Samiyeh mahmoudian Abdollah langari
Transcription
Samiyeh mahmoudian Abdollah langari
Samiyeh mahmoudian Abdollah langari introduction y Anisotropic Kondo necklace model y One dimension y Two and three dimension y Spin ladder geometry y Odd leg ladders y y Mean field approach Even leg ladders y Spin wave approach Kondo-necklace model S y Isotropic J t τ Η KN = t ∑ (τ ixτ ix+1 + τ iyτ iy+1 ) + J ∑ si .τ i i i y Anisotropic Η KN = t ∑ (τ τ +τ τ + δτ τ ) + J ∑ (τ s + τ s + Δτ s ) <i , j > x x i j y y i j z z i j x x i i i y y i i z z i i Anisotropic case Spin ladder geometry nl H = t∑ ∑ (τ n =1 < m, m' > τ x x nm nm' nl −1 y y z z ' x x y y z z + τ nm τ nm ' + δτ nmτ ' ) + t ∑∑ (τ nmτ n +1m + τ nmτ n +1m + δτ nmτ n +1m ) nm n =1 m nl x x y y z z + J ∑ ∑ (τ nm s nm + τ nm s nm + Δ τ nm s nm ) nl =the number of legs n =1 m t' J t t Mean field approach y Bond operator method s nm ,α = 1 + + + ( s nm t nm ,α + t nm ,α s nm − i ε αβγ t nm , β t nm , γ ) 2 1 2 + + + τ nm ,α = (− snm t nm ,α − t nm ,α s nm − iε αβγ t nm , β t nm ,γ ) + < snm >=< snm >= s y J/t→∞ tk x k y ,β = If N t δ k x k y ;Q x Q y + η k x k y , β δ >1 → β=z & If δ <1 → β=x,y y Ordering parameter M =< t >< s > Even & odd leg ladder t2 = 5 1 J − − 4 2 Dδt 4 N ∑ 1 k x ,k y 1+ ( γx +γ y D − ) 1 4N ∑ 1 k x ,k y 1+ ( γx +γ y ) δD ∞ t2 = γα =cos(kα ) Kx =2π/N J 5 1 − − 4 2 D δt 4 N ∑ 1 k x ,k y 1+ ( γx +γ y D − ) 1 4N ∑ 1 k x ,k y 1+ (γ x + γ y )δ D D=2 min value of (γx + γy) N=0,1,2,…,N-1 Ky =0,π/3,2π/3 (three legs ladder) Ky =0,π (two legs ladder ) Odd leg ladders y Mean field approach works correctly y By increasing the number of legs we get thermodynamic limit y For δ>1 increasing the anisotropy term will grow ordering y For δ<1 increasing the anisotropy term will disrupt ordering m δ=0.6 δ=2 t/J (t/J)c =0.8 (t/J)c =0.34 Even leg ladders y Mean field approach doesn’t work correctly •δ <1 y We wavea approach for½two ladder If can J→0use we spin will have two legs spin XXZlegs Hamiltonian 1/2 1 τ The model is known to be in the gapped phase If J→∞ the ground state is the direct product of singlets S τ J The model is again in disordered gapped phase Spin wave approach y Two legs ladder sA τA sB τB y J/t→0 t' t H =t + t′ L/2 ∑∑ xA xB yA yB zA zB ( τ τ + τ τ + δτ ∑ nm nm +σ nm nm + σ nm τ nm + σ ) n =1 , 2 m =1 σ L ∑ ∑ n ≠ n ′=1, 2 m =1 +J xA yA (τ nm τ nxB′m + τ nm τ nyB′m + δτ L/2 ∑∑ n =1 , 2 m =1 zA nm A B B A (τ nm . s nm + τ nm . s nm ) τ nzA′m ) Para-unitary transformation H = ∑ ΦMΦ y We perform the Holstein-Primakov transformation + k y We use the J ⎡ ′ δ ( + ) + t t translational ⎢ 2 ⎢ ⎢ 0 M =⎢ ⎢ (t ′ + tγ ( k ) ) ⎢ 2 ⎢ J ⎢ 2 ⎣ tγ ( k ) 0invariance (t ′ + ) 2 J J 2 2 J J δ (t + t ′) + 2 2 J 0 2 J⎤ symmetry 2⎥ ⎥ 0⎥ ⎥ 0⎥ ⎥ ⎥ 0⎥ ⎦ The Hamiltonian can be diagonalized if M is positive definite Behavior of anisotropic 2 legs ladder y t=t’ δ 0.76 0.8 0.9 1 1.1 Jc 2.2 4 6.5 8.3 10.2 with increasing δ parameter, ordering will survive for larger J y t≠t’ t’=t δc =0.76 4t 0.91 6t 8t 0.93 0.95 the ordering is mainly created by the anisotropy, not the hopping Conclusion y Odd leg ladders Their behavior is similar to the two and three dimension y Even leg ladders Their behavior is similar to one dimension so the only ordering that can be accrued is the result of anisotropy
Similar documents
Auntie Anne`s Pretzels Zap-A
J) Pepperoni French Bread — An eight-inch portion of French Bread with a zesty tomato sauce topped with 100% real shredded mozzarella cheese and quartered pepperoni.
More information