism. 0 10 -2 φ φ 10 2loop -4 10 N-loop : y νL f νL m = ij 1 16 2 ⇥N 1loop fij -6 10 -8 10 ⇥0 ⇥2 -10 10 -12 10 -9 10 -6 10 -3 10 0 10 3 6 10 10 M [GeV] 9 10 12 10 10 - Neutrino masses are generated via the radiative effect. - Due to the loop suppression factor, Λ can be lower. - Neutrino masses would be explained by the TeV-scale physics (for the unsuppressed couplings). Mayumi Aoki Exploring the dark sector March. 17, 2015 11 15 Zee model, Zee-Babu model Zee model Zee-Babu model Zee, PLB93,389 (1980), PLB161,141 (1985) Zee, NPB264,99 (1986) Babu, PLB203,132 (1988) 1-loop ● lL k−− ω− ● S+ νL 2-loop <Hj> Hi νL νL lR lL lR v <Hi> ω− lR lL νL v SM + ω± + K±± SM + H2 + S± H2 : doublet scalar S± : charged singlet scalar (#L=∓2) ω± : singly charged singlet scalar (#L=∓2) K±± : doubly charged singlet scalar (#L=∓2) No DM candidates Mayumi Aoki Exploring the dark sector March. 17, 2015 12 Models with N Krauss-Nasri-Trodden model Ma model Ma, PRD73, 077301 (2006) Krauss, Nasri, Trodden PRD67,085002 (2003) v v 1-loop 3-loop S1 νL + S2 + i lL lR S1 S2 + c α lR lL + νL νLi NR v η0 η0 j v SM+N R + S 1 ± + S 2 ± S1± , S2± : singly charged singlet scalars (#L=∓2) cα NR SM+N R + η η :Inert doublet ✓ ⌘= νLj + ⌘ p 0 0 (⌘R + i⌘I )/ 2 ◆ h⌘i = 0 , DM: NR, η0R or η0I DM: NR - Majorana mass term of NR is the source of the lepton number violation. Z2 symmetry : even: SM even even odd: NR - forbids the Dirac ν mass term. - guarantees the stability of DM. × Φ0 νL even Φ0 × NR odd νL even ⇒ The framework would explain the neutrino mass and the DM. Mayumi Aoki Exploring the dark sector March. 17, 2015 13 Models with N Krauss-Nasri-Trodden model Krauss, Nasri, Trodden PRD67,085002 (2003) Ma, PRD73, 077301 (2006) v v 1-loop 3-loop νL Ma model S1 + S2 + i lL lR S1 S2 + + νL c α lR lL νLi NR v η0 η0 j cα NR v - Because of large loop suppression factor of 3-loop and the charged lepton masses, the model can naturally have order 1 coupling. νLj Yν Yν λ5 ~ 10-10 New masses ~O(100) GeV ⇒ λffgg ~ O(1) LFV Constraints : *→eγ : DM relic density : NR DM : * e YνYν ≲ 10-4 0h2 = 0.12 ⇒ YνYν ~ O(1) N l+ N l- - Flavor structure should be considered. less fine-tuning KNT Cheung, Seto, PRD69 (2004) Ma Suematsu, Toma, Yoshida, PRD79 (2009) Mayumi Aoki Exploring the dark sector March. 17, 2015 14 Models with N Models with Z2 odd NR S1 + νLi v S2 + lL lR S2 + NR v Aoki-Kanemura-Seto model cα v S1 + νL j lR lL η0 η0 νL i v cα NR νL j M.A., Kanemura, Seto PRL102 (2009) v SM+H 2 +N R + S ± + η v η0 # S± : singly charged singlet scalars η : real singlet scalar !Li H" H" !Lj S" S" e!R i - Electroweak Baryogenesis - DM: NR or η - O(1) coupling he~O(1) e"R j NR A typical mass scale : mH ± = 100 GeV, mS ± = 400 GeV, m⌘ = 50 GeV, M = 5 TeV Common Feature 1. Extend scalar sector Mayumi Aoki 2. NR (Majorana nature) Exploring the dark sector March. 17, 2015 15 Electron-positron collisions ILC - The pair production of Z2 odd charged scalar bosons at the e+e- collision. Z2 odd charged scalar 10 2 ↓ ↓ t-channel e+ > γ/Z* e φ e > φ+ 10 1 + - > φ+ > e+ + - e+ e− → φ+ φ− σ(e e ->H H ) [fb] s-channel α NR φ 0 10 0 1000 2000 3000 √s [GeV] - s-channel + t-channel exchange of NR. - The t-channel effects show specific dependences on the √s in the production Atwood, Bar- Shalom, Soni, PRD76 (2007) cross section. - The contribution of t-channel diagrams is one of the discriminative features of radiative seesaw models. Mayumi Aoki Exploring the dark sector March. 17, 2015 16 Electron-positron collisions v Aoki-Kanemura-Seto model v η #0 mH ± = 100 GeV, mS ± = 400 GeV, m⌘ = 50 GeV, M = 5 TeV H" !Li H" e!R i e+ e- → S+ S- →H+ H- η0η0 →ττννη0η0 signal : τ+τ- + /E !Lj S" S" e"R j NR S± κ H± η0 τ ν Br~100% - Since the signal dominantly comes from the t-channel diagram, it becomes larger for larger √s. - √s=1 TeV with Lum=500 fb-1, S/√B= 12.8 - √s scan helps to confirm that the signal rate comes from the t-channel diagrams. Mayumi Aoki Exploring the dark sector March. 17, 2015 Electron-electron collisions - The ILC has a further advantage to test radiative seesaw models via the experiment at the e-e- collision option. e−e− collision option v e− e− → φ− φ− e H" yi !Li α NR e ⇥(e e ⇥ S S ) = > ⇧ dt tmin S" S" e"R i 1 128 s 2 ⌅ =1 (|he |2 mNR ) ⇥ t κ H" yj !Lj e"R j hi ! φ tmax η #0 κ φ > v ! c ! hj NR 1 + 2 mN u R 1 m2N R ⇤ 2 - D=5 operator, e-e-φ+φ+, is the sub-diagram of the loop diagrams for ν mass. Direct test of the radiative seesaw models. - Due to the Majorana nature of the t-channel diagram, we obtain much larger cross section in the e-e- collision than in the e+e- collision. Mayumi Aoki Exploring the dark sector March. 17, 2015 Electron-electron collisions " ● e− e− → φ− φ− ILC Zee-Babu model: mκ++=1200GeV mω+=300GeV ω-ω- (→*-*-νν) 5 10 Cross section [fb] 4 10 10 AKS e e !l e!L k e!R k eR eL! l i fik 500 1000 s [GeV] v gee~0.2 SS WW κ e e e 1500 v Exploring the dark sector ● η0 # κ !Li H" yi κ S" S" e"R i H" yj e"R j hi ! March. 17, 2015 ω v ! c ! hj NR - The signal in the AKS model and the Zee-Babu model can be observed. - The e-e- collision experiment is useful to test the Majorana nature of radiative seesaw models. Mayumi Aoki ω ~800GeV AKS model: 2 SM e e fjl g’kl v mNR=5TeV ms+=400GeV S-S- (→τ-τ-ννηη) 1 !! k!! e 10 10 "L Zee-Babu e e 3 !! !Lj " Various Variations New Symmetry - Z2, SUSY, Z3, Z4, …… - Accidental (Residual) symmetry of local/global U(1) symmetry, flavor symmetry, … ex) The Z2 symmetry is the residual symmetry of a spontaneous broken U(1) symmetry. U(1)0 Z2 Q↵ 2q +1 Ū↵ 2q +1 D̄↵ 2q +1 L↵ 0 +1 Ē↵ 0 +1 N̄1 0 +1 N̄2 q 1 H 0 +1 ⌘ q 1 Kubo, Suematsu, PLB643 (2006) 2q +1 - φ : singlet scalar - non-renormalizable term φ(η†H)2+h.c. Residual symmetry of local U(1)’ - The neutrino mass is generated by both the Type-I seesaw with N1 and the one-loop radiative seesaw of Ma model with N2. Topology E.Ma, PLB662(2008) etc Gustafsson, No, Rivera, PRL110(2013) etc Baek, Okada, Toma, PLB732 (2014) etc Mayumi Aoki Exploring the dark sector Kajiyama, Okada, Yagyu, JHEP10 (2013) etc March. 17, 2015 20 Multicomponent DM If the DM stabilizing symmetry is larger than Z2 , a multicomponent DM system can be realized. e.g.) ● Model with Z2 × Z2’ Z2 Z2’ χ1 − + 2 stable particles χ2 + − 3 stable particles χ3 − − m3 > m2 > m1 - m3 > m1 +m2 χ3 →χ1 χ2 - m3 < m1 +m2 ● Model with Z4 symmetry - m2 > m1 +m1 χ2 →χ1 χ1 X2 (Z4=2) 1 stable particle - m2 < m1 +m1 2 stable particles Mayumi Aoki Exploring the dark sector X1 (Z4=1) X1* (Z4=−1) SM (Z4=0) March. 17, 2015 21 Multicomponent DM - In the single-component WIMP case, the DM remains by pair annihilation into SM particles. - The DM relic abundance is roughly related to the pair annihilation cross section at freezeout. Standard annihilation χ χ →XSM XSM WIMP DM: XSM χ XSM 2 |v|i(n !XSM XSM h ṅ + 3Hn = χ n̄2 ) <σWIMPv> ~ 10-9 GeV-2 0h2 ~ 0.12 Multicomponent DM Boehm, Fayet and Silk, PRD69 (2004); D’Eramo and Thaler, JHEP 1006 (2010); Belanger et al, JCAP 1204 (2012), arXiv:1403.4960 [hep-ph]; Ivanov and Keus, Phys. Rev. D 86, (2012), etc. DM conversion Semi-annihilation χiχi →χjχj χiχj →χkXSM χi χj χi χk χi χj χj XSM Mayumi Aoki Exploring the dark sector March. 17, 2015 22 Multicomponent DM Example: Z2 ● χ1 ● χ2 ● χ3 m1=200 GeV, m2=160 GeV, m3=140 GeV <σv> ( ×10-9 GeV-2) ●●→XSMXSM 0.1 ●●→X 2 SMXSM Standard 10 ●●→XSMXSM 6 ●●→●XSM Semi●●→●XSM annihilation ●●→●XSM 0 0 0 2 0 0 0 − − − Standard only χ1 1 0hh2 ●●→●● ●●→●● ●●→●● + Evolution of 0h2 10 DM Conversion − Z2’ + 11 χ2 2 0.10.1 0.01 0.01 0 3 χ3 10 20 30 40 50 50 x 60 70 x=*/T 80 90 100 100 1/*=Σimi-1 0h2 =0χ1h2+0χ2h2+0χ3h2 > 0h2obs~0.12 Mayumi Aoki Exploring the dark sector March. 17, 2015 23 Multicomponent DM Example: Z2 ● χ1 ● χ2 ● χ3 m1=200 GeV, m2=160 GeV, m3=140 GeV <σv> ( ×10-9 GeV-2) ●●→XSMXSM 0.1 ●●→X 2 SMXSM Standard 10 ●●→XSMXSM 6 − Z2’ + + − − − Evolution of 0h2 ●●→●XSM Semi●●→●XSM annihilation ●●→●XSM 5.2 5.2 5.2 0 0 0 2 ●●→●● ●●→●● ●●→●● h DM Conversion 0h2 10 Standard + Conversion 11 0.10.1 0.01 0.01 0 10 20 30 40 50 50 x 60 70 80 x=*/T 90 100 100 0h2tot ~ 0.12 Mayumi Aoki Exploring the dark sector March. 17, 2015 24 Multicomponent DM Example: Z2 ● χ1 ● χ2 ● χ3 m1=200 GeV, m2=160 GeV, m3=140 GeV <σv> ( ×10-9 GeV-2) ●●→XSMXSM 0.1 ●●→X 2 SMXSM Standard ●●→XSMXSM 6 10 ●●→●XSM Semi●●→●XSM annihilation ●●→●XSM 5.1 5.1 5.1 2 − − − Standard + Semi-annihilation 1 0hh2 DM Conversion 0 0 0 + Evolution of 0h2 10 ●●→●● ●●→●● ●●→●● − Z2’ + 1 0.1 0.1 0.01 0.01 0.001 0 0 10 20 30 40 50 50 x 60 70 x=*/T 80 90 100 100 0h2tot ~ 0.12 Mayumi Aoki Exploring the dark sector March. 17, 2015 25 Multicomponent DM Standard annihilation χ χ →XSM XSM χ XSM χ XSM Model with Z3 symmetry Multicomponent DM Semi-annihilation DM conversion χiχi →χjχj Semi-annihilation χiχj →χkXSM χi χj χi χk χ χ χj χj XSM χ XSM χi χ χ →χ† XSM D’Eramo, Thaler, JHEP06 (2010), Belanger et al, JCAP04(2012), Belanger et al, JCAP01(2013), Ko, Tang, JCAP05 (2014), JCAP01 (2015), M.A., Toma, JCAP09 (2014), Guo et al, arXiv:1502.00508 [hep-ph]. etc. Mayumi Aoki Exploring the dark sector March. 17, 2015 26 Radiative Seesaw Model with Z3 E.Ma, PLB662 (2008) { SM+ V = µ2 + † + µ2⌘ ⌘ † ⌘ + µ2 † 3 ✓ + µ 0 ⌘† ⌘ + † ⌘ † 4 00 µ + 3! † + ⌘ 2 1/2 1 2/3 i Dirac fermions ψi Inert doublet scalar η Inert singlet scalar χ SU (2) U (1)Y Z3 L number 1 † 4 † ⌘ ⌘† + ◆ 3 + h.c. 2 + 2 1 0 1 1/3 ⌘† ⌘ 4 † 2 + † 4 + 1 0 1 2/3 2 † ⌘† ⌘ ⌘ † - At least two ψ are required. - <η>=<χ>=0 - L is softly broken in the scalar potential. - Dark Matter Dirac fermion 'L 1 or Complex scalar ✓ Mayumi Aoki ⌘ 0 Exploring the dark sector ◆ = ✓ cos ↵ sin ↵ sin ↵ cos ↵ ◆✓ 'H 'L March. 17, 2015 ◆ , 27 Radiative Seesaw Model with Z3 Standard annihilation M.A,, Toma JCAP1409 (2014) Semi-annihilation ! ``, ⌫⌫ ! ⌫ , h'† , Z'† Yν Yν Yν mL = 400 GeV, mH = 500 GeV 106 10 sin α = 0.1 sin α = 0.5 sin α = 0.9 Ωh2 = 0.12 5 104 BM-F1 Ωh2 103 10 2 10 1 Yν =0.01 2 = = ⌘ = = 0.1, 3 = 4 = 0.5, m2 = 1 TeV. µ00 sin2 ↵ = 100 MeV 100 - Damps at mψ=mL/2 and mH/2. - Semi-annihilations are important. 10−1 10 −2 10−3 10−4 100 150 Mayumi Aoki 200 250 mψ [GeV] 300 350 400 Exploring the dark sector March. 17, 2015 28 Radiative seesaw model with Multicomponent DM M.A., Kubo, Takano, PRD90 (2014) We study the multicomponent DM system in the extended Ma model. Mayumi Aoki Exploring the dark sector March. 17, 2015 29 Ma model v SM+N R + η field (⌫Li , li ) lic Nic H = (H + , H 0 ) ⌘ = (⌘ + , ⌘ 0 ) SU (2)L 2 1 1 2 2 U (1)Y 1/2 1 0 1/2 1/2 - Inert doublet scalar - Relevant Lagrangian L= Yik⌫ Li ✏⌘Nkc - Single component DM Mayumi Aoki Z2 + + η0 νL i ⌘= v η0 + ✓ Ma, PRD73, 077301 (2006) νL j cα NR + ⌘ p 0 0 (⌘R + i⌘I )/ 2 1 1 c c Mk NRk NRk + 2 2 ◆ , h⌘i = 0 † 2 (H ⌘) + h.c. 5 NR, η0R or η0I Exploring the dark sector March. 17, 2015 30 Ma model ● Neutrino masses (M⌫ )ij = X k ⌫ Yik⌫ Yjk Mk 16⇡ 2 " m2⌘0 R m2⌘0 R Mk2 ln ✓ m⌘R0 Mk ◆2 2 2 5 v =m⌘R m20 = m2⌘I Mk2 m2⌘0 I ln ✓ m⌘I0 Mk v ◆2 # 0 - small λ5 case (λ5v << m0) 2 m2⌘0 I m2⌘0 + m2⌘0 8 < Yik Yjk 5 v 2 Mk 1 (M⌫ )ij ' 8⇡ 2 m20 Mk2 : R L I 2 Mk2 m20 Mk2 ln m20 Mk2 v λ5 0 i L c NR 9 = ; Mν = 0.1 eV, New masses ~O(100) GeV → |Yν Yν λ5 |~ 10-10 ● Lepton Flavor Violation : - *→eγ constraint : B(%→eγ)exp ≲ 5.7×10-13 + η #+ MEG(2013) YνYν ≲ 10-4 Mayumi Aoki Exploring the dark sector # ! NR "γ ee NR March. 17, 2015 31 j Ma model ● Dark Matter (single component) NR, η0R or η0I η DM : η0R XSM η0R XSM η0R h η0R h χ XSM χ XSM η0R h h ••• η0R h Two mass regions of DM consistent with the data. - low-mass region ( 50 GeV < mη < 70 GeV) - high-mass region ( > 600 GeV) Lopez Honorez et al., JCAP0702(2007); Gustafsson et al. PRD86 (2012) , Arhrib et al JCAP1406(2014), Abe et al, arXiv:1411.1335 NR DM : L N 0h2 ~ 0.12 → Yν Yν 1 η Kubo et al. PLB642 (2006) LFV constraints → Yν Yν ≲ 10-4 → 0h2 >> 0.12 N -L In our model, this tension is relaxed by multicomponent DM system. Mayumi Aoki Exploring the dark sector March. 17, 2015 32 Model Two-loop radiative seesaw model field (⌫L , lL ) c lR NRc H = (H + , H 0 ) ⌘ = (⌘ + , ⌘ 0 ) SU (2)L 2 1 1 2 2 1 1 U (1)Y 1/2 1 0 1/2 1/2 0 0 Z2 + + + + Z20 + + + + + L 1 1 0 0 1 0 1 M.A., Kubo, Takano, PRD90 (2014) v κ η0 νLi χ : singlet real scalar φ: singlet complex scalar p =( R +i I )/ φ v κ χ η0 cα NR νLj 2. • The λ5 term , λ5 (H†η)2+h.c., in Ma model is forbidden by #L. • The λ5eff is generated at the 1-loop level. •New relevant terms for neutrino mass : ⇤ 1 2 ⇥ † V (H ⌘) + h.c. + m5 [ 2 2 • #L is softly violated at m52 term. 2 +( ⇤ 2 ) ] • mηR = mηI at the tree level. The degeneracy is lifted by λ5eff. • DM candidates are N, η0R/I, χ, φR/I (Z2, Z2’) = (−,+), (+,−), (−,−) Mayumi Aoki Exploring the dark sector Multicomponent DM system → N, χ , φR March. 17, 2015 33 Neutrino mass ● Neutrino mass (M⌫ )ij ' e↵ 2 5 vh 8⇡ 2 X k v ⌫ Yik⌫ Yjk Mk m2⌘0 Mk2 " Mk2 1 m2⌘0 Mk2 ln m2⌘0 Mk2 # . m⌘0 = m⌘R0 ' m⌘I0 v φ χ η0 νLi η0 νLj cα NR λ5eff term (for m52 = mφR2 - mφI2 << mφR2 ) e↵ ' 5 2 m25 64⇡ 2 m2 R m2 " 2 1 m m2 R 2 m R ln 2 m2 m # v v λ5eff 0 0 L i c N - The neutrino mass is proportional to |Yν κ|2 m52. - Mν = 0.1 eV, New physical masses ~O(100) GeV → κYν m5 ~ 10-2 GeV L j R - κ~0.1, Yν~0.01 → m5 ~ 10 GeV, Mayumi Aoki λ5eff ~10-5 Exploring the dark sector March. 17, 2015 34 Dark matter We assume NR, χ and φR are the DM. Three-component DM system. DM annihilation processes: We assume mφ > mχ . Standard annihilation : N N ! XX 0 , DM conversion : R R Semiannihilation : N R ! R R , ! ⌫, N! - Annihilation processes of φI Standard annihilation : I I DM conversion : I I Semiannihilation : N I ! XX 0 , R ⌫, ! N ⌫, - Conversion between φI⇄φR ! XX 0 , ! R ! XX 0 , , ! ⌫, χ φR φI ηR0 N! I ⌫, I ! N ⌫. SM ηI0 Z SM - We sum up the number densities of φI and φR, nφ = nφI + nφR , and solve the Boltzmann equation of nN , nφ and nχ . Mayumi Aoki Exploring the dark sector March. 17, 2015 35 Dark matter Standard l+/ν Yν N 0 η +/ηR,I N Wh−, Z φR,I , χ hf χ Wh+, Z φR,I , χ ,χ φφR,I ,χ R,I φR,I χ γ7 χ φR,I χ φR,I Semi-annihilation: 0 ηR,I N κ ν χ N 0 ηR,I χ Exploring the dark sector χ φR,I Yν ν χ φR,I χ 0 ηR,I N - In the Ma model, the 0Nh2 tends to be larger than 0.12. However, in this model, the contribution from the semiannihilation can enhance the annihilation rate for NR . - The tension between the constraints of LFV and 0Nh2 becomes mild. Mayumi Aoki h 0 ηR,I φR,I φR,I ... φR,I , χ h φR,I h hh φR,I , χ, χ φR,I φR,I DM Conversion: ,χ R,I ,χ φφR,I h γ5,γ2 l−/ν Yν hf¯ φR,I , χ, χ φR,I ν N1 N1 Semi-ann. φφ χχ SM March. 17, 2015 36 Relic abundance Benchmark Point M1 m⌘R0 m I m R ⌘ 2,5,7 Y⌫ 50 GeV 300 GeV m + m R 10 GeV m + 60 GeV m + 50 GeV 0.1 0.4 0.01 χ h2 || ηR,ηI - Semi-annihilation tends to decrease 0Nh2. - 0h2~0.12 → γ=0.1, 0 0totaltotal h2h2 -1 0φhh 22 0χ h 22 0 Nh Nh 140 160 180 Mayumi Aoki 200 220 240 m [GeV] 260 mχ~200 GeV Scalar DM φ mφ~250GeV, 260 GeV mN=300GeV h2 2 10-2 10-3 φI 1 TeV | N2, N3 •Neutrino mass scale •Vacuum stability •Perturbativity | i |, | i |, || < 1 101 10 φR 300 GeV | N1 - The mχ, mφR, mφI are varied with a fixed mass deference. 102 10 10 GeV 280 300 → γ ≳ 0.2, mχ~220 GeV Exploring the dark sector η0R N DM mφ~250GeV, 260 GeV mN=300GeV March. 17, 2015 N 37 Direct detection - The current upper bound for the DM-nucleon cross section is estimated assuming the single component DM scenario. Constraint on the detection rate in the multicomponent DM scenario. effective cross section : Our model e↵ i = i ✓ 2 ⌦i h ⌦total h2 ◆ χ, φR h - χ and φR have interactions to the quarks. e↵ = ✓ The γ is changed so as to realize the 2 ⌦ h ⌦tot h2 ◆ 0totalh2~0.12 ) [cm2] R ⌦ Rh ⌦tot h2 ◆ 0h2=0.12. - At mχ=220 (380) GeV for M1=300 (500)GeV → large γ , small 0χ,φ 10 - The obtained cross section is accessible to XENON1ton. XENON100 LUX 10 Mayumi Aoki -44 eff( R = 2 q )+ e↵ ✓ q eff( - The effective cross sections : γ2, γ5/2 χ, φ R Exploring the dark sector -45 100 M1 = 300 GeV 150 200 M1 = 500 GeV 250 m [GeV] March. 17, 2015 300 350 400 38 Indirect detection Cosmic ray from the DM annihilation. Indirect signals DM We discuss the neutrinos from the annihilation of captured DM in the Sun. ν IceCUBE Semi-annihilation φ In our model, the semi-annihilation process produces a monochromatic neutrino. Mayumi Aoki φR ηR χ Exploring the dark sector N η0 ν νLi March. 17, 2015 χ η0 cα NR νLj 39 Indirect detection Single component DM : χ - Time evolution of nχ in the Sun nχ : Number of DM in the Sun C : Capture rate in the Sun. CA : Annihilation rate CA=<σv>/Veff ṅ = C C A n2 χ χ SM χ SM q χ q 0 $ XX ) = CA ( ! XX 0 )v > Ve↵ < ( Veff : Effective Volume of the Sun Veft = 5.7 ⇥ 1027 ✓ 100 GeV m - At the time of birth of the Sun the nχ were zero. - The nχ increase with time and approach the fixed point values. ◆3/2 cm3 Fixed point at C=CA nχ2 → equilibrium → The number of DM reaches its maximal value. - DM annihilation rate : Γ = CA nχ2/2 = C/2 - Neutrino production rate : Γν = 2Γ Br(χχ→XX’νν) Mayumi Aoki Exploring the dark sector March. 17, 2015 40 TABLE I. data Results the combination independent sets. Th om the combination of the three independent sets. from The upper 90% limits of onthe thethree number of signal data events , the WIMP annihilation Sun !A , the muon flux " neutrino flu ation rate in the Sun !A , the muon flux neutrino flux "" ,rate andin thethe WIMP-proton scattering cross sections $90 $ and $ and s" # $ (seelevel, (spin independent, dependent,errors. !SD;p )The at the 90% confidence confidence level,!including sensitivity " the incl SI;p ; spin systematic p ; spin dependent, !SD;p ) at the 90% text) is shown for comparison. parison. Indirect detection !A IceCUBE (2013) (s"1 ) $90 s #m$% " "$ "2 "1 (GeV=c (km"2 y"1 ) 2 ) (kmChannel y ) #$ " !A "" !SI;p !SD;p "$ "2 "1 2 $90 (km y ) (s"1 ) (cm2 )(km"2 y"1 ) (cm(km ) "2 y"1 ) s "4 9:27 &$þ &10 "4 1:21 &$þ &10 # 5 1:04 $bb10 "3 2:84 &$þ &10 # 4 1:80 $bb10 1:19W$þ W 10"3 # 3 5:91 $bb10 4:15W$þ W 10"2 # 3 1:45 $bb10 2:23W$þ W 10"2 # 3 1:02 $bb10 1:85W$þ W 10"2 # 2 5:99 $bb10 1:66W$þ W 10"2 # 2 3:47 $bb10 1:58W$þ W 10"2 # 2 3:26 $bb10 4 15 "40 162 $ 102:46 $ 1:08 1025 $ 105:26 $ 10 2:35 1:29 $ 9:27 10"38$ 104 4 14 "42 70.2 $ 101:03 $ 6:59 1024 $ 101:03 $ 10 1:02 1:28 $ 1:21 10"39$ 104 4 15 "39 128 $ 101:99 $ 1:28 1026 $ 105:63 $ 10 6:29 2:49 $ 1:04 10"37$ 105 3 13 "42 $ 10 19.6 $ 101:20 $ 1:03 1023 $ 104:82 1:17 2:70 $ 2:84 10"40$ 103 4 14 "40 $ 10 55.2 $ 101:75 $ 1:51 1025 $ 102:06 5:64 3:96 $ 1:80 10"38$ 104 3 12 "43 $ 10 16.8 $ 103:35 $ 6:01 1022 $ 101:49 1:23 2:68 $ 1:19 10"40$ 103 3 13 "41 $ 10 28.9 $ 101:82 $ 3:30 1024 $ 107:57 6:34 1:47 $ 5:91 10"38$ 103 2 10 "43 $ 10 29.9 $ 102:85 $ 1:67 1021 $ 103:04 9:72 1:34 $ 4:15 10"40$ 102 3 12 "42 $ 10 19.8 $ 101:27 $ 7:37 1023 $ 101:85 4:59 5:90 $ 1:45 10"39$ 103 2 10 "43 25.2 $ 108:57 $ 1:45 1020 $ 101:46 $ 10 2:61 1:57 $ 2:23 10"40$ 102 2 12 "42 30.6 $ 104:12 $ 6:98 1022 $ 108:53 $ 10 1:52 7:56 $ 1:02 10"39$ 103 2 10 "43 23.4 $ 106:13 $ 3:46 1020 $ 101:19 $ 10 1:62 4:48 $ 1:85 10"40$ 102 2 11 "42 30.4 $ 101:39 $ 7:75 1022 $ 104:33 $ 10 5:23 1:00 $ 5:99 10"38$ 102 2 10 "42 22.2 $ 107:79 $ 3:44 1020 $ 101:09 $ 10 1:65 5:02 $ 1:66 10"39$ 102 2 11 "41 $ 10 26.1 $ 104:88 $ 2:17 1021 $ 102:52 1:89 3:16 $ 3:47 10"38$ 102 2 10 "41 $ 10 22.8 $ 108:79 $ 1:06 1020 $ 101:01 1:77 1:59 $ 1:58 10"38$ 102 2 11 "41 $ 10 26.4 $ 106:50 $ 4:89 1020 $ 102:21 1:63 7:29 $ 3:26 10"38$ 102 IceCube Collaboration 25 131302 Phys.Rev.Lett. 110 (2013) 162 2:46 $ 1013, 5:26 20 $ 104 1:03 $ 1024 1:03 35 $ 104 26 WW XX’νν 1:99→ $ 10 5:63 35 $ 104 1:20 $ 1023 4:82 50 $ 103 1:75 $ 1025 2:06 50 $ 104 3:35 $ 1022 1:49 100 $ 103 1:82 $ 1024 7:57 100 $ 103 2:85 $ 1021 3:04 250 $ 102 1:27 $ 1023 1:85 250 $ 103 8:57 $ 1020 1:46 500 $ 102 4:12 $ 1022 8:53 500 $ 102 6:13 $ 1020 1:19 1000 $ 102 1:39 $ 1022 4:33 1000 $ 102 7:79 $ 1020 1:09 3000 $ 102 4:88 $ 1021 2:52 3000 $ 102 8:79 $ 1020 1:01 5000 $ 102 6:50 $ 1020 2:21 5000 $ 102 70.2 χχ→ 128 19.6 55.2 16.8 28.9 29.9 19.8 25.2 30.6 23.4 30.4 22.2 26.1 22.8 26.4 -38 MSSM incl. XENON (2012) ATLAS + CMS (2012) DAMA no channeling (2008) CDMS (2010) CDMS 2keV reanalyzed (2011) CoGENT (2010) XENON100 (2012) log10 ( -42 -43 -44 IceCube 2012 (bb) -45 + ( -46 + - - IceCube 2012 (W W ) for m <mW = 80.4GeV/c2) 1 / cm2 ) -41 -36 SD,p SI,p / cm2 ) -40 log10 ( -39 2 3 4 SUPER-K (2011) (b b) + SUPER-K (2011) (W W ) -37 -38 -39 IceCube 2012 (bb) + - IceCube 2012 (W W ) -40 log10 ( m / GeV c-2 ) MSSM incl. XENON (2012) ATLAS + CMS (2012) DAMA no channeling (2008) COUPP (2012) Simple (2011) PICASSO (2012) -35 ( + - for m <mW = 80.4GeV/c2) 1 2 3 4 The Theinupper limits on $scross Uncertainties neutrino-nucleon sections forhypothesis sigeutrino-nucleon cross sections for sigfor each signal are upp nal simulations arise in thetoparametrization of the CTEQ6then 41 conve in the parametrization of the CTEQ6then converted limits on the neutrino to muon converMayumi Aoki Exploring the dark sector March. 17, 2015 distribution used in NUSIGMA sion on functions as used in NUSIGMADIS rate and,functions throughasDarkSUSY [9], to[24]. limits on therate a [24].partonsion log10 ( m / GeV c-2 ) Indirect detection Multicomponent DM : φR, χ, NR ṅi = Ci CA (ii ! SM)n2i Standard X mi >mj CA (ii ! jj)n2i CA (ij ! k⌫)ni nj Conversion Semi-annihilation φR - Since CN=0, the nN cannot increase. - φχ→Nν is the only ν production process. ⌫ = 2 /(4⇡R ) ⌫ R : the distance to the Sun - The IceCUBE limit is at least 103 times larger than these results. (1,300) 10 Exploring the dark sector (m 0 R -(m +m ) , M1)=(1,500)[GeV] R 8 107 106 (10,300) (10,500) 105 104 Mayumi Aoki ν 109 Neutrino Flux [km-2year-1] - Neutrino flux : ! N ⌫)n n = CA ( ηR χ - Monochromatic ν production rate : ⌫ N 150 200 250 300 350 m [GeV] March. 17, 2015 400 450 500 42 Summary - The origin of neutrino masses and the nature of dark matter are two in pressing open questions. - It would be interesting to consider the possibility in which these two problems are related. - Radiative seesaw model with DM • Symmetry → guarantees the radiative neutrino mass and the stability of the DM. • The model has a predictive power. - Radiative seesaw model with multicomponent DM • Two-loop extension of the Ma model Three-component (N, χ, φR) DM system - 0Nh2 is reduced by the semi-annihilation processes. - The predicted σSI will be covered by XENON1T. - The monochromatic neutrino is produced by the semi-annihilation. - The neutrino flux from the Sun is enhanced by the resonant effect. Mayumi Aoki Exploring the dark sector March. 17, 2015 43