6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn
Transcription
6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn
6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities I. Magnetic Field Normal Instability Courtesy of MIT Press. Used with permission. A. Equilibrium ( ξ = 0 ) B. Perturbations: e 1⎡ µaH2a − µbHb2 ⎤ = 0 ⎦ 2⎣ x>0 ⎧⎪−ρagx + Pod Po ( x ) = ⎨ x<0 ⎪⎩−ρb gx + Poe ; B0 = µaHa = µbHb Poe − Pod + ( j ωt − k y y − k z z − ) − Ha = Ha i x + ha , Hb = Hb i x + hb ⎡ ⎢ − coth ka ⎡h ⎤ ⎢ xc ⎥ = k ⎢ ⎢ 1 ⎢⎣hxd ⎥⎦ ⎢− ⎣ sinh ka 1 ⎤ ⎡ ⎤ sinh ka ⎥⎥ ⎢ Ψ c ⎥ ⎥ ⎥⎢ coth ka⎥ ⎣ Ψ d ⎦ ⎦ ⎡ ⎢ − coth kb ⎡h ⎤ ⎢ xe ⎥ = k ⎢ ⎢ 1 ⎢⎣hxf ⎥⎦ ⎢− sinh kb ⎣ 1 ⎤ ⎡ ⎥ sinh kb ⎥ ⎢ Ψ e ⎥⎢ coth kb ⎥ ⎣ Ψ f ⎦ 6.642, Continuum Electromechanics Prof. Markus Zahn ⎤ ⎥ ⎥ ⎦ Lecture 8 Page 1 of 13 C. Boundary Conditions v xc = v xf = 0 Ψc = Ψf = 0 vxd,e = − n= ∂ξ ∂ξ ∂ξ + vyd,e + vzd,e ⇒ vxd = vxe = jωξ ∂t ∂y ∂z ix − ∂ξ − ∂ξ − iy − i ∂y ∂z z − ≈ ix − 2 2 ⎡ ⎛ ∂ξ ⎞ ⎛ ∂ξ ⎞ ⎤ ⎢1 + ⎜ ⎟ +⎜ ⎟ ⎥ ∂y ⎠ ⎢ ⎝ ∂z ⎠ ⎥⎦ ⎝ ⎣ ∂ξ − ∂ξ − iy − iz ∂y ∂z p ni = Tije nj − γ∇ ⋅ nni ⎛ ∂2 ξ ∂2 ξ ⎞ ∇ ⋅n = −⎜ 2 + 2 ⎟ ⎜ ∂y ∂z ⎟⎠ ⎝ i = x ⇒ ni = nx = 1 ⎛ ∂2 ξ ∂2 ξ ⎞ P0 + P ' = Txx nx + Txy ny + Txz nz + γ ⎜ 2 + 2 ⎟ ⎜ ∂y ∂z ⎟⎠ ⎝ 1 perturbation perturbation µHxhz µHxhy second order Equilibrium ( ξ = 0 ) P0 = Txx0 ⇒ Pod − Poe = 1⎡ µaH2a − µbHb2 ⎤ ⎦ 2⎣ Perturbations Pd' ( ξ ) − Pe' ( ξ ) = 1⎡ 2µaHah'd ( ξ ) − 2µbHbh'e ( ξ ) ⎤ − γk2 ξ ⎦ 2⎣ Pd' ( ξ ) = Pod ( ξ ) + Pd' ( 0 ) = Pe' ( ξ ) = Poe ( ξ ) + Pe' ( 0 ) = 6.642, Continuum Electromechanics Prof. Markus Zahn dPod dx dPoe dx ξ + Pd' ( 0 ) = −ρagξ + Pd' ( 0 ) x =0 ξ + Pe' ( 0 ) = −ρb gξ + Pe' ( 0 ) x =0 Lecture 8 Page 2 of 13 ⎡p ⎤ jωρ a ⎢ c⎥ = k ⎢⎣pd ⎥⎦ ⎡ ⎢ − coth ka ⎢ ⎢ 1 ⎢− sinh ka ⎣ 1 ⎤ ⎡ c⎤ ⎥ sinh ka ⎥ ⎢ v x ⎥ ⎥⎢ ⎥ coth ka⎥ ⎢⎣ v xd ⎥⎦ ⎦ ⎡p ⎤ jωρ b ⎢ e⎥ = k ⎢⎣pf ⎥⎦ ⎡ ⎢ − coth kb ⎢ ⎢ 1 ⎢− ⎣ sinh kb 1 ⎤ ⎡ e ⎥ sinh kb ⎥ ⎢ v x ⎥⎢ coth kb ⎥ ⎢⎣ v xf ⎦ pd = ⎤ ⎥ ⎥ ⎥ ⎦ jωρa −ω2ρa coth kav d = coth ka ξ x k k Pe = − jωρb ω2ρb coth kbv e = coth kb ξ x k k hxd = k coth kaΨ d hxe = −k coth kbΨ e − − − ⎡− ∂ξ − ∂ξ − ⎤ ⎡ n i b = 0 = ⎢i x − iy − i z ⎥ i ⎢(Ba − Bb ) i x + ( µahxd − µbhxe ) i x + µahyd − µbhye i y ∂y ∂z ⎦ ⎣ ⎣ ( ) − ⎤ + ( µahzd − µbhze ) i z ⎥ ⎦ Ba = Bb = B0 µahxd = µbhxe − − − − ⎤ ⎡− ∂ξ − ∂ξ − ⎤ ⎡ n × h = 0 = ⎢i x − iy − i z ⎥ × ⎢(Ha − Hb ) i x + (hxd − hxe ) i x + hyd − hye i y + (hzd − hze ) i z ⎥ ∂y ∂z ⎦ ⎣ ⎣ ⎦ ( − ( ) − = i z hyd − hye − i y (hzd − hze ) + ) − − ∂ξ ∂ξ Ha − Hb ) i z − Ha − Hb ) i y ( ( ∂y ∂z (hyd − hye ) = − ∂∂ξy (Ha − Hb ) ⇒ + jk y ( Ψ d − Ψ e ) = jk y (Ha − Hb ) ξ (hzd − hze ) = − ∂z (Ha − Hb ) ⇒ + jk z ( Ψ d − Ψ e ) = jk z (Ha − Hb ) ξ ∂ξ Ψ d − Ψ e = + (Ha − Hb ) ξ 6.642, Continuum Electromechanics Prof. Markus Zahn Lecture 8 Page 3 of 13 µa k coth kaΨ d = −µb k coth kbΨ e Ψd = −µb coth kb Ψe µa coth ka ⎡ µ coth kb ⎤ Ψe ⎢− b − 1⎥ = (Ha − Hb ) ξ ⎣ µa coth ka ⎦ Ψe = − Ψd = + (Ha − Hb ) ξ µa coth ka µa coth ka + µb coth kb (Ha − Hb ) ξ µb coth kb µa coth ka + µb coth kb D. Dispersion Equation −ρagξ − = ω2ρa ω2ρb coth kaξ + ρb gξ − coth kb ξ k k µaHa k coth ka (Ha − Hb ) µb coth kb ξ − µbHb k coth kb (Ha − Hb ) ξµa coth ka µa coth ka + µb coth kb − γk 2 ξ B0 (Ha − Hb ) coth ka coth kb ( µb − µa ) k ω2 ρa coth ka + ρb coth kb ) = ( ρb − ρa ) g + γk2 − ( k µa coth ka + µb coth kb Ha = ⎛ 1 B0 B 1 ⎞ ( µb − µa ) B0 , Hb = 0 ⇒ Ha − Hb = B0 ⎜⎜ − ⎟⎟ = µa µb µaµb ⎝ µa µb ⎠ B20 ( µb − µa ) k ω2 ρa coth ka + ρb coth kb ) = g ( ρb − ρa ) + γk2 − ( k µaµb ⎡⎣µb tanh ka + µa tanh kb ⎤⎦ 2 E. Short Wavelength Limit (k a 1, k b 1) tanhka ≈ tanhkb ≈ 1 B20 ( µb − µa ) k ω2 ρa + ρb ) = g ( ρb − ρa ) + γk 2 − =f ( k µaµb ( µa + µb ) 2 6.642, Continuum Electromechanics Prof. Markus Zahn Lecture 8 Page 4 of 13 Incipience of Instability f =0 B20 ( µb − µa ) df = 0 = 2γk c − µaµb ( µa + µb ) dk 2 B20 ( µb − µa ) 2 kc = 2γµaµb ( µa + µb ) 2 2 ⎡ B2 ( µ − µ )2 ⎤ ⎡ B2 ( µ − µ )2 ⎤ 0 b a a ⎥ −⎢ 0 b ⎥ 1 =0 g ( ρb − ρa ) + γ ⎢ ⎢ 2γµaµb ( µa + µb ) ⎥ ⎢ µaµb ( µa + µb ) ⎥ 2γ ⎣ ⎦ ⎣ ⎦ 2 ⎡ B2 ( µ − µ )2 ⎤ a ⎢ 0 b ⎥ = 4g ( ρb − ρa ) γ ⎢ µaµb ( µa + µb ) ⎥ ⎣ ⎦ kc = 1 2γ 4g ( ρb − ρa ) γ = g ( ρb − ρa ) γ Courtesy of MIT Press. Used with permission. 6.642, Continuum Electromechanics Prof. Markus Zahn Lecture 8 Page 5 of 13 Courtesy of MIT Press. Used with permission. II. Electric Field Normal Instability A. Polarization Forces Courtesy of MIT Press. Used with permission. µa → εa µb → εb B0 → D0 ω2 ( ρa coth ka + ρb coth kb ) = g ( ρb − ρa ) + γk2 − k 6.642, Continuum Electromechanics Prof. Markus Zahn D20 ( εb − εa ) k 2 εaεb ⎡⎣εb tanh ka + εa tanh kb⎤⎦ Lecture 8 Page 6 of 13 B. Perfectly conducting lower fluid ( εb → ∞ ) Courtesy of MIT Press. Used with permission. 2 ⎛V ⎞ ω2 ρa coth ka + ρb coth kb ) = g ( ρb − ρa ) + γk 2 − εa ⎜ 0 ⎟ k coth ka ( k ⎝ a ⎠ Courtesy of MIT Press. Used with permission. 6.642, Continuum Electromechanics Prof. Markus Zahn Lecture 8 Page 7 of 13 III. Tangential Gradient Fields Courtesy of MIT Press. Used with permission. 6.642, Continuum Electromechanics Prof. Markus Zahn Lecture 8 Page 8 of 13 A. Equilibrium − E = iθ − V0 V ≈ iy 0 θ0 r θ0 r V0 x⎞ ⎛ ⎜ 1 + ⎟ ; r ≈ R − x ; E0 = R⎠ θ0 R ⎝ − x⎞ ⎛ ≈ i y E0 ⎜1 + ⎟ R ⎝ ⎠ lim ∆ → ∞ Poa ( x ) = −ρagx + Poa Pob ( x ) = −ρb gx + Pob Pob − Poa + Txx = 0 Txx = − 1 2 1 εEy = − εE20 2 2 Txx = − 1 ( εa − εb ) E20 = Poa − Pob 2 B. Perturbations ⎡ α ⎢e x ⎢ ⎢e β ⎣ x ⎡ ⎤ − coth k∆ ⎢ ⎥ ⎢ ⎥ =k ⎢ 1 ⎥ ⎢− ⎦ sinh k∆ ⎣ 1 ⎤ ⎡ ⎥ sinh k∆ ⎥ ⎢ Φ α ⎥⎢ coth k∆ ⎥ ⎣ Φ β ⎦ ⎤ ⎥ ⎥ ⎦ lim ∆ → ∞ e xa = k Φ a e xb = −k Φ b ⎡ α ⎢p ⎢ β ⎣p ⎡ ⎤ ⎢ − coth k∆ ⎥ = jωρ ⎢ ⎥ k ⎢ 1 ⎦ ⎢− sinh k∆ ⎣ 1 ⎤⎡ α ⎥ sinh k∆ ⎥ ⎢ v x ⎥⎢ β coth k∆ ⎥ ⎢ v x ⎦⎣ ⎤ ⎥ ⎥ ⎥ ⎦ v α = v β = jωξ x Pa = x jωρa ω2ρa v xa = − ξ k k Pb = − jωρb ω2ρb v xb = ξ k k 6.642, Continuum Electromechanics Prof. Markus Zahn Lecture 8 Page 9 of 13 C. Boundary Conditions − n = ix − ∂ξ − ∂ξ − iy − i ∂y ∂z z − − − ⎤ ⎡− ∂ξ − ∂ξ − ⎤ ⎡ n × E = 0 ⇒ ⎢i x − iy − i z ⎥ × ⎢( exa − exb ) i x + eya − eyb i y + ( eza − ezb ) i z ⎥ = 0 ∂y ∂z ⎣ ⎦ ⎣ ⎦ ( − ( ) − ) i z eya − eyb − i y ( eza − ezb ) = 0 eya = eyb ⇒ jk y Φ a = jk y Φ b ⎫ ⎪⎪ ⎬ ⇒ Φ a = Φb ≡ Φ ⎪ eza = ezb ⇒ jk z Φ a = jk z Φ b ⎪ ⎭ ni ⎡− ε E = 0 ⇒ ⎢i x − ⎣ − − ∂ξ − ∂ξ − ⎤ ⎡ iy − i z ⎥ i ⎢E0 ( εa − εb ) i y + ( εaexa − εbexb ) i x + ∂y ∂z ⎦ ⎣ − ⎤ + ( εaeza − εb ezb ) i z ⎥ = 0 ⎦ εa e xa − εb e xb + jk y ξ E0 ( εa − εb ) = 0 k Φ ( εa + εb ) + jk y E0 ( εa − εb ) ξ = 0 Φ= − jk y E0 ( εa − εb ) ξ k ( εa + εb ) ⎡ ∂2 ξ ∂2 ξ ⎤ p ni = Tij nj + γ ⎢ 2 + 2 ⎥ ni ∂z ⎦⎥ ⎣⎢ ∂y i = x , nx = 1 p = T xx + Txy ny + Txz nz − γk2 ξ ( ) Txx = 2 1 1 1 ε E2x − E2y − E2z = − ε ⎡⎣Ey0 + ey ⎤⎦ = − ε ⎡⎣E2y0 + 2E0ey ⎤⎦ 2 2 2 Txy = ε Ey0 ex Txz = ε e x ez 6.642, Continuum Electromechanics Prof. Markus Zahn − ( εaeya − εbeyb ) i y Lecture 8 Page 10 of 13 Txy ny second order Txz nz third order Txx ( ξ ) = − ( ) 1 d 2 Ey0 ε 2 dx = −εE0 T xx = −εE0 = −εE0 ξ − ε E0ey dE0 ξ − ε E0ey dx dE0 ξ − ε E0 e y dx dE0 ξ − jk y Φε E0 dx T xx = − ( εa − εb ) E0 pT = x =0 dE0 ξ − jk y E0 Φ ( εa − εb ) dx dp0 ξ + p = P a − P b − g ( ρa − ρb ) ξ dx P a − P b − g ( ρa − ρb ) ξ = − ( εa − εb ) E0 − dE0 ξ − jk y ΦE0 ( εa − εb ) − γk2 ξ dx ω2 ( ρa + ρb ) ξ − g ( ρa − ρb ) ξ = k − ( εa − εb ) E0 ( jk y E0 ( εa − εb ) − jk y E0 dE0 ξ − γk2 ξ − dx k ( εa + εb ) ) ( εa − εb ) ξ k2y E20 ( εa − εb ) dE0 ω2 ρa + ρb ) = g ( ρb − ρa ) + γk2 + ( εa − εb ) E0 + ( k dx k ( εa + εb ) 2 E0 R Uniform tangential field always stabilizes. Gradient field stabilizes, if higher permittivity fluid is in stronger electric field. System stable even if heavier fluid above if ( εa − εb ) E0 dE0 > g ( ρa − ρb ) dx 6.642, Continuum Electromechanics Prof. Markus Zahn Lecture 8 Page 11 of 13 Courtesy of MIT Press. Used with permission. 6.642, Continuum Electromechanics Prof. Markus Zahn Lecture 8 Page 12 of 13 Courtesy of MIT Press. Used with permission. 6.642, Continuum Electromechanics Prof. Markus Zahn Lecture 8 Page 13 of 13