Copulas: A Tool For Modelling Dependence In Finance
Transcription
Copulas: A Tool For Modelling Dependence In Finance
Copulas: A Tool For Modelling Dependence In Finance Statistical Methods in Integrated Risk Management Frontières en Finance, Paris, 01/26/2001 Thierry Roncalli Groupe de Recherche Opérationnelle Crédit Lyonnais Joint work with a lot of people (see ref. further) The Working Paper “Copulas For Finance” is available on the web site: http://www.gloriamundi.org/var/wps.html 1 Introduction Definition 1 A copula function C is a multivariate uniform distribution (a multivariate distribution with uniform margins). Theorem 1 Let F1, . . . , FN be N univariate distributions. It comes that C (F1 (x1) , . . . , Fn (xn) , . . . , FN (xN )) defines a multivariate distributions F with margins F1, . . . , FN (because the integral transforms are uniform distributions). ⇒ F belongs to the Fréchet class F (F1, . . . , FN ) — F is a distribution with given marginals. ⇒ Copulas are also a general tool to construct multivariate distributions, and so multivariate statistical models — see for example Song [2000]. Copulas in Finance Introduction 1-1 2 The dependence function • Canonical representation • Concordance order • Measure of dependence From 1958 to 1976, virtually all the results concerning copulas were obtained in connection with the study and development of the theory of probabilistic metric spaces (Schweizer [1991]). ⇒ Schweizer and Wolff [1976] = connection with rank statistics (see also Deheuvels [1979b]). Copulas in Finance The dependence function 2-1 2.1 Canonical representation Theorem 2 (Sklar’s theorem) Let F be a N -dimensional distribution function with continuous margins F1, . . . , FN . Then F has a unique copula representation F (x1, . . . , xN ) = C (F1 (x1) , . . . , FN (xN )) ⇒ Copulas are also a powerful tool, because the modelling problem could be decomposed into two steps: • Identification of the marginal distributions; • Defining the appropriate copula function. In terms of the density, we have the following canonical representation f (x1, . . . , xN ) = c (F1 (x1) , . . . , FN (xN )) × Copulas in Finance The dependence function N Y fn (xn). n=1 2-2 The copula function of random variables (X1, . . . , XN ) is invariant under strictly increasing transformations (∂xhn (x) > 0): CX1,... ,XN = Ch1(X1),... ,hN (XN ) ... the copula is invariant while the margins may be changed at will, it follows that is precisely the copula which captures those properties of the joint distribution which are invariant under a.s. strickly increasing transformations (Schweizer and Wolff [1981]). ⇒ Copula = dependence function of random variables. This property was already etablished by Deheuvels [1978,1979a]. Copulas in Finance The dependence function 2-3 2.2 Examples For the Normal copula, We have C (u1, . . . , uN ; ρ) = Φρ Φ−1 (u1) , . . . , Φ−1 (uN ) and 1 > −1 c (u 1 , . . . , u N ; ρ) = ρ −I ς 1 exp − ς 2 |ρ| 2 1 For the Gumbel copula, We have C (u1, u2) = exp − (− ln u1)δ + (− ln u2)δ 1 δ ! Other copulas: Archimedean, Plackett, Frank, Student, Clayton, etc. Copulas in Finance The dependence function 2-4 2.3 Concordance order The copula C1 is smaller than the copula C2 (C1 ≺ C2) if ∀ (u 1 , . . . , u N ) ∈ I N , C1 (u1, . . . , uN ) ≤ C2 (u1, . . . , uN ) ⇒ The lower and upper Fréchet bounds C− and C+ are C− (u1, . . . , uN ) = max N X n=1 un − N + 1, 0 C+ (u1, . . . , uN ) = min (u1, . . . , uN ) We can show that the following order holds for any copula C: C− ≺ C ≺ C+ ⇒ The minimal and maximal distributions of the Fréchet class F (F1, F2) are then C− (F1 (x1) , F2 (x2)) and C+ (F1 (x1) , F2 (x2)). Example of the bivariate Normal copula (C⊥ (u1, u2) = u1u2): C− = C−1 ≺ Cρ<0 ≺ C0 = C⊥ ≺ Cρ>0 ≺ C1 = C+ Copulas in Finance The dependence function 2-5 Mikusiński, Sherwood and Taylor [1991] give the following interpretation of the three copulas C−, C⊥ and C+: • Two random variables X1 and X2 are countermonotonic — or C = C− — if there exists a r.v. X such that X1 = f1 (X ) and X2 = f2 (X ) with f1 non-increasing and f2 non-decreasing; • Two random variables X1 and X2 are independent if the dependence structure is the product copula C⊥; • Two random variables X1 and X2 are comonotonic — or C = C+ — if there exists a random variable X such that X1 = f1 (X ) and X2 = f2 (X ) where the functions f1 and f2 are non-decreasing; Copulas in Finance The dependence function 2-6 2.4 Measures of association or dependence If κ is a measure of concordance, it satisfies the properties: −1 ≤ κC ≤ 1; C1 ≺ C2 ⇒ κC1 ≤ κC2 ; etc. Schweizer and Wolff [1981] show that Kendall’s tau and Spearman’s rho can be (re)formulated in terms of copulas τ = 4 ZZ % = 12 2 ZZI C (u1, u2) dC (u1, u2) − 1 I2 u1u2 dC (u1, u2) − 3 ⇒ The linear (or Pearson) correlation is not a measure of dependence. Copulas in Finance The dependence function 2-7 2.5 Some misinterpretations of the correlation The following statements are false: 1. X1 and X2 are independent if and only if ρ (X1, X2) = 0; 2. For given margins, the permissible range of ρ (X1, X2) is [−1, 1]; 3. ρ (X1, X2) = 0 means that there are no relationship between X1 and X2. • We consider the cubic copula of Durrleman, Nikeghbali and Roncalli [2000b] C (u1, u2) = u1u2 + α [u1(u1 − 1)(2u1 − 1)] [u2(u2 − 1)(2u2 − 1)] with α ∈ [−1, 2]. If the margins F1 and F2 are continous and symmetric, the Pearson correlation is zero. Moreover, if α 6= 0, the random variables X1 and X2 are not independent. Copulas in Finance The dependence function 2-8 • Wang [1997] shows that the min. and max. correlations of X1 ∼ LN (µ1, σ1) and X2 ∼ LN (µ2, σ2) are e−σ1σ2 − 1 ρ− = 1 1 ≤ 0 2 2 2 2 eσ2 − 1 eσ1 − 1 eσ1σ2 − 1 ρ+ = 1 1 ≥ 0 2 2 σ22 σ12 e −1 e −1 ρ− and ρ+ are not necessarily equal to −1 and 1. Example with σ1 = 1 and σ2 = 3: Copula C− ρ = −0.7 C⊥ ρ = 0.7 C+ Copulas in Finance The dependence function ρ (X1, X2) −0.008 '0 0 ' 0.10 0.16 τ (X1, X2) −1 −0.49 0 0.49 1 % ( X1 , X 2 ) −1 −0.68 0 0.68 1 2-9 • Using an idea of Ferguson [1994], Nelsen [1999] defines the following copula u 1 C (u1, u2) = 12 u2 u +u −1 1 2 1u ≤ 1 0 ≤ u1 ≤ 2 2 2 1 0 ≤ 2 u 2 ≤ u1 ≤ 1 − 1 2 u2 1 ≤ 1 − 1u ≤ u ≤ 1 1 2 2 2 We have cov (U1, U2) = 0, but Pr {U2 = 1 − |2U1 − 1|} = 1, i.e. “the two random variables can be uncorrelated although one can be predicted perfectly from the other ”. Copulas in Finance The dependence function 2-10 3 Understanding the dependence: three examples • Mispecifications of marginals and dependence • Dependence in multi-assets options • Temporal dependence in Markov processes Copulas in Finance Understanding the dependence: three examples 3-1 3.1 Mispecifications of marginals and dependence Example of Costinot, Roncalli and Teı̈letche [2000] • Normal copula + Gaussian marginals = Gaussian distribution. It means that 1 0.158 0.175 ρ̂ = 1 0.0589 1 C(CAC40,NIKKEI) C(CAC40,DowJones) C(NIKKEI,DowJones) • Normal copula + Empirical marginals. 1 0.207 0.157 ρ̂ = 1 0.0962 1 In this case, we have C(CAC40,DowJones) C(CAC40,NIKKEI) C(NIKKEI,DowJones) Copulas in Finance Understanding the dependence: three examples 3-2 3.2 Dependence in multi-assets options Ref.: Bikos [2000], Cherubini and Luciano [2000], Durrleman [2001], Rosenberg [2000]. Vanilla options contain information on the future distribution of S (T ). This information (RND) is actually used in monetary policy (see BIS [1999]) (option prices = “forward-looking” indicators). Bikos [2000]: options on multi-assets contain information on the future distribution of S (T ) = S 1 (T ) · · · S N ( T ) > . Let Qn and Q be the risk-neutral probability distributions of Sn (T ) and S (T ). With arbitrage theory, we can show that Q (+∞, . . . , +∞, Sn (T ) , +∞, . . . , +∞) = Qn (Sn (T )) ⇒ The margins of Q are the RND Qn of Vanilla options. Copulas in Finance Understanding the dependence: three examples 3-3 How to build ‘forward-looking” indicators for the dependence ? 1. estimate the univariate RND Q̂n using Vanilla options; 2. estimate the copula Ĉ using multi-assets options by imposing that Qn = Q̂n; 3. derive “forward-looking” indicators directly from Ĉ. Breeden et Litzenberger [1978] remark that European option prices permit to caracterize the probability distribution of Sn (T ) ∂C (T, K ) ∂K = Pr {Sn (T ) ≤ K} φ (T, K ) := 1 + er(T −t0) = Q n (K ) Copulas in Finance Understanding the dependence: three examples 3-4 Durrleman [2000] extends this result in the bivariate case: 1. for a call max option, φ (T, K ) is the diagonal section of the copula φ (T, K ) = C (Q1 (K ) , Q2 (K )) 2. for a spread option, we have φ (T, K ) = Z +∞ 0 ∂1C (Q1 (x) , Q2 (x + K )) dQ1 (x) ⇒ Other results are derived in Durrleman [2001] (bounds, general kernel pricing, etc.) Copulas in Finance Understanding the dependence: three examples 3-5 Computation of the implied parameter ρ̂ in a spread option: • BS model: LN distribution calibrated with ATM options; Kernel pricing = LN distributions + Normal copula ρ̂1 = −0.341 • Bahra model: mixture of LN distributions calibrated with eight European prices; Kernel pricing = MLN distributions + Normal copula ρ̂2 = 0.767 Remark 1 ρ̂1 and ρ̂2 are parameters of the Normal Copula. ρ̂1 is a Pearson correlation, not ρ̂2. ⇒ BS model: negative dependence / Bahra model: positive dependence. Copulas in Finance Understanding the dependence: three examples 3-6 3.3 Temporal dependence in Markov processes • Markov operators and 2-copulas • Markov operators and stochastic kernels • Markov processes and ∗ product of 2-copulas • The Brownian copula • Understanding the temporal dependence structure of diffusion processes • New interpretation of properties of Markov processes Copulas in Finance Understanding the dependence: three examples 3-7 3.3.1 Markov operators and 2-copulas Definition 2 (Brown [1966, p. 15]) Let (Ω, F , P ) be a probabilistic space. A linear operator T : L∞ (Ω) → L∞ (Ω) is a Markov operator if (a) T is positive i.e. T [f ] ≥ 0 whenever f ≥ 0; (b) 1 is a fixed point of T. (c) E [T [f ]] = E [f ] for every f ∈ L∞ (Ω). Copulas in Finance Understanding the dependence: three examples 3-8 The relationship between Markov operator T and 2-copula functions C is given by the following two lemmas: Lemma 1 (Olsen, Darsow and Nguyen [1996, lemma 2.1, p. 249]) For a copula C, the operator defined by Z d 1 T [f ] (x) = ∂2C (x, y ) f (y ) dy dx 0 is a Markov operator on L∞ ([0, 1]). Lemma 2 (Olsen, Darsow and Nguyen [1996, lemma 2.2, p. 251]) Let T be a Markov operator on L∞ ([0, 1]). The two place function defined by C (x, y ) = is a 2-copula. Z x 0 Copulas in Finance Understanding the dependence: three examples h i T 1[0,y] (s) ds 3-9 The multiplication product of copulas have been defined by Darsow, Nguyen and Olsen [1992] in the following manner I2 −→ I R1 (x, y ) 7−→ (C1 ∗ C2) (x, y ) = 0 ∂2C1 (x, s) ∂1C2 (s, y ) ds The transposition of copula corresponds to the mapping function C> (x, y ) = C (y, x). The adjoint T† of the Markov operator T is the operator such that we verify that (Brown [1966]) Z [0,1] f1 (x) T [f2] (x) m (dx) = Z [0,1] f2 (x) T† [f1] (x) m (dx) In terms of copulas, we have d T† [f ] (x) = dy Z 1 Copulas in Finance Understanding the dependence: three examples 0 ∂1C (x, y ) f (x) dx 3-10 3.3.2 Markov operators and stochastic kernels Using the Kantorovitch-Vulich-Ryff representation, Foguel [1969] shows that T hK1i ◦ T hK2i is a Markov operator with kernel K = K1 ∗ K2 defined by K (x, y ) := (K1 ∗ K2) (x, y ) = Z [0,1] K1 (x, s) K2 (s, y ) ds Let P be the stochastic transition function of a Markov process, we can deduce that D E E D D E D T Ps,t = T Ps,θ ∗ Pθ,t = T Ps,θ ◦ T Pθ,t with Ps,t (x, A) := Ps,θ ∗ Pθ,t (x, A) = Z E Ps,θ (x, dy ) Pθ,t (y, A) Ω = P ? (x, A) ⇒ this is the Chapman-Kolmogorov equation. Copulas in Finance Understanding the dependence: three examples 3-11 3.3.3 Markov processes and ∗ product of 2-copulas Darsow, Nguyen and Olsen [1992] prove the following theorem: Theorem 3 Let X = {Xt, Ft; t ≥ 0} be a stochastic process and let Cs,t denote the copula of the random variables Xs and Xt. Then the following are equivalent (i) The transition probabilities Ps,t (x, A) = Pr {Xt ∈ A | Xs = x} satisfy the Chapman-Kolmogorov equations Ps,t (x, A) = Z ∞ −∞ Ps,θ (x, dy ) Pθ,t (y, A) for all s < θ < t and almost all x ∈ R. (ii) For all s < θ < t, Cs,t = Cs,θ ∗ Cθ,t Copulas in Finance Understanding the dependence: three examples (1) 3-12 In the conventional approach, one specifies a Markov process by giving the initial distribution µ and a family of transition probabilities Ps,t (x, A) satisfying the Chapman-Kolmogorov equations. In our approach, one specifies a Markov process by giving all of the marginal distributions and a family of 2-copulas satisfying (1). Ours is accordingly an alternative approach to the study of Markov processes which is different in principle from the conventional one. Holding the transition probabilities of a Markov process fixed and varying the initial distribution necessarily varies all of the marginal distributions, but holding the copulas of the process fixed and varying the initial distribution does not affect any other marginal distribution (Darsow, Nguyen and Olsen [1992]). The Brownian copula Cs,t (u1, u2) = Z u 1 0 Φ √ Copulas in Finance Understanding the dependence: three examples √ −1 −1 tΦ (u2) − sΦ (u) √ t−s ! du 3-13 Understanding the dependence structure of diffusion processes The copula of a Geometric Brownian motion is the Brownian copula. The Ornstein-Uhlenbeck copula is Cs,t (u1, u2) = Z u 1 0 Φ ~ (t0, s, t) Φ−1 (u2) − ~ (t0, s, s) Φ−1 (u) with ~ (t0, s, t) = ~ (s, s, t) q ! du e2a(t−s) − e−2a(s−t0) Remark 2 A new interpretation of the parameter a follows. For physicists, a is the mean-reverting coefficient. From a copula point of view, this parameter measures the dependence between the random variables of the diffusion process. The bigger this parameter, the less dependent the random variables. Copulas in Finance Understanding the dependence: three examples 3-14 New interpretation of properties of Markov processes Theorem 4 (Darsow, Nguyen and Olsen [1992, theorem 5.1, p. 622]) The set C is a symmetric Markov algebra under ∗ and > as previously defined. The unit and null elements are C⊥ and C+. • Cst is a left invertible copula ⇔ the markov process is deterministic. • Cst is idempotent ⇔ the Markov process is conditionally independent. Copulas in Finance Understanding the dependence: three examples 3-15 4 An open field for risk management • Economic capital adequacy • Market risk • Credit risk • Operational risk ⇒ see BDNRR [2000] for a more detailed presentation (in particular for stress-testing, multivariate extreme value theory and operational risk) and DNRa [2000] for the problem of quantile aggregation. Copulas in Finance An open field for risk management 4-1 4.1 Economic capital adequacy With copulas, it appears that the risk can be splitted into two parts: the individual risks and the dependence structure between them. • Coherent multivariate statistical model = Coherent model for individual risks + coherent dependence function • Coherent model for individual risks = taking into account fat-tailed distributions, etc. • coherent dependence function = understanding the aggregation of quantiles of the individual risks. Copulas in Finance An open field for risk management 4-2 ⇒ The influence of margins Rating α Return time Φ−1 (α) Φ−1(0.99) t−1 4 (α) t−1 4 (0.99) VaR 99% 100 days BBB 99.75% 400 days A 99.9% 4 years AA 99.95% 8 years AAA 99.97% 13 years 1 1.20 1.33 1.41 1.48 1 1.49 1.91 2.30 2.62 ⇒ The influence of the dependence function: If a bivariate copula C is such that∗ C̄ (u, u) =λ lim u→1 1 − u exists, then C has upper tail dependence for λ ∈ (0, 1] and no upper tail dependence for λ = 0. ∗ C̄ is the joint survival function, that is C̄ (u1, u2) = 1 − u1 − u2 + C (u1, u2) Copulas in Finance An open field for risk management 4-3 Remark 3 The measure λ is the probability that one variable is extreme given that the other is extreme. ⇒ Coles, Currie and Tawn [1999] define the quantile-dependent measure of dependence as follows C̄ (u, u) λ (u) = Pr {U1 > u|U2 > u} = 1−u 1. Normal copula ⇒ extremes are asymptotically independent for ρ 6= 1, i.e λ = 0 for ρ < 1. 2. Student copula ⇒ extremes are asymptotically dependent for ρ 6= −1. Copulas in Finance An open field for risk management 4-4 4.2 Market risk Copulas = a powerful tool for market risk measurement. Copulas have been already incorporated in some software solutions: • SAS Risk Dimensions • Palisade @Risk Copulas in Finance An open field for risk management 4-5 LME example: P1 P2 P3 AL 1 -1 2 AL-15 1 -1 1 CU 1 -1 -3 NI 1 1 4 PB 1 1 5 • Gaussian margins and Normal copula P1 P2 P3 90% 7.26 4.04 13.90 95% 9.33 5.17 17.82 99% 13.14 7.32 25.14 99.5% 14.55 8.09 27.83 99.9% 17.45 9.81 33.43 • Student margins (ν = 4) and Normal copula P1 P2 P3 90% 9.20 5.33 18.04 Copulas in Finance An open field for risk management 95% 12.48 7.08 24.11 99% 20.16 11.16 38.90 99.5% 23.95 13.17 46.45 99.9% 34.07 19.17 69.51 4-6 • Gaussian margins and Student copula (ν = 1) P1 P2 P3 90% 6.49 3.45 11.99 95% 8.94 5.08 17.53 99% 14.48 9.17 31.88 99.5% 16.67 11.03 37.94 99.9% 21.11 15.77 51.66 Value-at-risk based on Student margins and a Normal copula (Gauss software, Pentium III 550 Mhz, 100000 simulations) Number of assets 2 10 100 500 1000 Copulas in Finance An open field for risk management Computational time 0.1 sc 24.5 sc 4 mn 7 sc 33 mn 22 sc 1 hr 44 mn 45 sc 4-7 5 Modelling credit risk Some articles are available, see for example Coutant, Martineu, Messines, Riboulet and Roncalli [2001], Li [2000], Lindskog [2000], Lindskog and McNeil [2000] and Nyfeler [2000]. Other articles are still in progress ⇒ credit risk = one of the most important topic for financial applications of copulas. • Dependence in credit risk models • The credit migration approach (CreditMetrics) • The actuarial approach (CreditRisk+) • The survival approach • Pricing of credit derivatives Copulas in Finance Modelling credit risk 5-1 5.1 Dependence in credit risk models Portfolio with liquids credits 6= Portfolio with not liquids credits. ⇒ downgrading risk = 6 default risk. What is the influence of introducing a dependence function? 1. impact on the joint migration probability distribution; 2. impact on the joint survival distribution. Copulas in Finance Modelling credit risk 5-2 5.1.1 The credit migration approach (CreditMetrics) Notations N = number of credits in the portfolio. πi,j = rating transition matrix from one state to another. S = set of the eight states {AAA, AA, A, BBB, BB, B, CCC, D}. S ? = {1, . . . , 8} with 1 → D, 2 → CCC, 3 → B, etc. (8 → AAA). πi = distribution of the initial rating i (Ri is the corresponding random variable). πi = discrete probability distribution defined by {j, πi (j )} with Pj πi (j ) = Pr {Ri ≤ j} = k=1 πi,k and j ∈ S ?. P (i1, . . . , iN ; j1, . . . , jN ) = joint migration probability distribution n P (i1, . . . , iN ; j1, . . . , jN ) = Pr Ri1 ≤ j1, . . . , RiN ≤ jN o p (i1, . . . , iN ; j1, . . . , jN ) = joint migration probability mass function n p (i1, . . . , iN ; j1, . . . , jN ) = Pr Ri1 = j1, . . . , RiN = jN Copulas in Finance Modelling credit risk o 5-3 The bivariate migration probability distribution CreditMetrics uses a gaussian random variable Zi (i) πi (j ) = Pr Zi ≤ zj Gupton, Finger and Bhatia [1997] define then the joint migration probability distribution by P (i1, i2; j1, j2) = Pr (i ) (i ) Zi1 ≤ zj 1 , Zi2 ≤ zj 2 2 1 (i ) (i ) = Φ zj 1 , zj 2 ; ρ 1 2 where ρ = ρ (C1, C2) is the ‘asset return correlation’ of C1 and C2. Remark that πi (Ri) = Φ (Zi). It comes that −1 −1 P (i1, i2; j1, j2) = Φ Φ πi1 (j1) , Φ πi2 (j2) ; ρ We can then write P (i1, i2; j1, j2) as a function of the bivariate Normal copula C P (i1, i2; j1, j2) = C πi1 (j1) , πi2 (j2) ; ρ Copulas in Finance Modelling credit risk 5-4 The multivariate migration probability distribution Let C be a copula function. We have P (i1, . . . , iN ; j1, . . . , jN ) = C πi1 (j1) , . . . , πiN (jN ) The probability mass function p (i1, . . . , iN ; j1, . . . , jN ) is given by the Radon-Nikodym density of the copula∗ 1 X k1 =0 ··· 1 X kN =0 (−1)k1+···+kN C πi1 (j1 − k1) , . . . , πiN (jN − kN ) Because a copula is a grounded function, we deduce that the joint default probability is p (i1, . . . , iN ; D, . . . , D) = C πi1 (1) , . . . , πiN (1) It comes that − C πi1 (1) , . . . , πiN (1) ≤ p (i1, . . . , iN ; D, . . . , D) ≤ ∗ We + C πi1 (1) , . . . , πiN (1) use the convention (−1)0 = 1. Copulas in Finance Modelling credit risk 5-5 Some illustrations • migration probabilities p (i1, i2; j1, j2) • joint default probability p (i1, i2; D, D) • discrete default correlation p (i1, i2; D, D) − πi1,1πi2,1 ρD (C 1 , C 2 ) = r πi1,1 1 − πi1,1 πi2,1 1 − πi2,1 Remark 4 The discrete default correlation is not a good measure of the dependence between defaults. We note that + −1 < ρ− C , C ≤ ρ C , C ≤ ρ ( ( ) ) 1 2 1 2 D D D (C 1 , C 2 ) < 1 Even if the dependence is maximal (C = C+), ρD (C1, C2) can be very small (less than 10%). ⇒ see CMMRR [2001] for the link between ρD (C1, C2) and a 2 × 2 contingency table. Copulas in Finance Modelling credit risk 5-6 Ilqdo udwlqj Lqlwldo udwlqj DDD DD D EEE EE E FFF G DDD <5187 917; 31;9 3139 3139 3133 3133 3133 DD 3196 <41;: 9197 3198 3139 3144 3137 3133 D 313; 5159 <4199 8144 3194 3156 3134 3137 EEE 3138 315: 81;7 ;:1:7 71:7 31<; 3149 3155 EE 3137 3144 3197 :1;8 ;4147 ;15: 31;< 4139 E 3133 3144 3163 3175 91:8 ;613: 61;9 817< FFF 314< 3133 316; 31:8 5177 45136 931:4 56183 G 3 3 3 3 3 3 3 433 Wdeoh 4= V)S rqh0|hdu wudqvlwlrq pdwul{ +lq (, Lqlwldo udwlqj Ilqdo udwlqj DDD DD D EEE EE E FFF G 3133 3133 3137 3155 4139 817< 56183 FFF 3133 3137 3138 316; 41<8 <168 ;7154 E 3133 3148 315; 4169 43155 <5175 <9157 EE 3139 3154 31;< 9143 <4169 <<14: <;19; EEE 3145 31;9 9133 <61;7 <<154 <<18< <<176 D 31<; :183 <:199 <<19; <<1;8 <<1;< <<1;4 DD :179 <<16: <<1<5 <<1<8 <<1<9 433133 <<1;4 DDD 433133 433133 433133 433133 433133 433133 433133 Wdeoh 5= V)S rqh0|hdu pdujlqdo suredelolw| glvwulexwlrqv +lq (, Ilqdo udwlqj ri DDD DD D EEE EE E FFF G Z2 c DDD 3133 3133 3133 3133 3133 3133 3133 3133 3133 DD 3133 3136 313: 3133 3133 3133 3133 3133 3144 D 3134 313: 3155 3133 3133 3133 3133 3133 3163 Ilqdo udwlqj ri 2 EEE EE E 3134 3136 3136 313; 319: 4173 3167 9135 ::1:< 3133 3135 6175 3133 3133 3165 3133 3133 3143 3133 3133 3133 3133 3133 3134 3175 91:8 ;613: FFF 3133 3133 6153 3187 313; 3136 3133 3133 61;9 G Z c 3133 313; 3133 5159 7134 <4199 4146 8144 3154 3194 3143 3156 3134 3134 3135 3137 817< 433133 Wdeoh 6= Pljudwlrq suredelolwlhv R E c 2 c c 2 +lq (, zlwk ' $/ 2 ' % dqg 4 E c 2 ' fDf Ilqdo udwlqj ri DDD DD D EEE EE E FFF G Z2 c DDD 3133 3133 3133 3133 3133 3133 3133 3133 3133 DD 3133 3133 3138 3137 3134 3134 3133 3133 3144 Ilqdo udwlqj ri 2 D EEE EE E 3133 3133 3133 3136 3133 3133 3133 415< 314: 315: 8157 ::197 313< 3144 4153 6197 3135 3135 3153 3168 3134 3134 313< 3144 3133 3133 3133 3133 3133 3133 3135 3134 3163 3175 91:8 ;613: FFF 3134 315: 6189 3135 3133 3133 3133 3133 61;9 G Z c 3137 313; 31:3 5159 71:7 <4199 3134 8144 3133 3194 3133 3156 3133 3134 3133 3137 817< 433133 Wdeoh 7= Pljudwlrq suredelolwlhv R E c 2 c c 2 +lq (, zlwk ' $/ 2 ' % dqg 4 E c 2 ' fDf Ilqdo udwlqj ri DDD DD D EEE EE E FFF G Z2 c DDD 3133 3134 3134 3134 313: 313; 3133 3133 314< DD 3133 3133 3133 3133 3133 3133 3133 3133 3133 Ilqdo udwlqj ri 2 D EEE EE E 3133 3133 3133 3133 3134 3134 3135 3137 3135 3135 3138 3143 3135 3136 3139 3147 3146 3156 3194 41<; 3154 3179 419< <196 3133 3133 3134 313; 3133 3133 3133 3139 316; 31:8 5177 45136 FFF G Z c 3133 3133 3133 3135 3133 3144 313< 3133 3163 3149 3133 3175 6183 3155 91:8 86144 4:1;< ;613: 41;7 41<6 61;9 41<; 6177 817< 931:4 56183 433133 Wdeoh 8= Pljudwlrq suredelolwlhv R E c 2 c c 2 +lq (, zlwk ' %/ 2 ' &&& dqg 4 E c 2 ' fDf Computing the risk of a portfolio Credit risk measure can be obtained by Monte Carlo methods. To simulate the random variables Ri1 , . . . , RiN , we consider the following two step algorithm: 1. we simulate the random numbers u1, . . . , uN from the copula C; 2. the random variates r1, . . . , rN are obtained by the inverse distribution function method: (−1) rn = πi (un) ⇒ Credit risk measure = credit value-at-risk with two components: downgrading risk and default risk. Some problems = credit modelling + recovery rates modelling. Copulas in Finance Modelling credit risk 5-7 Lqlwldo udwlqj 4 5 6 7 8 9 : ; < 43 DDD DDD DD DDD DDD DDD DDD DDD DDD DDD DDD DD DD DD DD DD DD DD D DD DD DD EEE EEE EEE EEE EEE D EEE EEE EEE EEE EEE EEE EEE EEE EEE D EEE EEE EEE EEE EEE EEE EE EE EE EE EE EE EE EE EE EE EE FFF FFF FFF G FFF FFF FFF G EE FFF FFF Wdeoh 9= Vlpxodwlrq ri qdo udwlqjv zlwk Lqlwldo udwlqj 4 5 6 7 8 9 : ; < 43 DDD DDD DD DDD DDD DDD DDD DDD DDD DDD DDD DD DD DD DD DD DD DD DD DD DD DD EEE EEE D EEE EEE EEE EEE EEE EE EEE EEE EEE EEE D EEE D EEE EEE EEE EEE EE EEE EE E EE EE E E EE EE EE EE EE FFF E FFF G FFF FFF FFF G E G FFF Wdeoh := Vlpxodwlrq ri qdo udwlqjv zlwk 2 5 f2D f.D fD 9 fD f2D 9 9 f.D ' 9 9 9 7 f2D f2D f2D f2D f2 f f2 fD fD 6 : : : : : : 8 5 f2D f.D fD f2D f2 9 fD f2D f2D f 9 9 f.D f2D f2 2 ' 9 9 f2D fD 9 7 fD 6 : : : : : : 8 5.1.2 The actuarial approach (CreditRisk+) More results are in CMMRR [2001]. We just give here some ideas about the copula used by CreditRisk+. Notations T = time horizon. Bn = Bernoulli random variable which indicates if the credit n has defaulted. pn = stochastic parameter of Bn with pn = Pn X θn,mXm Pn is estimated for each obligator via any credit rating system. Xm are M independent Gamma distributed factors. Given those factors, the Bn are assumed to be conditionally independent. Copulas in Finance Modelling credit risk 5-8 One common risk factor Let us denote X ∼ Γ (α, β ), g (x) the pdf of X, F (t1, . . . , tN ) the joint distribution of defaults, Fn (tn) the marginal distributions and Fxn (tn) the conditional distribution. We have F (t1, . . . , tN ) = It comes that Z ∞ Y N 0 x t g x dx Fn ( n) ( ) n=1 1 1 F (t1, t2) = 1 + F1 (t1) F2 (t2) − (F1 (t1) + F2 (t2) − 1)+ α α The copula is then 1 1 u1u2 − (u1 + u2 − 1)+ C (u1, u2; α) = 1 + α α Remark 5 The previous analysis is not exact. Only the subcopula can be defined for the four continuity points (see CMMRR [2001] for more details). Copulas in Finance Modelling credit risk 5-9 Approximation case We suppose that Pn are small. In this case, we use a Poisson approximation 1 − Pn X X = exp −Pn αβ αβ We can show that F (t1, . . . , tN ) = φ N X n=1 with F0n (tn) = ( Pn exp − αβ 1 ! 0 t − ln Fn ( n) if 0 ≤ tn < 1 if tn > 1 φ is the Laplace transform associated with Γ (α, β ). By remarking that Pn 0 − ln Fn (tn) = ' φ−1 (Fn (tn)) αβ Copulas in Finance Modelling credit risk 5-10 we have F (t1, . . . , tN ) = φ = N X n=1 φ−1 (Fn (tn)) 1 −α F 1 (t 1 ) + . . . + FN (2) 1 −α (tN ) −N +1 −α The dependence function is then the Cook-Johnson copula. Note that equation (2) corresponds to Archimedean copulas. Moreover, the generator of the Archimedean copulas is the inverse of a Laplace transform. In this case, we can give a new probabilistic interpretation, because this model is a frailty model∗ (see CMMRR [2001] for a discussion on the dependence in CreditRisk+). ⇒ Extensions when the distribution of X is not Gamma can be found in CMMRR [2001]. ∗ This result comes from the fact that the random variables Bn are assumed to be conditionally independent. Copulas in Finance Modelling credit risk 5-11 5.1.3 The survival approach see Coutant, Martineu, Messines, Riboulet and Roncalli [2001]. Copulas in Finance Modelling credit risk 5-12 5.2 Pricing of credit derivatives A default is generally described by a survival function S (t) = Pr {T > t}. Let C̆ be a survival copula. A multivariate survival distributions S can be defined as follows S (t1, . . . , tN ) = C̆ (S1 (t1) , . . . , SN (tN )) where (S1, . . . , SN ) are the marginal survival functions. Nelsen [1999] notices that “C̆ couples the joint survival function to its univariate margins in a manner completely analogous to the way in which a copula connects the joint distribution function to its margins”. ⇒ Introducing correlation between defaultable securities can then be done using the copula framework (see Li [2000] and Maccarinelli and Maggiolini [2000]). Copulas in Finance Modelling credit risk 5-13 5.2.1 First-to-Default valuation Let us define the first-to-default τ as follows τ = min (T1, . . . , TN ) Nelsen [1999] shows that the survival function of τ is given by the diagonal section of the survival copula. Let C be a copula. Its survival copula is given by the following formula C̆ (u1, . . . , uN ) = C̄ (1 − u1, . . . , 1 − un, . . . , 1 − uN ) with N X X n C (u) C̄ (u1, . . . , un, . . . , uN ) = (−1) n=0 u∈Z(N −n,N ) o n PN N where Z (M, N ) denotes the set u ∈ [0, 1] | n=1 X{1} (un) = M . Copulas in Finance Modelling credit risk 5-14 When the copula is radially symmetric, we have C̆ = C The survival distribution S of τ is S (t) = C (S1 (t) , . . . , SN (t)) It comes that the density of τ is given by f (t) = −∂tS (t) = N X n=1 Copulas in Finance Modelling credit risk ∂nC (S1 (t) , . . . , SN (t)) × fn (t) 5-15 5.2.2 Example N credit events, default of each credit event given by a Weibull survival function (the baseline hazard is constant and equal to 3% per year and the Weibull parameter is 2). C is a Normal copula of dimension N = very tractable (N can be very large) and ∂nC is a Normal copula of dimension N − 1. Copulas in Finance Modelling credit risk 5-16 5.2.3 Other credit derivatives see Coutant, Martineu, Messines, Riboulet and Roncalli [2001]. Copulas in Finance Modelling credit risk 5-17 6 Conclusion The study of copulas and the role they play in probability, statistics, and stochastic processes is a subject still in its infancy. There are many open problems and much work to be done (Nelsen [1999], page 4). In finance, the use of copulas is very recent (Embrechts, McNeil and Straumann [1999]). In one year, great progress have been made. Nevertheless, the finance industry needs more works on copulas and their applications. And there are many research directions to explore. Moreover, many pedagogical works have to be done in order to familiarize the finance industry with copulas. Copulas in Finance Conclusion 6-1 7 References [1] Beneš, V. and J. Štĕpán [1997], Distributions with Given Marginals and Moment Problems, Kluwer Academic Publishers, Dordrecht [2] Bikos, A. [2000], Bivariate FX PDFs: A Sterling ERI Application, Bank of England, Working Paper [3] BIS [1999], Estimating and Interpreting Probability Density Functions, Proceedings of the workshop held at the BIS on 14 June 1999 [BDNRR] Bouyé, E., V. Durrleman, A. Nikeghbali, G. Riboulet and T. Roncalli [2000], Copulas for finance — A reading guide and some applications, Groupe de Recherche Opérationnelle, Crédit Lyonnais, Working Paper [4] Bouyé, E., Durrleman, V., A. Nikeghbali, G. Riboulet and T. Roncalli [2000], Copulas: an open field for risk management, Groupe de Recherche Opérationnelle, Crédit Lyonnais, Working Paper [5] Breeden, D. and R. Litzenberger [1978], State contingent prices implicit in option prices, Journal of Business, 51, 621-651 [6] Brown, J.R. [1966], Approximation theorems for markov operators, Pacific Journal of Mathematics, 16, 13-23 [7] Cherubini, U. and E. Luciano [2000], Multivariate option pricing with copulas, University of Turin, Working Paper Copulas in Finance 7-1 References [8] Coles, S., J. Currie and J. Tawn [1999], Dependence measures for extreme value analyses, Department of Mathematics and Statistics, Lancaster University, Working Paper [9] Costinot, A., T. Roncalli and J. Teiletche [2000], Revisiting the dependence between financial markets with copulas, Groupe de Recherche Opérationnelle, Crédit Lyonnais, Working Paper [CMMRR] Coutant, S., P. Martineu, J. Messines, G. Riboulet and T. Roncalli [2001], Revisiting the dependence in credit risk models, Groupe de Recherche Opérationnelle, Crédit Lyonnais, Working Paper, available soon [10] Dall’Aglio, G., S. Kotz and G. Salinetti [1991], Advances in Probability Distributions with Given Marginals (Beyond the Copulas), Kluwer Academic Publishers, Dordrecht [11] Darsow, W.F., B. Nguyen and E.T. Olsen [1992], Copulas and markov processes, Illinois Journal of Mathematics, 36-4, 600-642 [12] Deheuvels, P. [1978], Caractérisation complète des lois extrêmes multivariées et de la convergence des types extrêmes, Publications de l’Institut de Statistique de l’Université de Paris, 23, 1-36 [13] Deheuvels, P. [1979a], Propriétes d’existence et propriétes topologiques des fonctions de dependance avec applications à la convergence des types pour des lois multivariées, Comptes-Rendus de l’Académie des Sciences de Paris, Série 1, 288, 145-148 [14] Deheuvels, P. [1979b], La fonction de dépendance empirique et ses propriétés — Un test non paramétrique d’indépendance, Académie Royale de Belgique – Bulletin de la Classe des Sciences – 5e Série, 65, 274-292 [15] Durrleman, V. [2001], Implied correlation, Princeton University, report [16] Durrleman, V., A. Nikeghbali and T. Roncalli [2000], A simple transformation of copulas, Groupe de Recherche Opérationnelle, Crédit Lyonnais, Working Paper [17] Durrleman, V., A. Nikeghbali and T. Roncalli [2000], Which copula is the right one?, Groupe de Recherche Opérationnelle, Crédit Lyonnais, Working Paper [18] Durrleman, V., A. Nikeghbali and T. Roncalli [2000], Copulas approximation and new families, Groupe de Recherche Opérationnelle, Crédit Lyonnais, Working Paper [DNRa] Durrleman, V., A. Nikeghbali, and T. Roncalli [2000], How to get bounds for distribution convolutions? A simulation study and an application to risk management, Groupe de Recherche Opérationnelle, Crédit Lyonnais, Working Paper [DNRb] Durrleman, V., A. Nikeghbali and T. Roncalli [2000], A note about the conjecture on Spearman’s rho and Kendall’s tau, Groupe de Recherche Opérationnelle, Crédit Lyonnais, Working Paper [19] Embrechts, P., A.J. McNeil and D. Straumann [1999], Correlation and dependency in risk management : properties and pitfalls, Departement of Mathematik, ETHZ, Zürich, Working Paper [20] Genest, C. and J. MacKay [1986], The joy of copulas: Bivariate distributions with uniform marginals, American Statistician, 40, 280-283 [21] Gupton, G.M., C.C. Finger and M. Bhatia [1997], CreditMetrics — Technical Document, Morgan Guaranty Trust Co. [22] Joe, H. [1997], Multivariate Models and Dependence Concepts, Monographs on Statistics and Applied Probability, 73, Chapmann & Hall, London [23] Li, D.X. [2000], On default correlation: a copula function approach, Journal of Fixed Income, March, 43-54 [24] Lindskog, F. [2000], Modelling dependence with copulas and applications to risk management, RiskLab Research Paper [25] Lindskog, F. and A.J. McNeil [2000], Common poisson shock models, RiskLab Research Paper [26] Maccarinelli, M. and V. Maggiolini [2000], The envolving practice of credit risk management in global financial institutions, Risk Conference, 26/27 September, Paris [27] Mikusiński, P., H. Sherwood and M.D. Taylor [1991], Probabilistic interpretations of copulas, in G. Dall’Aglio, S. Kotz and G. Salinetti (Eds.), Advances in Probability Distributions with Given Marginals (Beyond the Copulas), Kluwer Academic Publishers, Dordrecht [28] Nelsen, R.B. [1999], An Introduction to Copulas, Lectures Notes in Statistics, 139, Springer Verlag, New York [29] Nyfeler, F. [2000], Modelling dependencies in credit risk management, RiskLab Research Paper [30] Olsen, E.T., W.F. Darsow and B. Nguyen [1996], Copulas and Markov operators, in L. Rüschendorf, B. Schweizer and M.D. Taylor (Eds.), Distributions with Fixed Marginals and Related Topics, Institute of Mathematical Statistics, Hayward, CA [31] Rosenberg, J.V. [2000], Nonparametric pricing of multivariate contingent claims, Stern School of Business, Working Paper [32] Rüschendorf, L., B. Schweizer and M.D. Taylor [1993], Distributions with Fixed Marginals and Related Topics, Institute of Mathematical Statistics, Hayward, CA [33] Schweizer, B. [1991], Thirty years of copulas, in G. Dall’Aglio, S. Kotz and G. Salinetti (Eds.), Advances in Probability Distributions with Given Marginals (Beyond the Copulas), Kluwer Academic Publishers, Dordrecht [34] Schweizer, B. and E. Wolff [1976], Sur une mesure de dépendance pour les variables aléatoires, Comptes Rendus de l’Académie des Sciences de Paris, 283, 659-661 [35] Schweizer, B. and E. Wolff [1981], On nonparametric measures of dependence for random variables, Annals of Statistics, 9, 879-885 [36] Sempi, C. [2000], Conditional expectations and idempotent copulæ, to appear [37] Sklar, A. [1959], Fonctions de repartition à n dimensions et leurs marges, Publications de l’Institut de Statistique de l’Université de Paris, 8, 229-231 [38] Song, P. [2000], Multivariate dispersion models generated from Gaussian copula, forthcoming in Scandinavian Journal of Statistics [39] Wang, S.S. [1997], Aggregation of correlated risk portfolios: models & algorithms, CAS Committee on Theory of Risk, preprint