Test of scalar-tensor gravity theory from observations of gravitational
Transcription
Test of scalar-tensor gravity theory from observations of gravitational
LIGO-G1100039 Test of scalar-tensor gravity theory from observations of gravitational wave bursts with advanced detector network Kazuhiro Hayama National Astronomical Observatory of Japan Max Planck Institute for Gravitational Physics (Albert Einstein Institute Hannover) 1 2011年1月29日土曜日 Search for scalar gravitational waves Testing relativistic gravity theory is important for fundamental physics and cosmology e.g. dark matter, dark energy, accelerating the Universe. One of plausible gravity theories is scalar-tensor theory. Significant difference from the general relativity is the existence of a scalar field which is connected with the gravity field with coupling parameters, and a resulting scalar gravitational wave. Brans-Dicke theory is famous scalar-tensor theory which has a coupling parameter ωBD. Tensor GW search might miss some type of sources, e.g. highly spherical core collapse if scalar-tensor theory is correct. In this sense, search for SGW is complementary to current GW search. This talk will focus on search for SGW from Galactic spherical core collapses in Brans-Dicke theory. 2 2011年1月29日土曜日 Antenna pattern for scalar mode Antenna pattern function as a function of sky position (θ,Φ) is written as 1 F+ (Ω̂) = (1 + cos2 θ) cos 2φ 2 F× (Ω̂) = cos θ sin 2φ F◦ (Ω̂) = − sin2 θ cos 2φ. M.Tobar etal(1999), M. Maggiore etal(2000), K.Nakao etal(2001) Polarization of tensor, scalar gravitational wave Tensor GW h+ hx GW Fo(ϑ,φ) Scalar GW ho Spin0 C.Will, Living Review (2006) 2011年1月29日土曜日 3 Antenna pattern sky-map of scalar mode H1 HLV 90 N Fav(fo,H1) 90 N latitude 45 N latitude Latitude 45 N 0 0 45 S 45 S 90 S 180 W 90 S 180 W135 W 90 W 45 W 0 45 E 90 E 135 E 180 E longitude 135 W 0.05 0.1 0.2 0.3 0.15 0 longitude 0.2 45 E 0.25 90 E 0.3 135 E 0.35 180 E 0.4 HLVA HLVAJ 90 N 45 N latitude 45 N latitude 0.1 45 W 0.4 Longitude 90 N 90 W 0 45 S 0 45 S 90 S 180 W 0.05 2011年1月29日土曜日 135 W 0.1 90 W 0.15 45 W 0.2 0 longitude 0.25 45 E 0.3 90 E 0.35 135 E 0.4 90 S 180 W 180 E 4 135 W 0.1 90 W 0.15 45 W 0.2 0 longitude 0.25 45 E 90 E 0.3 135 E 0.35 180 E Coherent network analysis Coherent network analysis can extract scalar gravitational wave with more than 3 world-wide detectors. This approach combines data taking account of the sky position (ϑ,φ), arrival time difference τ(ϑ,φ) coherently, and calculates all polarization components at a certain direction of the sky which is most likely. Mathematical expression of the coherent network analysis Expression can be taken as of d-detectors F1+ x1 .. .. . = . Fd+ xd F1× .. . Fd× F1◦ h+ .. h + × . h◦ Fd◦ n1 .. . nd The reconstruction of a gravitational wave is an inverse problem. Maximum likelihood method to solve the inverse problem: L[h] :=� x − F h �2 Changing sky position (ϑ,φ), time difference τ(ϑ,φ). The mathematical formula of the reconstructed scalar gravitational wave is 1 h◦ = (((F+ × F× ) · (F× × F◦ )) · F+ det(M ) − ((F+ × F× ) · (F+ × F◦ )) · F× + ((F+ × F× ) · (F+ × F× )) · F◦ ) · x 5 2011年1月29日土曜日 Likelihood residual sky-map Scalar pipeline Full featured coherent network analysis pipeline(Data conditioning, detection stat., Veto analysis) One can apply the pipeline to H1,L1,V1,A1,LCGT Analysis result is output by a Web-based event display. amplitude spectrum density [Hzï1/2] Data set (H1,L1,V1,A1,LCGT) Data conditioning H1 ï21 10 ï22 10 ï23 10 2 10 3 10 frequency [Hz] Residual sky-map Coherent network analysis Likelihood stat 6 2011年1月29日土曜日 Demonstration of pol. reconstruction Reconstruction of h+, hx, ho As to injection signal, to see ho clearly, I used spike-like burst as ho. Although the grid of lat-lon map is coarse (4°x4°) in the simulation, ho is reconstructed clearly. h+, hx : SG235Q9 ho : Not injected h+, hx : SG235Q9 ho : Spike-like burst 7 2011年1月29日土曜日 Reconstructed scalar GW Astrophysical model used is a spherically symmetric core collapse with 10Mo at the distance of 10kpc from the earth.(M.Sibata,1994) ï21 x 10 strain HLV 5 0 ï5 HLVA strain 0 ï21 x 10 4 50 100 since GPS=873750608.4893[s] 150 [ms] 200 50 100 since GPS=873750608.4893[s] 8 150 [ms] 200 ï2 4 strain 200 0 ï21 x 10 2 0 ï2 ï4 0 2011年1月29日土曜日 150 [ms] 2 ï4 0 HLVAJ 50 100 since GPS=873750608.4893[s] ROC curve for adv. networks Simulated GWs is from spherical core collapse at 10kpc. Sky directions are uniformly distributed. 0 10 detection probability ~x5 ï1 ~x3 10 ï2 10 HLVAJ HLVA HLV ï3 10 ï4 10 2011年1月29日土曜日 ï3 10 ï2 ï1 10 10 9 false alarm rate 0 10 Waveform reconstructions for ωBDs We performed simulations to reconstruct scalar gravitational waves with ωBD = 40000,80000,120000,160000. This simulation uses the design sensitivity of advLIGO for LIGO, VIRGO, and LCGT. Astrophysical model used is the same as the previous simulation. ωBD=160000 ωBD=120000 ωBD=80000 ωBD=40000 h+ hx ho 10 2011年1月29日土曜日 ROC curve for ωBD 1 !BD 10-2 current constraint by Cassini 10-2 2011年1月29日土曜日 11 1 Summary We discuss search for scalar GW from Galactic spherical core collapse in Brans-Dicke theory with various adv det. network. Although depending sky location and models, it is possible to put stronger constraint on ωBD. LCGT and LIGO-Australia play an important role for search for scalar gravitational waves We need numerical simulations of scalar GW in S-T theory. 12 2011年1月29日土曜日 Wavrform comparison Red plot is injected ho signal and blue plot is the reconstructed ho. The difference at the low frequency region comes from the data conditioning step. Detector noise at low frequency is very high, such region is cut at the step. 13 2011年1月29日土曜日