Quadrilateral Proofs – Packet #2
Transcription
Quadrilateral Proofs – Packet #2
Quadrilateral Proofs – Packet #2 Name ______________________ Period __ Teacher ___________ 1 Table of Contents Day 1 : SWBAT: Prove Triangles Congruent using Parallelogram Properties Pages 3 - 8 HW: Pages 9 - 10 Day 2: SWBAT: Prove Quadrilaterals are Parallelograms Pages 11 - 15 HW: pages 16 - 17 Day 3: SWBAT: Prove Triangles Congruent using Special Parallelogram Properties Pages 18-23 HW: pages 24 - 25 Day 4: SWBAT: Prove Triangles Congruent using Trapezoids Pages 26 - 30 HW: pages 31 - 32 Day 5: Review Day 6: Test 2 Day 1 – Parallelograms Warm – Up Properties of the Parallelogram *Parallelogram* 3 Statements Reasons a. ̅̅̅̅ and ̅̅̅̅ a. b ∡A and ∡ b. c. ̅̅̅̅ and ̅̅̅̅ c. d. ∡A and ∡C and d. e. Draw ̅̅̅̅ and ̅̅̅̅ . (The lines intersect at E.) e. Two Points Make a Line. f. ∡BAC f. g. ̅̅̅̅ and and ∡ AC ̅̅̅̅ g. 4 Proofs 5 You Try It! (At most 6 steps! You may not need all 6!!!) 6 You Try It! Challenge 7 SUMMARY Exit Ticket 8 HW – Day 1 1) 2) 9 3) ( ___ , ___ ) 4) 10 Day 2 - Ways to prove a quadrilateral is a parallelogram Warm – Up Statements 1. Reasons 1. Given ̅̅̅̅ 2. ̅̅̅̅ ̅̅̅̅̅̅ ̅̅̅̅̅̅̅ 3. 4. ∡ (S) (S) ∡ 5. 6. ̅̅̅̅ 2. (A) 3. 4. 5. ̅̅̅̅ 6. 11 a. b. c. d. e. f. 12 1. 2. 13 You Try It! Challenge 14 SUMMARY Exit Ticket 15 Day 2 – HW 1. 2. 16 3. 4. 17 Day 3 – Proofs with Special Parallelograms Warm – Up Statements 1. 2. ∡ 3. ∡ Reasons 1. Given ∡ ∡ are right ∡ (A) 2. 3. 4. (S) 4. Given 5. (S) 5. Given 6. 6. (__, __, __) 7. 7. CPCTC 8. 8. CPCTC 9. ABCD is a parallelogram 9. 18 2 points make a line 2 points make a line 19 2 points make a line 2 points make a line 20 2 points make a line Example 1: 21 2) Challenge 22 SUMMARY Exit Ticket 23 Day 3 – HW 1. 2. 24 3. 4. 25 Day 4 – Proofs with Trapezoids Warm – Up Statements Reasons 1. 1. Given 2. 2. 3. RHOB is a Parallelogram 3. _________ of a quadrilateral bisect each other _______ 4. RHOB is a Rhombus 4. _____________ sides of a Parallelogram Rhombus (__, __, __) 26 2 points make a line 27 Example 1: Prove: ∆ADC ∆BCD Example 2: Given: ABCD is an isosceles trapezoid Prove: MAD is isosceles 28 Challenge: 29 SUMMARY Legs of an Isos. Trap are Diagonals of an Isos. Trap are Exit Ticket 30 Day 4 – HW 1. 2. 31 3. 4. 32 33