view as pdf
Transcription
view as pdf
Atomic Quantum Simulation of (Non-)Abelian Lattice Gauge Theories: Quantum Link Models UNIVERSITY OF INNSBRUCK Peter Zoller Innsbruck M. Dalmonte E. Rico→ Ulm M. Müller→ Madrid D. Marcos K. Stannigel (quantum optics) ITP Bern D. Banerjee M. Bögli P. Stebler U. J. Wiese (high-energy physics) IQOQI AUSTRIAN ACADEMY OF SCIENCES €U AQUTE €U COHERENCE UQUAM AFOSR Atomic Quantum Simulation of (Non-)Abelian Lattice Gauge Theories: Quantum Link Models UNIVERSITY OF INNSBRUCK Peter Zoller … possible future developments at the interface between AMO and cond mat & particle physics • • • Abelian U(1) Schwinger model, D. Banerjee et al., PRL 2012 IQOQI AUSTRIAN ACADEMY OF SCIENCES €U AQUTE €U COHERENCE U(N), SU(N) Non-Abelian QLM, D. Banerjee et al., PRL in print UQUAM Other - dissipative techniques K. Stannigel et al. - other implementations: superconducting qubits, D. Marcos et al. AFOSR Related work: MPQ-Tel Aviv, ICFO, Cornell, ... … lattice gauge theories [in particle physics] • • Gauge theories on a discrete lattice structure K. Wilson, Phys. Rev. D (1974). Fundamental gauge symmetries: standard model (every force has a gauge boson) non-perturbative approach to fundamental theories of matter (e.g. QCD) → classical statistical mechanics a quarks and gluons lattice Classical Monte Carlo simulations: achievements • first evidence of quark-gluon plasma • ab initio estimate of proton mass • entire hadronic spectrum issues Sign problem in its various flavors: • finite density QCD (=fermions) • real time evolution Quantum simulation (with atoms)? … toy models & simple phenomena 3 Quantum Simulation of Lattice Gauge Theories with Atoms Lattice Gauge Theories Atomic Quantum Simulation gauge field matter field optical lattice Hamiltonian formulation Kogut & Susskind (Non-)Abelian LGT: ✓QED U(1) ✓QCD SU(N), U(N) gauge symmetry as local symmetry Hubbard models with bosonic and fermionic atoms in optical lattices ? “emergent lattice gauge theory” Quantum Simulation of Lattice Gauge Theories with Atoms Lattice Gauge Theories gauge field matter field (Non-)Abelian LGT: ✓QED U(1) ✓QCD SU(N), U(N) Quantum Link Models (QLM) Example: U(1) / QED spin S fermionic atoms as matter field as quantum link: “spin ice” QLM ✓gauge fields in finite dim spaces ✓Abelian & Non-Abelian particle physics: U.J. Wiese et al., Horn, Orland & Rohrlich, … cond mat: … [spin ice, quantum spin liquids] QLM have “natural” implementations with cold atoms in optical lattices 5 • Quantum Link Models (as Hubbard Models for Atoms) U(1) Abelian LGT D. Banerjee et al., PRL 2012 “spin ice” QED + matter L R spin S as quantum link fermionic atoms as matter field Schwinger boson atomic boson-fermi mixtures in optical lattices U(N),SU(N) Non-Abelian LGT D. Banerjee et al., PRL in print fermions L R i x (i = 1, 2, 3) color index fermionic rishons multi-species fermi gases 6 H gauge invariant subspace ⇢ “spin ice” QED + matter r·E =0 Gauss law as a constraint Hamiltonians, (local) gauge symmetries, Gauss law etc. an AMO perspective 7 Static vs. Dynamical Gauge Fields on Lattices: U(1) • c-number / static gauge fields particles hopping around a plaquette acquire a finite phase = ˆ flux x ~ ⇥A ~ d2 f~ · r H= matter field t y † i'xy xe y phase 'xy = + h.c. ˆ y x ~ d~l · A U(1) (abelian) theory & AMO experiments on “synthetic gauge fields” - Hofstadter butterfly - Fractional Quantum Hall, Fractional Chern insulators Review: J. Dalibard et al. Rev. Mod. Phys. (2011) 8 Static vs. Dynamical Gauge Fields on Lattices: U(1) • dynamical gauge fields particles hopping around a plaquette assisted by link degrees of freedom gauge field x H= t y † x Uxy y + h.c. + . . . link operator matter field 9 Static vs. Dynamical Gauge Fields on Lattices: U(1) • dynamical gauge fields particles hopping around a plaquette assisted by link degrees of freedom Gx x H= gauge bosons fermions unitary trafo: V ! ei↵x Uxy e i↵y V x ! ei↵x V = † x Uxy y Gy + h.c. + . . . local conserved quantity gauge (local) symmetry U(1) Uxy t y Y x x ei↵x Gx generator , [H, Gx ] = 0 8x generator of gauge transformation Static vs. Dynamical Gauge Fields on Lattices: U(1) • dynamical gauge fields particles hopping around a plaquette assisted by link degrees of freedom x H= Gauss Law Gx = † x x matter ⇢ X⇣ r·E =0 i Ex,x+î Ex î,x ⌘ electric field operator t y † x Uxy y + h.c. + . . . local conserved quantity [H, Gx ] = 0 8x generator of gauge transformation QED as “Quantum Spin Ice” [Quantum Link Model] + Ux,x+1 ! Sx,x+1 z Ex,x+1 ! Sx,x+1 electric flux Spin S=½,1,... spin S as quantum link quantum link carrying an electric flux spin-1/2 E = +1/2 E= 1/2 spin-1 E = +1 E=0 E= 1 12 QED as “Quantum Spin Ice” [Quantum Link Model] + Ux,x+1 ! Sx,x+1 z Ex,x+1 ! Sx,x+1 electric flux Spin S=½,1,... spin S as quantum link configurations: spin-1/2 Gauss Law charge = +1 + ⇢ ... charge = 0 “ice rule” r·E =0 13 QED as “Quantum Spin Ice” [Quantum Link Model] + Ux,x+1 ! Sx,x+1 z Ex,x+1 ! Sx,x+1 electric flux Spin S=½,1,... spin S as quantum link configurations: spin-1/2 H + physical subspace G x |√i = 0 8x ... ≥ ¥ 3 3 “ice rule” G x = ßµ S x°µ̂,µ ° S x,µ $ r · E = 0 14 A first remark on implementation: enforcing “Gauss law” • • Lattice Gauge Theory: gauge symmetry fundamental Implementation: gauge symmetry approximate → protect against errors Strategies for Microscopic Implementation H ☹ ☺ G x |√i = 0 Hamiltonian + constraints G x |√i = 0 8x 8x physical gauge invariant subspace 15 A first remark on implementation: enforcing “Gauss law” • • Lattice Gauge Theory: gauge symmetry fundamental Implementation: gauge symmetry approximate → protect against errors Strategies for Microscopic Implementation H 1. Energy Constraints (as in cond mat) energy Hmicro = U X x G x2 + . . . U (large) G x |√i = 0 ✓interaction ✓emergent lattice gauge theory see example below ... ... 16 A first remark on implementation: enforcing “Gauss law” • • Lattice Gauge Theory: gauge symmetry fundamental Implementation: gauge symmetry approximate → protect against errors Strategies for Microscopic Implementation H 2. “Classical Zeno effect” K. Stannigel 17 A toy model: “motional narrowing” classical noise Two-level atom + dephasing |ei Rabi ⌦ frequency Fermi’s Golden Rule classical wiggling laser |gi Compare “Zeno effect” by losses in optical lattices Pg (t) = exp ✓ ! 1 for ⌦ 2 t ◆ !1 population frozen in ground state Rempe, Cirac et al. Daley et al. 18 A first remark on implementation: enforcing “Gauss law” • • Lattice Gauge Theory: gauge symmetry fundamental Implementation: gauge symmetry approximate → protect against errors Strategies for Microscopic Implementation H 2. “Classical Zeno effect” K. Stannigel Hmicro = X x ªx (t )G x + . . . see example below ✓white noise ✓linear in G ~ single particle terms ☺ Rem.: decoherence free subspace, bang-bang 19 Example 1: The simplest (meaningful) quantum link model: 1D Schwinger model AMO Implementation: Bose-Fermi Mixtures in Optical Lattices string breaking Boson (gauge field) ... ... Fermion (quark) “quantum spin ice coupled to matter” D. Banerjee, M. Dalmonte, M. Müller, E. Rico, P. Stebler, U. J. Wiese, and P.Z., PRL 2012 20 Schwinger Model: U(1) fermions + gauge bosons in 1D • Hamiltonian: staggered fermions in 1D coupled to quantum link spin S H = i Xh † X g2 X 2 E x,x+1 ° t √x U x,x+1 √x+1 + h.c. + m (°1)x √†x √x 2 x x x electric flux hopping staggered fermions Boson (gauge field) ... ... Fermion (quark) 21 Schwinger Model: U(1) fermions + gauge bosons in 1D • Hamiltonian: staggered fermions in 1D coupled to quantum link spin S H = g2 X z (S x,x+1 )2 2 x electric flux t X⇥ † + x Sx,x+1 x hopping x+1 ⇤ + h.c. + m X ( 1)x † x x x staggered fermions Boson (gauge field) ... ... Fermion (quark) 22 Schwinger Model: U(1) fermions + gauge bosons in 1D • Hamiltonian: staggered fermions in 1D coupled to quantum link spin S H = g2 X z (S x,x+1 )2 2 x electric flux t X⇥ † + x Sx,x+1 x+1 ⇤ + h.c. + m x X ( 1)x † x x x staggered fermions hopping ... ... Staggered fermions: energy empty mass gap mass gap 0 1 2 filling = ½ ... filled fermi sea 23 Schwinger Model: U(1) fermions + gauge bosons in 1D • Hamiltonian: staggered fermions in 1D coupled to quantum link spin S H = g2 X z (S x,x+1 )2 2 x electric flux t X⇥ † + x Sx,x+1 x+1 ⇤ + h.c. + m x X ( 1)x † x x x staggered fermions hopping ... ... Staggered fermions: energy q mass gap mass gap 0 1 2 filling = ½ q̄ ... 24 Implementation with Atoms: Hamiltonian • building blocks x y Spin S=½,1,... 25 Implementation with Atoms: Hamiltonian x y Spin S=½,1,... • Spin as Schwinger bosons L R L R bosons N bosons in double well (S=N/2) + Sx,y = b†L bR ⇣ 1 z Sx,y = b†R bR 2 b†L bL ⌘ Hamiltonian hB = + z tB (Sx,y + h.c.) + UB (Sx,y )2 hopping electric energy 26 Implementation with Atoms: Hamiltonian x H= • y t † + x Sxy y + h.c. correlated hopping L R L R bosons interaction fermions H= tB tF U † † x bR bL L R fermions as matter fields y + h.c. bosons as link variable 27 Gauss Law (as a constraint) • Gauss’ law G x = √†x √x + (°1)x °1 2 ° (E x,x+1 ° E x°1,x ) G x | physical statesi = 0 √! Ω ° r · E = 0 • Example: Spin 1 representation |0i |1i Even sites | 1i |0i | + 1i Odd sites 28 Implementation with Atoms: Gauss Constraints • Bose-Fermi mixtures in superlattices tB U↵ bosons fermions bosons • tF Gauss constraint 1 2 G̃x = nF + n + n x x x 2S + 1 [( 1)x 2 1] ~ total number of atoms on site x fixed: “super-Mott insulator” 29 Implementation with Atoms: Gauss Constraints • Bose-Fermi mixtures in superlattices tB U↵ bosons fermions bosons • tF enforcing the Gauss Law as an energy constraint energy Hmicroscopic = U X G̃2x + . . . x Bose + Fermi Hubbard model • U (large) G̃x |physical statesi = 0 emergent lattice gauge theory - dynamics in physical subspace: analogous to t-J model - we have verified the reduction: microscopic to the quantum link model at the few- and many-body level 30 43 String breaking and confinement string breaking Q̄ Q Unbroken String E string ° E 0 = Mesons + vacuum g2 2 (L ° 1) E mesons ° E 0 = 2 Critical string length ≥ g2 2 +m ¥ L(c) = 2 + 2m/g 2 We have verified this dynamics in the microscopic model Rem.: string breaking 1D vs. 3D / non-Abelian 31 Example 2: H classical noise Enforcing Gauss’ Law by Classical Noise K. Stannigel 32 K. Stannigel 1D Schwinger Model: Fermions → Spins • Hamiltonian Sx,x+1 ... ... x+1 x H0 = J 3 X x Sx,x+1 + x+1 + h.c. + m(t) x=1 • 4 X ( 1)x z x x=1 Gauss Law Gx = Sxz 1,x + z x z Sx,x+1 1 + ( 1)x 2 33 H • We add a gauge-variant term to the Hamiltonian ... H1 = 3 X x + x+1 + h.c. x=1 imperfection system leaves Gauge invariant subspace 1 0.8 1 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 50 100 150 200 250 Jt 300 350 imperfection noise 400 0 0 50 100 150 200 250 Jt 300 350 400 • … and suppress it by noise K. Stannigel 34 y x cix cj† y Non-Abelian U(N) and SU(N) Quantum Link Models with Fermionic Atoms … a few basic aspects D. Banerjee, M. Bögli, M. Dalmonte, E. Rico, P. Stebler, U. J. Wiese, & PZ, PRL in print. [Innsbruck - Bern] 35 Bern Innsbruck Non-Abelian Lattice Gauge Theory • Example: U(N), SU(N), … fermions as matter fields i x non-Abelian gauge fields ij Ux,y (i = 1, . . . , N ) • NxN unitary matrices • generators (color) [ H= t N X i† ij x Uxy j y a ij a , (a = 1, . . . N 2 b ] = i2fabc 1) c + h.c. + . . . i,j=1 36 Bern Innsbruck Non-Abelian Lattice Gauge Theory • Quantum Link Models L R U ij = ciR cj† L (i = 1, . . . , N ) representation as fermionic rishons • Abelian U(1) L fermions as matter fields R bosons as link variable 37 Bern Innsbruck Non-Abelian Lattice Gauge Theory • Quantum Link Models L R quark H= rishon 0 ! N N X X j† i† i @ c t c x R L i=1 j=1 1 jA y + h.c. (separable interaction ☺) Implementation ✓ fermionic atoms with N internal states (color) 38 Bern Innsbruck Non-Abelian Lattice Gauge Theory • Quantum Link Models L R H= 0 ! N N X X j† i† i @ c t c x R L i=1 j=1 1 jA y + h.c. (separable interaction ☺) Dynamics ✓ fermionic atoms converts itself from quark to rishon & vice versa ✓correlated hop 39 Bern Innsbruck Non-Abelian Lattice Gauge Theory • Quantum Link Models L R quark H= rishon 0 ! N N X X j† i† i @ c t c x R L j=1 i=1 1 jA y + h.c. (separable interaction ☺) “nuclear and particle physics” a a a† g nucleon a a g g glueball a meson triton g We know how to implement gauge groups SU(2), SU(3), SO(3), … [at the moment in 1D] PRL in print deuteron 40 Implementation: enforcing Gauss Law / local symmetry • strategy 3: U(N),SU(N) Non-Abelian LGT implementation fundamental local symmetry / conservation law M. Dalmonte elementary building block local particle # conservation (implemented with high precision) fermions 41 Summary U(1) Abelian LGT U(N),SU(N) Non-Abelian LGT L R L R atomic boson-fermi mixtures D. Banerjee et al., PRL in print H multi-species fermi gases D. Banerjee et al., PRL 2012 Hamiltonian + Gauss constraint: 1.Energy constraints 2.Classical Noise physical gauge invariant subspace 3.Microscopic Hamiltonian is gauge invariant We are on our way to find simpler, and thus more realistic implementations 42 The Collaboration • IQOQI - Innsbruck University M. Dalmonte • E. Rico D. Marcos • K. Stannigel Ibk→ Madrid M. Müller Albert Einstein Center - Bern University D. Banerjee M. Bögli P. Stebler P. Widmer U.-J. Wiese 43 Outlook • gauge fields in 2D, 3D y x • cix cj† y ij Ux,y superconducting qubits cavity a y x cavity b JJ / SQUID 1 qubit 1 qubit 1 cavity b cavity a qubit 2 qubit 2 D. Marcos et al., unpublished • 2 21 Is there life after optical lattices ... 44 Nano-Scale Trap Arrays from Superconducting Vortices O. Romero-Isart, C. Navau, A. Sanchez, P. Zoller, and J. I. Cirac, arXiv 2013 Oriol Romero-Isart • a Pinned vortices in type-II superconductors as magnetic trap arrays - lattice spacings down to 50 nm - nano-structuring of surfaces & holes b B1 z BM(t) 0 z0 dm a Superconducting Vortex Lattice for Atoms Mesocopic size magnetic / superconducting chip traps (Zimmermann, Dumke, Haroche, …) 45
Similar documents
A worm-inspired algorithm for the simulation of Abelian
QED without matter fields (renormalizable) βc = 1.0111331(21) separates a confined phase from a Coulomb-like phase Duality transformation → a gauge theory on the dual lattice
More information