hayama nao
Transcription
hayama nao
Reducing the Binary Confusion Noise ) ( [email protected] – p.1/17 2000 ( ) – p.2/17 2000 ( ) ( ) – p.2/17 2000 ( ) ( ) – p.2/17 Wavelet (Innocent, Torrésani) BCN + (Binary Confusion Noise + ( )) – p.3/17 Binary Confusion Noise h(t) = f (t) + PN i g i (t) Wavelet X X X dj,k ψj,k (t) = αj,k ψj,k (t) + β i j,k ψj,k (t) j,k j,k i,j,k ψj,k (t) = 2j/2 ψ(2j t − k) – p.4/17 Binary Confusion Noise h(t) = f (t) + PN i g i (t) Wavelet X X X dj,k ψj,k (t) = αj,k ψj,k (t) + β i j,k ψj,k (t) j,k j,k i,j,k Amplitude ψj,k (t) = 2j/2 ψ(2j t − k) Time (c) – p.4/17 Binary Confusion Noise h(t) = f (t) + PN i g i (t) Wavelet X X X dj,k ψj,k (t) = αj,k ψj,k (t) + β i j,k ψj,k (t) j,k j,k i,j,k Power Amplitude ψj,k (t) = 2j/2 ψ(2j t − k) (e) Frequency Time (f) – p.4/17 Wavelet CN (Fourier CN logN ) – p.5/17 BCN Wavelet Spectrum P P i 2 Ej := k αj,k + i βj,k Fourier Spectrum E ∼ ω −7/6 ⇒ Ej ∼ 2−j/6 Ej = P 2 k |αj,k | + i −j/6 E + RNj i j2 P – p.6/17 BCN P P i 2 Ej := k αj,k + i βj,k Wavelet Spectrum Fourier Spectrum E ∼ ω −7/6 ⇒ Ej ∼ 2−j/6 Ej = 2 k |αj,k | + i −j/6 E + RNj i j2 P Wavelet 0.6 0.5 Number BCN P 0.4 0.3 0.2 0.1 0 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 Base-10 Logarithm of Alpha – p.6/17 BCN P P i 2 Ej := k αj,k + i βj,k Wavelet Spectrum Fourier Spectrum E ∼ ω −7/6 ⇒ Ej ∼ 2−j/6 Ej = 2 k |αj,k | + i −j/6 E + RNj i j2 P Wavelet 0.6 0.5 P i −j/6 1/2 Bj := ( i Ej 2 + RNj )/T ⇒ BCN Number BCN P 0.4 0.3 0.2 0.1 0 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 Base-10 Logarithm of Alpha – p.6/17 Binary Confusion Noise ∗ αj,k Wavelet ∗ dj,k = αj,k + Bj ∗ αj,k = BCN dj,k Wavelet Reduction Rule sgn(dj,k )(|dj,k | − Bj ) if |dj,k | − Bj > 0 0 if |dj,k | − Bj < 0 – p.7/17 Binary Confusion Noise ∗ αj,k Wavelet ∗ dj,k = αj,k + Bj BCN dj,k Wavelet Reduction Rule sgn(dj,k )(|dj,k | − Bj ) if |dj,k | − Bj > 0 ∗ αj,k = 0 Bj BCN if |dj,k | − Bj < 0 – p.7/17 Binary Confusion Noise ∗ αj,k Wavelet ∗ dj,k = αj,k + Bj sgn(dj,k )(|dj,k | − Bj ) if |dj,k | − Bj > 0 0 Bj BCN if |dj,k | − Bj < 0 ∗ αj,k = BCN dj,k Wavelet Reduction Rule + – p.7/17 –BCN ( ) Amplitude Time-Series Data of Embedded Ringdown 0 10000 20000 30000 Time (sec) – p.8/17 –BCN 104 chirp BCN Time-Series Data Before our Algorithm Amplitude Amplitude Time-Series Data of Embedded Ringdown 0 10000 20000 Time (sec) 30000 0 0 10000 20000 30000 Time (sec) – p.8/17 –BCN BCN Time-Series Data Before our Algorithm Amplitude Amplitude Time-Series Data of Embedded Ringdown 10000 20000 30000 0 10000 Time (sec) 20000 30000 Time (sec) Time-Series Data After our Algorithm Amplitude 0 0 0 10000 20000 30000 Time (sec) – p.8/17 Wavelet + BCN BCN – p.9/17 – S/N S/N ρ=2 Z H(f ) · T (f )∗ df S(f )2 – p.10/17 – S/N S/N ρ=2 Z H(f ) · T (f )∗ df S(f )2 Log10 Signal to Ratio 7 6 5 4 3 2 1 0 2 4 6 8 10 12 Energy Ratio of BCN and Ringdown (g) RBCN S/N – p.10/17 – S/N S/N ρ=2 H(f ) · T (f )∗ df S(f )2 Z ρ vs ρafter 7 base-10 log S/N after WS Log10 Signal to Ratio 7 6 5 4 3 2 1 0 2 4 6 8 10 12 6 5 4 3 2 1 -0.5 0 Energy Ratio of BCN and Ringdown (h) RBCN S/N 0.5 1 1.5 2 base-10 log S/N (i) – p.10/17 – S/N S/N ρ=2 H(f ) · T (f )∗ df S(f )2 Z ρ vs ρafter 7 base-10 log S/N after WS Log10 Signal to Ratio 7 6 5 4 3 2 1 0 2 4 6 8 10 12 6 5 4 3 2 1 -0.5 0 Energy Ratio of BCN and Ringdown (j) RBCN S/N 0.5 1 1.5 2 base-10 log S/N (k) – p.10/17 Amplitude Amplitude – 20000 30000 0 10000 30000 Time [sec] (l) Time [sec] 20000 (m) BCN 10000 0 – p.11/17 1 BCN 2 Binary Confusion Noise BCN – p.12/17 BCN BCN 2 Binary Confusion Noise 1 Binary Confusion Noise – p.12/17 BCN BCN 2 Binary Confusion Noise 1 BCN Binary Confusion Noise – p.12/17 Amplitude Amplitude – BCN + 20000 30000 0 10000 30000 (o) BCN Time [sec] (n) Time [sec] 20000 10000 0 – p.13/17 BCN Unknown Signal Binary Confusion Noise – p.14/17 BCN Confusion Noise Wavelet Unknown Signal Binary Confusion Noise – p.14/17 BCN Confusion Noise Wavelet Unknown Signal Binary Confusion Noise Noise Confusion – p.14/17 Unknown Signal Binary Confusion Noise Wavelet BCN Confusion Noise Noise Confusion BCN 10 Ringdown 12.1 S/N – p.14/17 – TAMA TAMA 52F76_5_1_0.dat 0.15 Amplitude 0.1 0.05 0 -0.05 -0.1 -0.15 0.25 0.26 0.27 0.28 Time (sec) 0.29 0.3 (q) 52F70_9_1_0.dat 0.02 0.015 0.01 0.005 0 -0.005 0.5 1 1.5 2 Time (sec) 2.5 3 3.5 (r) 0 Amplitude (p) -0.2 0.24 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 Time (sec) 1 Amplitude 52F82_5_1_0.dat 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 – p.15/17 (Dimmelmeier et el. (2002)) Time-Series Data of Burst GW 4 Amplitude 2 0 -2 -4 -6 -8 -10 0 50 100 150 200 250 300 350 400 450 Time (milli sec) – p.16/17 +Gaussian Noise Time-Series Data of Burst GW Time-Series Data Before our Algorithm 4 0 Amplitude Amplitude 2 -2 -4 -6 -8 -10 0 50 100 150 200 250 300 350 400 450 Time (milli sec) 8 6 4 2 0 -2 -4 -6 -8 -10 -12 0 50 100 150 200 250 300 350 400 450 Time (milli sec) – p.16/17 Time-Series Data of Burst GW Time-Series Data Before our Algorithm 4 Amplitude 0 -2 -4 -6 -8 -10 0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450 Time (milli sec) Time (milli sec) Time-Series Data After our Algorithm 4 2 Amplitude Amplitude 2 8 6 4 2 0 -2 -4 -6 -8 -10 -12 0 -2 -4 -6 -8 0 50 100 150 200 250 300 350 400 450 Time (milli sec) – p.16/17 Time-Series Data of Burst GW Time-Series Data Before our Algorithm 4 Amplitude 0 -2 -4 -6 -8 -10 0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450 Time (milli sec) Time (milli sec) Time-Series Data After our Algorithm 4 2 Amplitude Amplitude 2 8 6 4 2 0 -2 -4 -6 -8 -10 -12 0 -2 -4 -6 -8 0 50 100 150 200 250 300 350 400 450 Time (milli sec) – p.16/17 – p.17/17