The Solow-Swan growth model
Transcription
The Solow-Swan growth model
The Solow‐Swan growth model 1. Description of the model The economy evolves in discrete time. Time is measured in periods, denoted by , and indexed by integers: ∈ 1, 2, 3, … . There is only one good in each period. The good is produced. The amount of good in is . Its price is normalized to 1 in every . There are two types of agents: consumers (individuals or families) and firms. Consumers are globally characterized by a constant saving rate : in total, each , consumers save a fixed proportion of . Consumers supply labour inelastically in a competitive market in exchange for a wage rate . Labour is identified with employment. The total supply of labour (total employment) in period is and is assumed to grow at a constant rate . Firms are represented by a profit‐maximizing aggregate firm that produces the good using an aggregate production function , , exhibiting constant returns to scale [alternative interpretation: all firms have access to the same (free) production technology]. is the capital stock: good used to produce more good. The good can be consumed by consumers or used in production by firms. represents the state of technology in period . It is defined by a number but it has no natural units. It is rather an index for a family of production functions that depend on just and . captures everything affecting the way of using and efficiently. The production function is assumed to have the following properties. (i) It takes non‐negative values: 0. (ii) It is twice differentiable with respect to and . (iii) Positive marginal productivity of and : (iv) Decreasing marginal productivity of and : (v) It exhibits constant returns to scale (is homogeneous of degree 1) in and [ is , , ]. homogeneous of degree in and if, for all 0 and , , , ≔ 0 and ≔ The above assumptions make concave. They also imply that Solow-Swan growth model ǀ 16 December 2014 ǀ 1 ≔ 0 and , ,0 0. ≔ , 0, 0. 0. Euler’s homogeneous function theorem Euler’s adding‐up theorem . If , , is twice differentiable with respect to and , and homogeneous of degree in and , then: (i) for all , , , , , ; (ii) and are homogeneous of degree 1 in and . If 1, then , , means that output is exhausted if factors of production are paid according to their marginal productivities. All markets (for output , capital , labour ) are competitive. The price of and in period are denoted, respectively, by and . The capital stock depreciates at a constant rate 0: 1 unit of in period , becomes 1 units in period 1. The (real) interest rate is = . If one unit of the good is used as capital at the start of time , then, at the end of , its marginal productivity (equal to , see below) is obtained, but a fraction of the capital is lost. Firms maximize profits and can be represented by a unique firm with production function . Hence, the firms’ decisions in period are determined by the solution to the problem , , , where , , and are given and the price of output in is normalized to 1. As is concave, by the first order condition for maximization, and . By Euler’s theorem, , so profits are zero. The Inada conditions (after Ken‐Ichi Inada) state that (a) lim → ∞ and lim → 0 (b) lim → ∞ and lim → 0. Interpretation: the initial units of an input are highly productive but, for a sufficiently high amount of input, additional units are unproductive. Inada’s conditions are helpful to ensure interior solutions ( 0 and 0). They are not satisfied by production functions that are linear ). in or ( like, for instance, Fig. 1 next depicts what may be termed the economy’s life cycle. Solow-Swan growth model ǀ 16 December 2014 ǀ 2 Fig. 1. B Basic descrription of th the econom my represen nted by thee model Thee macroeco onomic eq quilibrium condition n is or , wh here . Thee capital sto ock accum mulation condition is 1 1 . To ssum up, th he model iss given by the follow wing equatiions (when n the first ffour are insserted into o the lastt one, the laast equatio on summarrizes the w whole modeel). Aggreg gate produ uction funcction , , Uses off aggregatee output Aggreg gate saving gs function n , 0 1 ( aand, therefo ore, 1 ) Macroeeconomic eequilibrium m Capitall stock accu umulation n ∆ ven populaation , an initial capital stock 1 , and ttechnology y representted by , a an equilibrrium Giv path h for the ecconomy is a sequencce , , , , such thatt: (i) 1 , , 1 (ii) , , (iii) 1 (iv) (v) . Kno owing the sequence 1 , 2 , 3 ,…, … of capital sstocks, the rest of varriables can n be deteermined. H Hence, solv ving the m model is red duced to deetermining g that sequ uence. Solow-Swan grow wth model ǀ 16 December 2014 ǀ 3 2. Basic analysis of the model It is more convenient to express the model in per capita terms. Define capital per capita (or capital‐ labour ratio) as and output (or income) per capita as . By constant returns, 1 , , , , , ,1 This says that output per capita is a function of capital per capita. Therefore, . Given that , ′ 1 ′ ′ . Consequently, the marginal product of coincides with the price of capital. And since follows that By assumption, 0, it 0: the output per capita function is increasing. ≔ 0. In view of this, as ′ 0 ≔ , 1 ′′ which implies 0. Accordingly, is a concave (increasing) function. By Euler’s theorem, . By the profit maximizing assumption, and . As just shown, ′ . Summarizing , , ′ . If both sides are divided by , ′ . Solving for yields ′ The dynamics of capital accumulation is represented by the equation 1 , , 1 . If both sides are divided by , 1 1 1 Solow-Swan growth model ǀ 16 December 2014 ǀ 4 whiich represeents the dy ynamics of capital p per capita accumulat a ion. Equattion 1 su ummarizess the mod del when tthere is neiither popu ulation grow wth nor technologica al progresss. A steady‐state equilib brium (witthout pop pulation growth g no or technollogical pro ogress) iss an equ uilibrium p path wheree, for some and all , (capital p per capita rremains constant). Bein ng constaant, having g constan nt implies that is co onstant (he ence, and d are also o constant). Stea ady‐state eequilibria aare obtaineed from 1 by setting g 1 . Thus, 0 satisfiees .. 0 such that 0 Pro oposition 11. Given thee assumptioons on , thhere is a un nique capiita and conssumption peer capita ̅ 1 Fig.. 2 represen nts 1 and d the only steady‐staate equilibrrium , w with outputt per . 0. Fiig. 2. Graphical repreesentation of the mod del and its steady‐staate equilibrria On the one hand, as sshown below, any other Thee value ssynthesizess the soluttion of thee model. O possitive valuee for is un nstable. An nd, on the other, the rest of varriables can n be determ mined once is kno own. Speccifically, , ̅ , , , ̅ ̅ , ̅ ̅ ̅ … Fig.. 3 next prrovides an n alternativ ve graphiccal represeentation off the mod del, based on display ying separately thee (per capiita) producction functtion , the savings fu unction fun nction .. Solow-Swan grow wth model ǀ 16 December 2014 ǀ 5 , and thee depreciaation Fig. 3. A Alternativee graphicall representtation of th he model an nd its stead dy‐state eq quilibria In a a steady‐sttate equilib brium, thee curves reepresenting g the new capital ( ) and th he lost cap pital ( ) intersecct. This inteersection is point in n Fig. 3. Fig.. 4 illustrattes the posssibility of non‐existeence and no on‐uniqueness of thee non‐trivial steady‐sstate equ uilibrium. IIn case , fails to o be concaave (margiinal produ uctivities n need not be b decreasiing). Sev veral interior steady states may y exist. Caase sho ows that the failure of the Ina ada conditiions may y be lead to o the non‐eexistence o of interior ssteady stattes. Fig. 4. Failure off uniqueneess and existence Pro oposition 22. Given thee assumption ns on : , which correspondds to (i) the steady‐statte equilibriu um of 1 1 , is globaally asymptootically stabble, which m means that conve verges to ; aand (ii) for aall 1 0, coonverges moonotonically y to . Hen nce, the dy ynamics of capital acccumulation n is similarr to the dyn namics in tthe OLG m model. Solow-Swan grow wth model ǀ 16 December 2014 ǀ 6 Fig.. 5 shows h how capitaal per capitta convergees to when the initiial value 1 of capiital per cap pita is sm maller than n . A sim milar reason ning appliees when th he initial va alue is largger than . Fig. 5. Converrgence to th he interior steady‐sta ate equilibrrium It iss worth no oticing thatt, if 1 , then th he sequence of wage es is increa asing, whereas is a decreasing g sequencee (↑ ⇒↓ ⇒↓ ). W When 1 , conv vergence to o means that cap pital accum mulates ( iincreases). Since ↑ implies ↑ and ↓ ′, it follows s from ′ that fa alls. Intuitiively, moree makes labour mo ore productive, so rrises. If 1 , ccapital decumulatess, which im mplies tha at is decrreasing an nd is incrreasing. Thee following g comparattive staticss analysis rrelies on th he fact thatt is a d decreasing function o of , sincce 0. Efffect of a ch hange in th he deprecia ation rate: ↑ Giveen Efffect of a ch hange in th he savings rate: ↑ ,↑ ⇒↓ . ⇒↑ ⇒↑ ⇒↓ ⇒ . ⇒ ⇒↑ . Giveen ,↑ ⇒↓ ⇒↓ ⇒↑ ⇒ . hift upwarrds of to yields↑ . Efffect of a teechnological improveement: a sh Giveen , so↑ is n needed to g get ↓ folllows from m . Therefore . e, Solow-Swan grow wth model ǀ 16 December 2014 ǀ 7 , . Lettting ∆ ≔ 1 , equation 1 can be eq quivalently y expresse d as ∆ Theen the grow wth rate of . is ∆ . 0 ( aaccumulatees) if and o only if Theerefore, imp plies that . Wiith 1 gence to , converg falls an nd goes to 0. Fig. illu ustrates this. Fig. 6. A Alternative illustration n of the con nvergencee to the inte erior steadyy‐state equ uilibrium The golden n rule of caapital accu umulation 3. T Stea ady‐state p per capita cconsumptiion ̅, defin ned as a fun nction of th he savingss rate , is ̅ ≔ 1 . Thee golden ru ule savingss rate ∗ ma aximizes stteady‐statee per capita consump ption ̅. ̅ 0 ′ ′ . ∗ Theerefore, ∗ ssatisfies ′ and d the steady y‐state con ndition . The valu ue ∗ ∗ ∗ ∗ ca an be comp puted from m ′ ∗ ∗ , then satisfies ′ . Given , whiich is the sshare of iin (in the steady‐staate equilibrrium). Fig.. 7 illustrattes this. Solow-Swan grow wth model ǀ 16 December 2014 ǀ 8 ∗ (i) (ii)) Fig. 7. Thee golden ru ule solution n Thee golden ru ule can be interpreted as deriviing from a an equilibrium in retu urns. Conssider capital and d labour aas two asseets producced in the eeconomy. Thee rate of rreturn of capital can n be defin ned as : the productivit p ty of capital minus the dep preciation o of capital. Thee rate of retturn of lab bour can bee taken to b be zero: po opulation d does not grrow. If both returns are to be the same, then 0; thatt is, . An economy iis dynamiccally inefficient if perr capita con nsumption n can be inccreased by y reducing g the cap pital stock ((someone iis better off, and no o one worse off, with le ess capital)). ∗ Pro oposition 33. If , then (at thee correspondding steady y state) the eeconomy is dynamicallly inefficient. Cap pital overaaccumulatio on (point in Fig. 7((i)) generattes dynamic inefficieency ( doees not). If is ∗ reduced to , per capiita consum mption is h higher du uring the transition tto the new w steady state s (immediate efffect) and aat the new steady staate (perman nent effect). Dynamics o of capital aaccumulattion with p population n growth 4. D Let 1 1 . The ccondition ffor capital stock accumulation iis, as beforre, 1 1 . 1 , viding both h sides by Div 1 1 Tha at is, 1 or 1 1 1 1 1 Solow-Swan grow wth model ǀ 16 December 2014 ǀ 9 . ∆ In a a steady staate, ∆ 1 . 1 0. Therefore, capitaal per capiita in a steady statee satisfies . Desspite the prresence of the denom minator 1 ;; see Fig. 8.. The grow wth rate , can b be calculate ed by equaating of is now; see Fig. 9. 1 1 . Fig g. 8. Steady y‐state equ uilibrium w with population grow wth Fig. 9. Growth raates with population growth Solow-Swan grow wth model ǀ 16 Deecember 2014 ǀ 10 0 with In a a steady staate, no mattter wheth her 0 orr 0, peer capita va ariables rem main consttant: , , … Butt, when 0, aggreg gate variab bles , , … also rremain con nstant, becaause is co onstant: and co onstant imply consstant, and d constan nt imply constant, etc. Wh hen 0, / co onstant and d growin ng at rate imply g growing att rate . By y constant retu urns, if aand grow w at rate , then also o grows att rate . To d determine the golden n rule solu ution with p population n growth, iin a steadyy state, consumption per cap pita is ̅ ≔ 1 . Thee golden ru ule savingss rate ∗ ma aximizes stteady‐statee per capita consump ption ̅. ̅ 0 ′ ′ Theerefore, ∗ ssatisfies ∗ ′ . ∗ can be ccomputed ffrom . Usin ng ∗ an nd the stea ady‐state coondition ∗ ∗ ∗ it fo ollows thatt ∗ satisfiees ∗ Thee situation is analogo ous to the o one arising g when ′ . 0; see Fig g. 10. Fig g. 10. The g golden rulee solution w with population grow wth Solow-Swan grow wth model ǀ 16 Deecember 2014 ǀ 111 5. Dynamics of capital accumulation with population growth and technological progress For a production function of the sort , , , there are three basic types of technological progress. Hicks‐neutral technological progress means that , , can be expressed, for some , as , . A technological change just relabels isoquants (no change in shape). Solow‐neutral (or capital‐augmenting) technological progress means that , , can be written as , , for some . Higher is equivalent to having more . Harrod‐neutral (or labor‐augmenting) technological progress makes , , equal to , , for some (higher is like more ) Suppose population grows at rate and technology accumulates at a constant rate : 1 1 and 1 1 . Technological progress is assumed to be Harrod‐neutral. Define per capita variables in terms of efficiency units of labour (also called “effective labour units”): . The capital stock accumulates following the usual rule 1 1 After dividing both sides by 1 1 , 1 1 . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 or, equivalently, ∆ 1 1 . 0. Accordingly, capital per capita in a steady state satisfies 1 1 In sum, In a steady state, ∆ 1 . Solow-Swan growth model ǀ 16 December 2014 ǀ 12 Desspite the p presence of o 1 witth 1 1 1 iin the den nominator,, can bee obtained d by equaating ; seee Fig. 11. Th he growth rate oof is n now 1 1 1 1 . 2 Fig. 111. Steady‐sttate equilib brium with h populatio on growth and techn nological prrogress Tecchnologicall progress produces the follow wing effectt: as con nverges to , output per efficieency unit of labourr also con nverges (to o some ), so output per efficien ncy unit dooes not gro ow in the llong run n. Formally y, is ev ventually constant ( ). Denotiing growth rates byy , that is consstant imp plies that 0. That is, . Summing up, ⁄ . Outtput per p person gro ows at thee same raate as tech hnology: technologiccal progreess offsets the dim minishing rreturns to ccapital. Sum mmarizing g, the Solow w‐Swan mo odel exhib its the follo owing characteristicss. There is a unique (no on‐trivial) steady sta te. The steady y state is assymptotica ally stable and comparative sta atics is simp ple. no sustaineed growth:: growth o occurs only y when the e economyy shifts fro om one steeady There is n state to an nother stead dy state wiith a higheer . hnological change. Sustained growth requires sustained tech of output (llong term g growth) iss not affected by : it only affectts the levells of The rate of growth o , , and (more saavings only y depress th he margin nal producttivity of cap pital). Solow-Swan grow wth model ǀ 16 Deecember 2014 ǀ 13 3 6. C Convergen nce Con nvergence (or catch‐‐up effect) is the hy ypothesis according a to which there is a a tendency y for output per cap pita in poo orer econom mies to gro ow faster tthan outpu ut per capitta in richerr economiees. Abssolute (inconditionall) convergeence holdss that the ccatch up occcurs regarrdless of th he characteeris‐ tics of the economies. Th here are tw wo basic re asons to ju ustify the existence off absolute convergen nce. (i) Technological trransfer. Th he “advanttage of bacckwardnesss”: poorerr economy y can repliicate techno ology, prod duction methods, m an nd instituttions develloped in th her first place p by riccher econom mies witho out having g to bear th he cost of crreating or developingg them. (ii) Capitaal acumulaation. Incrreasing acccumulatio on from a a low leveel has a bigger b imp pact becausse diminish hing return ns in pooreer economies are nott as strong as in richeer economiies. Thee empiricall evidence does not y yet offer ev vidence for absolute convergen nce (at leasst Africa iss not catcching up w with the reest of the world); seee Fig. 12(a a) and 12(b). For con nvergencee to occur in a giveen time in nterval, it is to be exp pected a n negative reelationship between output per capita att the starrt of the intterval and the averag ge growth rate of outtput per ca apita in thaat interval. Fig. 12. Co onditional convergen nce (MP To odaro, SC S Smith (2011): Econom mic developm ment, p. 80)) Problem of sselection biias: converrgence is teested for rich countrie es so, for th hose who w were initiaally relatively y poor, it iss plain thatt they had to grow fa aster than tthe rich cou untries inittially rich. Solow-Swan grow wth model ǀ 16 Deecember 2014 ǀ 14 4 Thee Lucas paaradox (Ro obert E. Lu ucas, Jr, 19990) referss to the cla aim that ccapital is apparently a not flow wing from richer to p poorer desspite the faact that po oorer econo omies hav ve lower leevels of cap pital per capita, wh hich should correspo ond to high her returnss on capita al and, therrefore, ma ake investm ment morre attractiv ve in poorrer countriies. Recentt research suggests that, t for th he period 1970‐2000, the lead ding explan nation for the lack off capital flo ows to poo orer countrries is low iinstitution nal quality. Fig. 13. C Convergencce as a funcction of cou untry size P Todaro, SC Smith ((2011): Economic development, p.. 82) (MP of conditional converrgence meaans that po oorer econ nomies grow w faster if they havee the Thee concept o sam me technolo ogy and fu undamenta al variabless for capita al accumulation , ,, as rich her econom mies. Con nditional cconvergen nce occurs in the SSS model: economiess with thee same technology and fun ndamental variables cconverge tto the sam me steady sstate (simillar countrie ies converg ge). In factt, by 2 , , the SS m model predicts that poorer p cou ntries wou uld grow faster f than n richer ecconomies. In a poo or economy y, is com mparatively y small. Th herefore, / is h high. Given n the rest of parameeters ( , , , and ), high / impliees, by 2 , h high . Th his, in turn n, implies h high . Butt since marrginal prod ductivities are decreaasing, grow wth cannott last. In th he SS modeel, (per cap pita) growth occurrs only wh hile the ecconomy co onverges to t the stea ady state. Once theere, per caapita variables rem main stagnaant. The em mpirically observed convergen nce has beeen lower tthan prediccted by tthe SS mod del. Conveergence: OE ECD, Asian n tigers. Divergence: Africa. Solow-Swan grow wth model ǀ 16 Deecember 2014 ǀ 15 5 According to the hypothesis of conditional convergence, output per capita in an economy converges to a certain level dictated by the structural characteristics of the economy. Given that what guides convergence is not the initial value of output per capita, there is no need to transfer income from richer to poorer nations: foreign aid should concentrate of establishing the necessary structural characteristics (related to, for instance, the ability to absorb new technology, attract capital and participate in global markets). The concept of strong conditional convergence expresses convergence conditional on having the same determinants of capital accumulation: , , and . It relies on the presumption that any technology is eventually available to all economies. What separates economies is capital accumulation not technology. The term sigma‐convergence refers to a reduction in the dispersion of output per capita levels across economies. Beta‐convergence is said to occur when poorer economies grow faster than richer ones. Conditional beta‐convergence means beta‐convergence conditional on certain variables held constant. Inconditional (or absolute) beta‐convergenceʺ takes place when the growth rate of an economy declines as it approaches its steady state; see http://en.wikipedia.org/wiki/Convergence_%28economics%29. Convergence in terms of rates contends that differences in growth rates (mainly, ) tend to vanish. It does not imply convergence in the level of output per capita. There is convergence in rates in the SS model between economies with the same technology: the same rate of technological change yields the same growth rate of output per capita (convergence club = those who innovate). The expression club convergence captures the observation that one can identify groups of economies with similar growth trajectories. In particular, there are poor (low income) economies that simultaneously experience low growth rates. Certain structural barriers (limited access to education, lack of resources, poor infrastructure) may prevent a poor economy from migrating to a richer convergence club. Consequently, it may prove extremely difficult to move from one to another convergence club. The SS model displays a negative correlation between and the speed of convergence. The lower , the more decreasing returns to capital are. This means that, to converge, capital should accumulate faster. With more capital, rates of returns are lower. Capital migrates to poorer economies, where rates of return are higher. Through diffusion of knowledge, poorer economies can adopt technological advances developed in richer economies. Solow-Swan growth model ǀ 16 December 2014 ǀ 16 Fig g. 14. Conv vergence cclub, Europ pe, 1990‐20 005 http:///www.ub.edu/sea20009.com/Pa apers/129.p pdf 7. S Stylized faccts of grow wth Thee following g are “Rem markable h historical co onstanciess revealed by recent eempirical investigatiion” acco ording to N Nicholas K Kaldor (195 57, 1961). 1. / grrows (at a rroughly co onstant ratee) 2. / grrows contiinuously (ffollows fro om 1 and 4)) of return on capital stable oveer the long run 3. Rate o 4. / has been rou ughly stab ble for long g periods 5. The sh hares of aand in ou utput havee remained d approxim mately consstant wage grows over timee (follows from 2, 4, a and 5) 6. Real w 7. Outpu ut and prod ductivity g growth difffer substan ntially acro oss countriees Alteernatively:: “Laborr productiv vity has gro own at a su ustained ra ate. Capitall per work ker has also o grown at t a sustaineed rate. The reaal interest rrate or retu urn on cap pital has beeen stable. The rattio of capittal to outpu ut has also o been stable. Capitall and laborr have capttured stablle shares o of national income. Among g the fastt growing g countriees of the world, th here is an n apprecia able variaation in the rrate of grow wth “of thee order of 2–5 percen nt.” Solow-Swan grow wth model ǀ 16 Deecember 2014 ǀ 17 7 Pau ul Romer (11989) sugg gested more facts. 8. In cross‐seection, the mean grow wth rate sh hows no va ariation with income per capita a levels. 9. The rate off growth o of inputs is insufficien nt to expla ain the grow wth of outp put. 10. Growth in n the volum me of tradee is positiveely correla ated with growth in ooutput. 11. Population n growth rrates are neegatively ccorrelated w with the level of incoome. 12. Skilled and d unskilled d workers tend to miigrate towa ards high‐iincome cou untries New w facts prroposed by y Charles I. Jones aand Paul Romer R (20 009); see h http://www w.stanford..edu /~ch hadj/Kaldo or200.pdf. 8. E Exercises Ejerrcicio 1. T Teorema de d Euler. Demuestraa el teorema de Eu uler. [Sugeerencia: pa artiendo de d la defiinición dee homogen neidad de grado , deriva am mbos lados de la eccuación co on respecto al parámetro y considera el valor = 1; p para la seg gunda parte del teorrema, deriiva ahora con resp pecto a y y divide po or .] Solow-Swan grow wth model ǀ 16 Deecember 2014 ǀ 18 8 Ejercicio 2. Cobb‐Douglas. Considera la función Cobb‐Douglas , , 0 y 0 1. (i) Comprueba si se satisfacen todas las condiciones impuestas sobre la función de producción en modelo (productividades, rendimientos, Inada). (ii) Definiendo y , obtén la expresión correspondiente (esto es, (iii) , con determina ). Asumiendo mercados competitivos de y , indica la fórmula que expresa en términos de y la que expresa en términos de . Ejercicio 3. Función demuestra que / . En el caso sin crecimiento de la población ni progreso tecnológico, es una función decreciente de . Ejercicio 4. Precios de los factores. (i) Suponiendo que no hay crecimiento de la población ni progreso tecnológico, explica porqué, si 1 , la secuencia de salarios es una secuencia creciente y la secuencia de precios del factor capital es decreciente ( 0 es el valor de en el estado estacionario). (ii) Muestra que es decreciente y creciente si 1 . Ejercicio 5. Modelo de Solow y Swan. Considera el modelo de Solow y Swan sin crecimiento de / la población ni progreso tecnológico con , tasa de depreciación 0’1 y tasa de ahorro 0’4. (i) Calcula los valores de la producción per cápita, el consumo per cápita, la inversión per cápita y la depreciación per cápita en el estado estacionario. Señala estos valores en una representación gráfica del modelo. (ii) Indica en la representación gráfica cómo variarían esos valores si (a) la tasa de depreciación aumentara; (b) la tasa de ahorro aumentara; (c) se produjeran simultánemante (a) y (b). (iii) Obtén la tasa de ahorro y el consumo per cápita correspondientes a la regla de oro. ¿Es la economía dinámicamente ineficiente si inicialment es 20? (iv) Representa gráficamente la tasa de crecimiento de en función de . (v) Respón a las preguntas anteriores si la tasa de crecimiento de la población (en tanto por uno) es 0’1. Ejercicio 6. Análisis gráfico de estática comparativa. Muestra gráficamente el efecto sobre el capital per cápita de estado estacionario (así como de la producción per cápita y el consumo per cápita de estado estacionario) si: (i) aumenta ; (ii) aumenta ; (iii) tiene lugar progeso tecnológico; (iv) ocurren al mismo tiempo (ii) y (iii); (v) ocurren al mismo tiempo (i) y (ii); (vi) disminuye y aumenta ; y (vii) se produce un regreso tecnológico al mismo tiempo que disminuye . Ejercicio 7. Progreso tecnológico. Verifica que los tres tipos de progreso tecnológico neutral (en el sentido de Harrod, de Hicks y de Solow) son equivalentes en la función de producción Cobb‐ Douglas , , , con 0 y 0 1. Solow-Swan growth model ǀ 16 December 2014 ǀ 19 Ejercicio 8. Progreso tecnológico y crecimiento de la población. Considera el modelo de Solow con crecimiento de la población y progreso tecnológico con función de producción / / . La población crece a la tasa constante 0 y la tecnología se acumula a la tasa constante 0, de manera que 1 1 y 1 1 . Define el capital per cápita como como y la producción per cápita como . (i) Determina la ecuación en diferencias que establece la dinámica del capital per cápita, la fórmula del capital per cápita en el estado estacionario y la fórmula de la tasa de ahorro que cumple con la regla de oro. (ii) Respón a las mismas preguntas si . Ejercicio 9. Función de producción. Verifica que, para una función de producción Cobb‐Douglas , 0. Prueba que, para la expresión per cápita de , ′ y ′. Exercici 10. Pago a los factores. Demuestra que, en la siguiente gráfica, cuando el stock de capital per cápita es ǩ (la distancia ), entonces la distancia representa el salario y la distancia representa el beneficio por trabajador ǩ. … ǩ Exercici 11. Modelo de Solow y Swan. Considera el modelo de Solow y Swan sin progreso tecnológico en el que la población crece a la tasa (neta) pero con la siguiente variante: la tasa de ahorro es si el stock de capital per cápita es superior a 3 y es si el stock de capital per cápita es igual o inferior a 3. La función de producción per cápita es depreciación es . / . La tasa de (i) Calcula los valores de todas las variables endógenas en todos los estados estacionarios en los que el capital per cápita sea positivo. (ii) Indica los valores obtenidos en (i) en una representación gráfica del modelo y explica si los estados estacionarios son estables. Solow-Swan growth model ǀ 16 December 2014 ǀ 20