2 - American Meat Science Association
Transcription
2 - American Meat Science Association
384 A GROUP EXPERIENCE IN SENSORY EWAIUATION* D . G . CORNISH and R. E . BALDWIN Oscar Mayer & Co. and University of Missouri Yesterday, most of the RMC conference members participated i n the wiener t a s t e t e s t conducted j u s t before t h e noon lunch. Analyses have been conducted on the data from t h a t t e s t . This session is t o inform you of the outcome of some of those analyses. Before showing you some of the a n a l y t i c a l r e s u l t s , I would l i k e t o mention a few reasons f o r performing t h i s exercise. F i r s t , the organizers of t h i s meeting believed it would be i n t e r e s t i n g f o r those i n attendance t o p a r t i c i p a t e d i r e c t l y i n t h e generation of information f o r t h i s p a r t of the program. Secondly, it was considered t h a t it may be of i n t e r e s t t o demonstrate the powers of time-share computers and terminals. The products you evaluated i n yesterday's t e s t were production wieners. They were designated as pork wieners and beef wieners. The composition and n u t r i t i o n a l information of pork and of beef wieners a r e presented i n t a b l e 1. However, f o r the t a s t e t e s t , random code numbers were assigned t o t h e samples and placement on t h e t r a y a l s o was randomly assigned. The design of the t e s t w a s balanced s o t h a t h a l f of t h e participants t a s t e d pork f i r s t and half t a s t e d beef f i r s t . The meat formulation of the pork wieners w a s predominantly pork trim w i t h some beef trim, while the meat formulation of t h e beef wieners w a s lo@ beef trim. The wiener made from a combination of pork and beef will be referred t o as pork wiener throughout t h i s presentation. You were asked t o record your evaluation on a b a l l o t shown i n figure 1. You were a l s o asked t o indicate some information concerning your personal background. This b a l l o t has been coded t o enable entry of t h e information i n t o the computer system. Yesterday's sensory t e s t would be considered a preference t e s t w i t h hedonic r a t i n g s . The objectives of a preference t e s t a r e t o predict d i r e c t i o n of choice end sometimes t h e extent t o which a product appeals t o some population. To obtain a measure of consumer reaction or preference f o r one sample over another, a large number of panelists i s desirable. These panelists not only need not, but should not, be trained. The t a s t e t e s t data from yesterday's session was analyzed by using a portable terminal. This p a r t i c u l a r terminal has t h e a b i l i t y t o access 350 c i t i e s i n North America w i t h data processing service. The methods used t o input the t a s t e t e s t data were as follows: * Presented a t the 28th Annual Reciprocal Meat Conference of t h e American Meat Science Association, 1975. k IGU1,L 1 0 W IENEK EVALUATION T a s t e t h e samples i n the o r d e r t h e y a r e p r e s e n t e d , from l e f t t o r i g h t . I n d i c a t e how well you l i k e y o u r iiiouth with a s i p o f water b e f o r e t a s t i n g e a c h . o r d i s l i k e t h e p r o d u c t s b y p l a c i n g a clieck mark o n t h e s c a l e s b e l o w : SmiPLE PORK W I E ~ER J s __ L ____5 4 3 2 1 SAMPLE RFFF WMERS A_5 L I K E VERY MUCH L I K E MODERATELY 4 - LIKE S L I G H T L Y 3 D I S L I K E SLIGHTLY 7 D I S L I K E MODERATELY 1 D I S L I K E VERY MUCH P L E A S E PLACE A CHECK MARK I N THE A P P R O P R I A T E CATEGORIES BELOW: 1. EMPLOYMENT : 1 7 3 _LJ-2. 1 7 3 4 3. 1 Education 2 Industry 6. ~esearcti Lnstitute ( e g . , A . M . l . F . , WARF) EDUCATlON: High School B.S. M.S. Ph.D. AGE: d. 20 20-29 4 40-49 6 > 59 5 -- 1 SMOKE: Government 2 3 5. 30-39 50-59 1 7 3 4 5 Clear Yes No GEOGRAPHICAL LOCATlON West ( A ) North C e n t r a l (B) N o r t h East (C) South (D) Foreign 38 6 U ~ E I L L . .I AND OF CORPOS IT I O J A i W IIIUTR I T I Oi4AL I i4FORI"IATI Oil OF PORK BEEF \!I ENERS I p i ~ l < \ - [ ~ P0R lLk/~ F J I HS. ~ POICI;, ~ ~ ~ - \ I~A I~E R; , EEEF, SALT, CORN SYRUP, DEXTROSE, FLAVORING, S O D IUM ASCORBATE, SO11 1 U M CALOR I ES : PROTE I N : C A 13130HYD R A T E : FAT: PRO-I-E IN : V I T , A,: VIT, C I : -rH I AM I N E : R I B O F L A VNI : IJ I A C I rd : CALC I UM: IRON: R --EEF\JI61\LER-S. B E E F , H A T ~ ~CORN , SYRUP, SALT, FLAVORING, DEx-mosE, PAPRIKA, S O D I U M ASCORBATE, SODIUIINITRITE N I T :I I TE I'J UT R I T I 014 A 1 V A LUES/ L I I1K 140 5 GM 13 GM GM 2 10 0 15 4 2 4 0 2 2 6 2 X OF 1'10 5 2 13 U I S , RDA 10 0 15 0 2 4 0 2 2 8 2 GM GM GM 387 1. Dial t h e telephone access number i n S t . Louis. 2. Type i n t h e coded information from each b a l l o t using t h e portable terminal. 3. Store data, and request a "canned program" run. 4. I n s t r u c t t h e computer t o run the desired program and l i s t the results. The s t a t i s t i c a l systems o r "canned programs" t h a t a r e a v a i l a b l e with t h i s p a r t i c u l a r u n i t a r e l i s t e d i n t a b l e 2 . The systems t h a t were used i n analyzing t h e data f r o m t h e t a s t e t e s t a r e t h e l a s t 8 programs. Figures 2 and 3 i l l u s t r a t e t h e computer's a b i l i t y t o generate a bargraph. Figure 2 shows t h e number of people from four employment areas who p a r t i c i p a t e d i n yesterday's t e s t . The next bargraph ( f i g u r e 3 ) shows t h e number of people a t each educational l e v e l who p a r t i c i p a t e d i n t h e t a s t e t e s t . The information provided i n these bargraphs indicate t h a t t h e majority of t h e panel p a r t i c i p a n t s were from education f i e l d and had F'h.D. degrees. The computer system i s a l s o capable of producing data i n histogram form. The upper h a l f of f i g u r e 4 i l l u s t r a t e s t h e number of people who f e l l i n t o d i f f e r e n t age groups. The histogram on t h e lower portion of t h e f l g u r e 4 d e a l s with the number of paxticipants from d i f f e r e n t geographical l o c a t i o n s . The computer w a s requested t o display frequency t a b l e s on male/ female and smoker/non-smoker r a t i o s . The r e s u l t s a r e shown i n t a b l e 3 . The information which I have described thus f a r has d e a l t with t h e personal p r o f i l e s of t h e p a r t i c i p a n t s i n yesterday's t a s t e t e s t . The next 2 f i g u r e s show how t h e p a r t i c i p a n t s r a t e d pork wieners and beef wieners. This information i s given i n t h e form of simple s t a t i s t i c s and histograms. Figure 5 i l l u s t r a t e s t h e d i s t r i b u t i o n of r a t i n g s given exclusively t o pork wieners. The d i s t r i b u t i o n of r a t i n g s given t o beef wieners i s contained i n f i g u r e 6. The information provided i n t a b l e 4 summarizes t h e data acquired i n t h e t a s t e t e s t broken down according t o employment, education, age, sex, smokers and geographical l o c a t i o n . The r e s u l t s shown i n t h i s t a b l e make it possible t o r a p i d l y scan t h e data and provide a b a s i s f o r deciding i f f u r t h e r s t a t i s t i c a l analyses a r e desirable o r necessary. For example, it i s impossible t o Judge from t h e information provided i n t h i s t a b l e whether o r not a s i g n i f i c a n t difference e x i s t s between t h e o v e r a l l mean of t h e r a t i n g given t o pork wieners versus t h e o v e r a l l r a t i n g given t o beef wieners. The computer w a s asked t o provide a t - s t a t i s t i c which can be used t o determine i f t h e o v e r a l l mean of t h e r a t i n g s given t o pork wieners and the o v e r a l l mean of t h e r a t i n g s given t o beef wieners a r e s i g n i f i c a n t l y d i f f e r e n t . The " t " - s t a t i s t i c f o r the o v e r a l l means i s shown i n FH EQ 0 e e 0 EDUCAT I ON GOVEHNNENT INDUSTRY 1 36 15 32 RESEARCH INSTITUTE 1 1 0 0 -_e e a e Fti Ell 0 0 2 27 52 115 0 0 NOTE: F H EG] 0 0 54 53 38 28 1H 0 0 HEHL E A C h '&' AGE h€.,FHESENTS 2 OBSERVATIONS. EhEO 0 CI 1 0 11 u u 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 0 0 0 0 91 0 0 ti 0 0 0 0 0 0 66 S M P L E STATISTICS b O h P O R K NO. OF' ODSEHVATlONS 146 Se091b4 0 e82363 2*G(JOUU 6.00000 392 196 E HEO 0 0 5 0 0 0 0 16 u 0 0 0 44 0 0 0 0 72 0 0 0 0 59 0 0 AVEUGE: STANDARD DEVIATION 8 SbiLLEST OBSEHVA T I O N : LAhGEST OBSEHVATION 8 393 IkIjLk, ‘1. STATISTICAL ANALYSIS MODULES REGRESSION ANALYSI s ONE-\/AY ANALYSIS OF VARIANCE 2 AND 5 FACTORANALYSIS OF VARIANCE WEIBULL RELIABILITY ANALYS I s CHI -SQUARE TEST EXPONENTIAL SMOOTHI NG POLYNOMIAL CURVE FITTING LEASTSQUARES POLYNOMIAL FIT CONFIDENCE LIMITS AUTOCORRELATION LEASTSQUARES REGRESSION CORRELATION VATR IX FREQUENCY COUNT OF TWO CROSS V A R I A B L E S REGRESSION ANALYSIS ON BIVARIATE DATA GROWTH RATE CALCULATION I ~ V I N GAVERAGES FITS FOR NEIGHTED DATA POLYNOMIAL BARGRAPH 11I STOGRAM FREQUENCY TABLE SIMPLE STATI ST Ics T-TEST CORR E L A T I ON MULTIPLE REGRESSION X-Y PLOT 394 FIiEDUENCY TABLE FOR SEXCODE MALE FEbiALE FFi EQ PCT. CUM* E HEGi 184 12 93.88 6.12 164 196 CUM. PCl. 93.88 100.00 F h E Q U U C Y TAELE FOR SWOHCODE FR EQ YES NO 70 126 PCT* 35.71 64.29 CUM. Fh EQ 70 A96 CUM. PCT* 35.71 100*00 'lAt3LE 4 . SAMPLE STATISTICS UlP LO Y Pi EN 1' EIJUCATION G o v EWN EN 'r OF NO. OBSEWV. 136 is I NDU s 'rLY I;E:s EAli CH I Eu s 1 I 'AUlE 32 11 H I G b SCHOOL B.S. M.S. El1.D. 27 52 2 FOhK MEAN SOD. 5.2 U.b 4.9 4.b 0.8 4.9 5.5 BEEF MEAN S.D. 0.8 4.9 5.1 0.9 5.2 0.7 0.9 0.8 0 08 4.3 5.0 1.0 1.1 0.9 0.8 1.4 4.5 0.9 0. 4.& 0. 0.9 5.2 0. 0.9 0.9 u.7 0.4 0.6 4.6 1.1 1.1 1.0 1.1 184 12 5.1 0.8 0.5 4.8 5.4 1.0 1.0 70 126 5.1 5.1 0.7 0.5 4.7 4.9 1.1 1.0 19 5.1 0.8 4.5 21 52 6 4.9 1.0 1.0 1.0 0.9 115 4.8 5.1 5.1 4.8 4.9 1.0 1.1 AGE 0 59 53 38 28 18 0. 5.1 5.1 5.1 5.2 4.b 5.0 4.9 SLX 5.5 SMOKE YES NO GEOGHAPHIC LOCAI'ION WEST NOh 1'H C EN 1'FiAL NOFr'I'h EAST SOCIl'H F ON E I GN 58 5.1 5.2 5.0 0.8 1.0 0.8 0. 4.9 4.5 5.1 4.3 1.4 396 t a b l e 5. A s i g n i f i c a n t l y (P < 0.05) higher r a t i n g was given t o the pork wieners when compared t o beef w i e n e r s . The t - s t a t i s t i c can be used t o determine more s u b t l e e f f e c t s on ratings. For example, the comparison of preference t o pork wieners between males and females ( t a b l e 6 ) , and t h e difference i n preference t o pork wieners between smokers and non-smokers (table 7). The r e s u l t s indicate t h e r e was no s i g n i f i c a n t difference i n preference t o pork wieners between males and females o r between smokers and non-smokers. The r e l a t i o n s h i p of t h e r a t i n g s given t o pork wieners as influenced by age of p a r t i c i p a n t s m i g h t be u s e f u l l y subjected t o f u r t h e r evaluation. Therefore, t h e computer was instructed t o produce a s e r i e s of equations t o describe t h e r e l a t i o n s h i p between these two variables. This i n f o r mation i s s h m i n t a b l e 8. The curve w i t h t h e l a r g e s t index i s t h e b e s t - f i t . Curve 5 , y=l/(a+B%) r e s u l t s i n an index of determination of 0.005C8. The index of determination i s r2. Thus, t h e r e s u l t s i n d i c a t e l i t t l e o r no r e l a t i o n s h i p between t h e r a t i n g s given t o pork wieners and age of t h e judge. Another c a p a b i l i t y of t h e computer and terminal system i s t o produce multiple regression and multiple c o r r e l a t i o n c o e f f i c i e n t s as shown i n t a b l e 9. The r e s u l t s i n d i c a t e t h a t there i s l i t t l e o r no r e l a t i o n s h i p of the r a t i n g given t o pork wieners t o age and education of t h e p a n e l i s t . A simple but i n t e r e s t i n g system c a p a b i l i t y i s the production of x-y p l o t s . Figure 7 shows the means of t h e r a t i n g s given t o pork and beef wieners on t h e basis of age c l a s s i f i c a t i o n . I n summary, t h e r e a r e no s e t formulas t h a t can be universally applied t o analyze sensory problems. Each company o r i n s t i t u t i o n must evaluate i t s own needs and d e s i r e s and develop sensory c a p a b i l i t i e s i n accordance w i t h those needs. For example, this computer system functions very w e l l f o r Market Research people who conduct tests on new products. I n t h i s example, a prompt, r e l i a b l e feedback of consumer opinion i s needed. Today I have presented a portion of t h e t o t a l amount of data which was generated. The terminal which was used i n analyzing data from t h i s sensory t e s t was furnished by General E l e c t r i c Co. I have the terminal i n t h e educational e x h i b i t room f o r those of you i n t e r e s t e d . The data output yesterday c o s t $27 and took 1 5 minutes f o r r e t r i v a l . I would l i k e t o thank our hosts here a t Missouri f o r the telephone hook-up provided a t t h e conference. A s p e c i a l thanks f o r D r . Ruth Baldwin and h e r staff f o r conducting t h e sensory t e s t , and a l s o f o r h e l p in analyzing t h e r e s u l t s . I h L hOLLOWING b O U H h k P O l h E 3 E S khL O P T I O N A L EOH CALCULAlION O F A I - S I A T I S l l C Oh 1 H E IrEANS OF SAMFLE VAfiIABLES POL)< & BEEF C O k P U 1 E ; D ?' VALUE 2 70820 I'AI3ULAR "T" VALUES 1.96 ( P . * . 0 5 ) 2.137 ( P . < . O l ) DEGkE.ES OF FREEDOPI 390 .oo 2 - l A I LLD PliOBAE I L I TY 0 00 70 6 THE FOLLOWING FQUh hYFOlhIESES A R E OPTIONAL FOR C A L C U L A T I O N OF A T - S T A T I S T I C ON 'i'hE MEANS OP SAMPLE VAKIARLES FkPiALE & PKF'EMALE 1 2 3 4 5 FIEAN O F PIWALE P r U N O F PKE-ALE M I A N OF PKPiiLE ~ v I J A NOF PXMALE EXIT EhOh TTESTo = G I V E N VALUE = N U N OF PHFENALEJ ASSUMING 2 VARIANCES ARE EQUAL = M E A N OF PHFEPALE, A S S U M I N G 2 VAHIANCES ARE UNEQUAL = M E A N OF FKFEPALE, khEHt THE VllliIABLES A R E HELfi'I'LD HYPOTHESIS TYPE --?2 CO.PiUTED T VALUE -1.78119 TAbULAR "T" VALUES 1.96 < P . < o O 5 ) 2.97 <P.<.Ol) DEGHEES OF F'HEEDOM 194000 - 2 TA I LED PH OBAB I L I 1 Y 0 007645 399 THE FOLLOWING F O U H hYPOTHESES A R E OPTIONAL FOR CALCULATION OF A T - S T A ' I I S T I C ON 1 h E PiFANS O F SAMPLE VARIABLES PKSMOKE & PKNOSMOIi 1 NEAN O F PKSMOKE 2 M E A N O F PKSMOKE 3 MEAN Ob PKSPiOIiG 4 M E A N O F PKSPiOKE 5 E X 1 1 F R O M ?'TEST. = GIVEN VALUE = hWiV O F PKNOSMOKI ASSUMING 2 VARIANCES ARE EQUAL = PIEAN OF PKNOSIVIOKI ASSUMING 2 VAZiIANCES A R E UNEQUAL = N U N OF PKNOSKOKI WHEFrE THE V A h I H b L E S AHE HLLATLD HYPOTHESIS TYPE --?2 COtiPUTED T VALUE 0 046436 TABULAR "T" VALUES 1 * 9 8 (P.<.O5) 2 . 9 7 < P . < * 0 11 DEGREES OF FREEDOM 194*OO 2 - T A I LEIj PRODAD I L 1 TY 0 64291 400 Y UAIIIARLE: X bAii I A D L E POHH AGECOLE XbIEAN: 3*454062E+OO N U P B E& CURVE 1 2 3 4 5 6 Y =A +u "X k = A U EN- (B*X 1 Y=A'( x -B 1 k=A+(B/X) k = 1 / < A + B Q X1 Y = X /<A *x +B > YMEAN: 5.041837E+00 1NDEX 0.00140 0 000265 0.00234 0~ O 0 U 6 4 OOU0500 U.O(j400 A 5*01006E+00 4088889E+00 4.681 75E+OU 5.14854E+CJO 2.11142k-01 1 *95523E-01 B 2 *36747E* 7042731E. 2.3 1 €554E. - 1 *70%69E* -20 3641 3 E 2023827E 4 01 XFIEAN 3 *4540b2E+UO 3*4%8571E+00 YMEAN 5*091837E+00 RULTIPLE C O R F i E L A T I O N COEFFIC I ENT = COEFFICIENTS 6 661 6443E-03 9 5558 14 S E - 0 2 F UAI'IO( 9 *242587E-02 E S T OF SD 4 7589427E-02 8 10 402 5 2 s - 0 8 2 ~ 1 4 3 DEGREES OF FREEDOM)= 80314581E-01 w 0 I b (D + f n n u 0 .- ii r, m m C U c m u . O Y O .e . O 0 Y + 0 * & .a - 0 m O W * O I W . 0 0 4 03 D . H. Kropf: I ' v e j u s t discovered i n t a l k i n g with Dwight Loveday that our North C e n t r a l d a t a i s contaminated, he was r a i s e d below t h e Mason-Dixon l i n e and he wrote down North C e n t r a l . E . C . Allen: I ' v e always been curious i n formulations such as t h i s . How m c h do you have t o change them t o g e t d i f f e r e n c e s between beef and pork? Is t h i s t y p i c a l what you normally f i n d ? D . G . Cornish: The formula which was used i n y e s t e r d a y ' s t a s t e t e s t was 60$7 pork and 4C$ beef. Some of t h e f l a v o r d i f f e r e n c e is due t o s p i c e d i f f e r e n c e . However, t h e wieners used yesterday are market standard items. R . L. Henrickson: color? D . G . Cornish: D . H. Kropf: g i v e us t h e code? W h a t was t h e function of paprika? Flavor or Color. I s t i l l remember t h e number of my sample. Odd o r even? What was t h e code? Could you D . G . Cornish: The odd numbered sample was pork and t h e even number sample was b e e f . R . E. Baldwin: Normally I wouldn't have done that. It f a c i l i t a t e d decoding t h e raw d a t a . Usually I would a s s i g n random numbers. It was i n t e r e s t i n g that you were able t o d e t e c t t h a t d i f f e r e n c e on t h e b a l l o t . M. C . Brockmann: How on e a r t h d i d you g e t a n a l y t i c a l moisture t o equal p r e c i s e l y f o u r times p r o t e i n plus lo? D . G . Cornish: That's a s e c r e t . J. H. Z i e g l e r : We promised t o give you t h e opportunity t o a s k questions--we d i d n ' t guarantee any answers. J . W . Carpenter: f l a v o r w i t h cost? How i s t h e a c c e p t a b i l i t y of t h e s e two wieners on D . G . Cornish: Currently t h e c o s t of t h e s e two wieners a r e e q u a l l y p r i c e d . The r e l a t i o n s h i p that t h e s e two v a r i a b l e s have on acceptance i s probably based on personal preference, d i e t , e t c . The d i f f e r e n c e t h a t each c o n t r i b u t e t o acceptance--1 couldn't t e l l you.