OPERA: An Operational Atmospheric Correction for Land and Water
Transcription
OPERA: An Operational Atmospheric Correction for Land and Water
16/06/2015 OPERA : An Operational Atmospheric Correction for Land and Water Sindy Sterckx, Els Knaeps, Ils Reusen, Stefan Adriaensen, Liesbeth De Keukelaere (VITO ) Peter Hunter (University of Stirling) Daniel Odermatt (Odermatt-Brockmann) Claudia Giardino (CNR) Sentinel-3 for Science, 2-5 June 2015 SENTINEL-3 L1 data Land/Sea Mask L2 LAND processing L2 MARINE processing Oceans Coastal areas Land Estuaries ? Lakes ? Rivers ? 16/06/2015 © 2014, VITO NV 2 Typical marine atmospheric correction schemes might not work 16/06/2015 © 2014, VITO NV 3 Need to account for non-zero altitude 16/06/2015 © 2014, VITO NV 4 Need to account for non-zero NIR reflectance 16/06/2015 © 2014, VITO NV 5 Knaeps et al., 2014 Need to account for non-zero NIR reflectance (even at 1020 nm) ! 16/06/2015 © 2014, VITO NV 6 Need to account for non-water spectra 16/06/2015 © 2014, VITO NV 7 80 70 reflectance (%) 60 50 40 30 20 10 0 400 450 500 550 600 650 700 750 800 850 900 wavelength (nm) Need to account for adjacency effects 16/06/2015 © 2014, VITO NV 8 950 Typical land atmospheric correction schemes might not work over water 16/06/2015 © 2014, VITO NV 9 Need to account for non-lambertian reflection 16/06/2015 © 2014, VITO NV 10 OPERA: OPERational Atmospheric correction » Sensor generic ( Sentinel-3 , Sentinel-2, Landsat, Hyperspectral missions, …) » Scene generic allowing to correct both land and water areas » including turbid, high altitude, tidal or macrophyte dominated waters » Requires to account for surface elevation variation, adjacency effects, non-Lambertian reflection of water surfaces » Focus on operationability, minimal manual interaction, processing efficiency 16/06/2015 © 2014, VITO NV 11 OPERA overview TOA SCENE LAND/WATER MASKING LAND BASED AOT RETRIEVAL SZA,VZA,RAA DEM WATER VAPOR RETRIEVAL MODTRAN5 LUT ADJACENCY CORR. WATER: SIMEC LAND: RANGES ATMOSPHERIC CORR. 16/06/2015 © 2014, VITO NV L2 SCENE 12 Land-based AOT retrieval TOA SCENE Based on Guanter et al. (2008) RSE SZA,VZA,RAA DEM Cloud & Water masking Tiles creation Select Lmin(VIS) MODTRAN5 LUT NDVI selection Endmember inversion AOT tiles Inverse distance interpolation Resize (bilinear) Spatial smoothing AOT SCENE 16/06/2015 © 2014, VITO NV 13 Adjacency correction : SIMEC (over water pixels) » Basic assumption : Invariant shape of water reflectance in NIR, ie ‘‘similarity’’ NIR reflectance spectrum (Ruddick et al., 2006) » No assumption on NIR albedo Sterckx et al. (2015) RSE Sterckx et al. (2011) IJRS 16/06/2015 © 2014, VITO NV 14 Adjacency correction : SIMEC (over water pixels) » Basic assumption : Invariant shape of water reflectance in NIR, ie ‘‘similarity’’ NIR reflectance spectrum (Ruddick et al., 2006) Sterckx et al. (2015) RSE Sterckx et al. (2011) IJRS » No assumption on NIR albedo 16/06/2015 © 2014, VITO NV 15 OPERA on MERIS FR 16/06/2015 © 2014, VITO NV 16 WO HO MO 16/06/2015 © 2014, VITO NV 17 OPERA on LANDSAT 8 (OLI) 16/06/2015 © 2014, VITO NV 18 0.04 Mantua lakes (Italy) 0.07 P1 OPERA with SIMEC 0.03 Rw P1 OPERA without SIMEC 0.02 0.05 0.03 0.01 0 600 700 Wavelength (nm) 0.05 P2 0.04 P3 P4 800 900 P2 OPERA without SIMEC 0.02 600 700 Wavelength (nm) 800 900 P6 insitu P6 OPERA with SIMEC 0.05 0.04 P5 OPERA without SIMEC 0.03 0.02 0.01 0.01 0 0 500 600 700 Wavelength (nm) 0.05 800 P3 OPERA with SIMEC 0.03 Rw P3 OPERA without SIMEC 0.02 500 600 700 Wavelength (nm) 0.05 P3 insitu 0.04 400 900 800 900 P7 insitu 0.04 P7 OPERA with SIMEC P7 OPERA without SIMEC 0.03 Rw 400 0.02 0.01 0.01 0 0 400 500 600 700 Wavelength (nm) 0.05 800 900 400 500 600 700 Wavelength (nm) 800 P4 insitu 0.04 P4 OPERA with SIMEC 0.03 P4 OPERA without SIMEC Rw Landsat 8 23 Sept 2014 500 0.06 P2 OPERA with SIMEC 0.03 400 0.07 P2 insitu Rw P5 500 Rw 400 P6 P5 OPERA without SIMEC 0.04 0 P1 P5 OPERA with SIMEC 0.06 0.02 0.01 P7 P5 insitu 0.08 P1 insitu Rw 0.05 0.02 0.01 16/06/2015 0 400 VITO NV 700 500 © 2014, 600 19 800 900 900 Mantua lakes (Italy) 16/06/2015 © 2014, VITO NV 20 Belgian coast Aeronet OC (RBINS) +/- 4.5 km 16/06/2015 © 2014, VITO NV 21 OPERA without SIMEC : Reflectance Landsat8 865 nm band OSLO LC81970192014205LGN00 0.004 0.032 Image LC81970222014205LGN00 16/06/2015 © 2014, VITO NV 22 OPERA with SIMEC : Reflectance Landsat8 865 nm band LC81970192014205LGN00 0.004 0.032 Image LC81970222014205LGN00 16/06/2015 © 2014, VITO NV 23 OPERA without SIMEC : Reflectance Landsat8 655 nm band 16/06/2015 © 2014, VITO NV 24 OPERA with SIMEC : Reflectance Landsat8 655 nm band 16/06/2015 © 2014, VITO NV 25 OPERA without SIMEC : Landsat8 TSM MAP based on 655nm Nechad et al, 2010 0 8 mg/l 16/06/2015 © 2014, VITO NV 26 OPERA with SIMEC : Landsat8 TSM MAP based on 655nm Nechad et al, 2010 0 8 mg/l 16/06/2015 © 2014, VITO NV 27 OPERA without SIMEC : Reflectance Landsat8 865 nm band Image: LC81990242014075LGN00 16/06/2015 © 2014, VITO NV 28 OPERA with SIMEC : Reflectance Landsat8 865 nm band Image: LC81990242014075LGN00 16/06/2015 © 2014, VITO NV 29 OPERA without SIMEC : Landsat8 TSM MAP based on 865nm Nechad et al, 2010 0 16/06/2015 © 2014, VITO NV 100 mg/l 30 OPERA with SIMEC : Landsat8 TSM MAP based on 865nm Nechad et al, 2010 0 16/06/2015 © 2014, VITO NV 100 mg/l 31 Conclusions » Atmospheric correction : complex » Variability of inland waters adds more complexity Remote sensing : underutilised Need for adequate atmospheric correction algorithms » OPERA : step forward » SIMEC mainly neutral or positive effect. Adjacency effect not always clearly present. 16/06/2015 © 2014, VITO NV 32 Outlook » Mountainous regions : » Stability of AOT retrieval need to be improved » Alternative AOT retrieval specific for water areas » Use of SWIR bands » BUT »SNR issues ? »Accuracy of SWIR bands ? » eg. Pahlevan et al (2014) gains for OLI: (1.034 SWIR 1, 1.21 SWIR2 ) 16/06/2015 © 2014, VITO NV 33
Similar documents
Aardobservatie in beweging
Remote sensing of water quality colour of the sea = blue , green, white, red, yellow, brown and black or any intermediate shade.
More information