Quadrilateral Proofs – Packet #2

Transcription

Quadrilateral Proofs – Packet #2
Quadrilateral Proofs – Packet #2
Name ______________________ Period __
Teacher ___________
1
Table of Contents
Day 1 : SWBAT: Prove Triangles Congruent using Parallelogram Properties
Pages 3 - 8
HW: Pages 9 - 10
Day 2: SWBAT: Prove Quadrilaterals are Parallelograms
Pages 11 - 15
HW: pages 16 - 17
Day 3: SWBAT: Prove Triangles Congruent using Special Parallelogram Properties
Pages 18-23
HW: pages 24 - 25
Day 4: SWBAT: Prove Triangles Congruent using Trapezoids
Pages 26 - 30
HW: pages 31 - 32
Day 5: Review
Day 6: Test
2
Day 1 – Parallelograms
Warm – Up
Properties of the Parallelogram
*Parallelogram*
3
Statements
Reasons
a. ̅̅̅̅
and
̅̅̅̅
a.
b ∡A
and
∡
b.
c. ̅̅̅̅
and
̅̅̅̅
c.
d. ∡A
and
∡C
and
d.
e. Draw ̅̅̅̅ and ̅̅̅̅ . (The lines intersect at E.)
e. Two Points Make a Line.
f. ∡BAC
f.
g. ̅̅̅̅
and
and
∡ AC
̅̅̅̅
g.
4
Proofs
5
You Try It!
(At most 6 steps! You may not need all 6!!!)
6
You Try It!
Challenge
7
SUMMARY
Exit Ticket
8
HW – Day 1
1)
2)
9
3)
( ___ , ___ )
4)
10
Day 2 - Ways to prove a quadrilateral is a
parallelogram
Warm – Up
Statements
1.
Reasons
1. Given
̅̅̅̅
2.
̅̅̅̅
̅̅̅̅̅̅
̅̅̅̅̅̅̅
3.
4. ∡
(S)
(S)
∡
5.
6. ̅̅̅̅
2.
(A)
3.
4.
5.
̅̅̅̅
6.
11
a.
b.
c.
d.
e.
f.
12
1.
2.
13
You Try It!
Challenge
14
SUMMARY
Exit Ticket
15
Day 2 – HW
1.
2.
16
3.
4.
17
Day 3 – Proofs with Special Parallelograms
Warm – Up
Statements
1.
2. ∡
3. ∡
Reasons
1. Given
∡
∡
are right ∡
(A)
2.
3.
4.
(S)
4. Given
5.
(S)
5. Given
6.
6.
(__, __, __)
7.
7. CPCTC
8.
8. CPCTC
9. ABCD is a parallelogram
9.
18
2 points make a line
2 points make a line
19
2 points make a line
2 points make a line
20
2 points make a line
Example 1:
21
2)
Challenge
22
SUMMARY
Exit Ticket
23
Day 3 – HW
1.
2.
24
3.
4.
25
Day 4 – Proofs with Trapezoids
Warm – Up
Statements
Reasons
1.
1. Given
2.
2.
3. RHOB is a Parallelogram
3. _________ of a quadrilateral
bisect each other
_______
4. RHOB is a Rhombus
4.
_____________ sides of a
Parallelogram
Rhombus
(__, __, __)
26
2 points make a line
27
Example 1:
Prove: ∆ADC  ∆BCD
Example 2: Given: ABCD is an isosceles trapezoid
Prove: MAD is isosceles
28
Challenge:
29
SUMMARY
Legs of an Isos. Trap are 
Diagonals of an Isos. Trap are 
Exit Ticket
30
Day 4 – HW
1.
2.
31
3.
4.
32
33

Similar documents