Spatial Phase Unwrapping by Mean of a Reliability
Transcription
Spatial Phase Unwrapping by Mean of a Reliability
Revista Colombiana de Física, vol. 40, No. 1, Abril 2008 Spatial Phase Unwrapping by Mean of a Reliability-Guided Path J. Garzón1 , C López1, D. Duque1, C. Restrepo1 y N. Álvarez2 1 Grupo de Óptica y Espectroscopía. Centro de Ciencia Básica Univ. Pontificia Bolivariana. AA 56006. Medellín, Colombia. [email protected] 2 Wizard 3D - Tecnología Interactiva. Envigado, Colombia. wizard-3D.com. Recibido 22 de Oct. 2007; Aceptado 3 de Mar. 2008; Publicado en línea 15 de Abr. 2008 Resumen En los sistemas de reconstrucción 3D por luz estructurada o interferométricos, el desenvolvimiento espacial de fase mediante métodos tradicionales constituye un problema difícil de resolver. El ruido inherente a la superficie, la baja visibilidad de los patrones de franjas, o el método computacional empleado para la extracción del mapa de fase son las principales causas. Recientes estudios en mapas de fase discontinuos demuestran que es posible llevar a cabo el desenvolvimiento espacial de fase utilizando parámetros de fiabilidad, los cuales contribuyen a reducir la propagación de errores que afectan la calidad de la corrección de fase. En el presente trabajo, hemos implementado un método para el desenvolvimiento espacial de mapas de fase utilizando únicamente como parámetro de fiablidad guiado la matriz de modulación de intensidad (IMM) del patrón de franjas. Antes de calcular la IMM, el mapa de fase es sometido a un conveniente proceso de filtrado. Los elementos de esta IMM permiten determinar la dirección del desenvolvimiento de fase sobre el mapa de fase filtrado. Esto quiere decir, que el píxel con el mayor valor de IMM dentro del mapa de dicho parámetro de fiabilidad será corregido en fase antes que cualquier otro píxel. La eficacia de este método es puesta a prueba en mapas discontinuos, los cuales fueron obtenidos por medio de técnicas como la transformada de Fourier y el corrimiento de fase. Palabras claves: modulación de intensidad, corrección espacial, camino de fiabilidad guiado. Abstract In the systems of reconstruction 3D of structured light or interferometric, the spatial phase unwrapping by traditional methods constitutes a difficult problem to solve.The inherent noise to the surface, low visibility of the fringes patterns or by computational method for obtaining the phase are the cause. Recent studies in discontinuous maps show the possibility for making the spatial phase unwrapping using parameters of reliability, which avoid the propagation of errors affect the quality of the phase unwrapping. In the following work, we have implemented a method for unwrapping of phase spatial maps taking only as parameter of reliability-guided the intensity modulation matrix (IMM) of the fringes pattern. Before calculating the IMM, the phase map is filtered appropriately. The elements of this IMM are used to identify the direction of phase unwrapping over the filtered phase map. It means that the pixel with higher parameter value in the parameter map will be phase unwrapped earlier. The efficiency of the method is proved in discontinuous maps, which were obtained by mean of Fourier transform and phase shifting. Key Words: matrix of intensity modulation, spatial unwrapping, reliability-guided path. © 2008 Revista Colombiana de Física. Todos los derechos reservados. 1. Introducción final phase of the test object, such as, random noise, local shadows, under sampling, fringe discontinuities and irregular surface brightness, following an advisable trajectory for the correction of each pixel present in the phase map, according to the values of the reliability - parameter or pa- Reliability - guided phase unwrapping algorithm[1] based on the reliability - guided parameters, allows to obtain a continuous phase map diminishing significantly all those factors that introduce errors in pixels of the distribution 150 r col. fís.(c), vool. 40, No. 1, (2008 rev. 8) rrameters that they indicate what pixels early e have to be c corrected and as others later,, taking then an a advisable orrder i the process of discontinu in uous phase unw wrapping. Firstt, a p parameter or parameters p - set s is selected for to orient the p path of phase unwrapping. Everything E pixxel of the discoont tinuous phase map displays a functional value of this par rameter or parrameters, reaso on why pertinnent combinatioons a due to chooose according to the necessiities of phase unare u w wrapping in thhe wished appliications. Somee of these param met ters can be: inntensity modullation functionn, the spatial fref q quency inform mation of the fringe f pattern, the phase difffere ence between neighboring n piixels and somee combinationss of t these parameteers. Intensity modulation m funnction commonly i used for phaase unwrappin is ng in noncontacct optical profi filom metry. The vaalue of modullation functionn in the areas of l local shadow and abrupt diiscontinuities is i lower than the v value in the otther zones, so that t it can servve as an excelllent g guide to determ mine a path off phase unwrappping. For temppor carrier frinnge pattern th ral he reliability parameter p can be c calculated as: M(x, y) = I mod(x, y) = 2 N N 2 ⎡ ⎛ 2πn ⎞⎤ ⎛ 2πn ⎞⎤ ⎡ ⎟⎥ ⎟⎥ + ⎢ I n (x, y) cos⎜ ⎢ I n (x, y) siin⎜ N ⎣⎢ n=1 ⎝ N ⎠⎦⎥ ⎝ N ⎠⎦⎥ ⎢⎣ n=1 ∑ ∑ Fig.1 Fringe F pattern projection p on an a object (face)). 2 (1) And for spatiaal carrier fringee pattern the reeliability param A met can be calcuulated as: ter M ( x, y ) = I mood ( x, y ) = [Im m(c ( x, y ) )]2 + [Re R (c ( x, y ) )]2 (2 ) Fig.2 Sccheme of reliabillity-guided phasse unwrapping allgorithm of the objecct(face) and its binary b mask W With: 1 c( x, y ) = I mod ( x, y ) exp(iφ ( x, y )) 2 (3) o from fringe pattern by c ( x , y ) , whhich could be obtained Fourier transfo F form [2], filterring and inverrse Fourier traansf form. 2 Reliability-guided phase unwrapping algorithm 2. a By means of a fringe pattern B n, and the experimental deviice: system of imaages acquisitio on adjusted byy a CCD cam mera ( (SONY XC-E ES50/ES30 XC C-ST70), an im mages acquisittion t target (Imaq PXI/PCI-1409),, a SANYO proojector with reesol lution of 600x800 and a com mputer, the frinnge pattern cann be g generated and then deformeed on the test object o for the rec construction 3 3-D. With the help of camerra CCD, the disd t torted fringe pattern p is cap ptured. The saame proceduree is f followed for thhe fringe patterrn projected onn the plane of the o object, for the case of the profilometry of surfaces s by traansf formed of Fouurier [3]; requiire only those two frames to be p processed Fig.1. Intensitty modulation function (IM MM) is obtaineed from a fringe pattern p by Fourrier transform and a its values in i areas of local shhadow and abrrupt discontinuuities are loweer than the values in i other zones, so that it cann be used for spatial s unwrappinng algorithm Fig.2, this algorrithm is as folloows: First, Fourier F transforrm method off fringe patternn Fig.3. is used to obtain the wraapped phase map m of a face, remember this veryy important meethod. Second,, determine the maximum vaalue or startingg point of phase unwrapping u andd mark it in thhe binary maskk as ‘1’ or ‘X’, theen order its 4 neighboring n pooints accordingg the IMM value from fr higher to lower one, thhe pixel with maximum IMM vaalue is put as ‘X’, for examplle 5x5 pixel arrea, Fig.2. Begin its i phase unw wrapping on thhe basis of thhe starting point[4]] and then marrk this point inn the binary maask as ‘1’, after orrder the new wrapped w pointss and determinne the new point with w maximum IMM value again. a Repeat each e time, and when all the poinnts of the binarry mask are puut as ‘1’ or p unwrappping is finisheed, for ex“white””, means that phase ample Fig.4 F and Fig.55. Unwrappping it makes iteratively, acccording to as it i is growing the set of pixels thhat conforms thhe vicinity, unntil including the phase p map totaally, throwing really r the waited for 151 J. Garzón et al.:: Spatial Phase Unnwrapping by Meaan of a Reliability-Guided Path Fig.3 Fourier transform methodd of fringe patterrn and wrapped phase p map. [1] [2] [3] [4] Fig.4 Unwrappped phase of a faace after that binnary mask has finnisshed. Fig.5 Image 3D of unwrapped u phasse map. ttotal correctionn. The conditiion to finish thhe process of unu w wrapping of phase, p dictatess the binary mask m to it, whhich b becomes a mattrix finally of ones. o A Acknowledgm ments The authors accknowledge th T he financial suppport of the UniU v versidad Ponttificia Bolivarriana, Medelllín-Colombia, its C Centro de Ciencia Básica an nd the Centro Integrado paraa el D Desarrollo de la l Investigació ón CIDI. R Referencias 152 X. Su and W. Cheen, “Reliability--guided phase unwrapping u w,” Opt. Eng. 422, pp. 245-261, 2004. 2 alggorithm: a review M.Takeda and S. Kobayashi, Fouurier-transform method of frinnge-pattern anallysis for computter- based topoggraphy and inteerferometry, J. Opt. O Soc. Am. Opt. 72, pp. 156-1160, 1981. X. Su and W. Chen, Fourier Transform T Profiilometry: a revview, Opt. Eng. 35, pp. 277, 20001. B.W Wang, Phase unnwrapping by bloocks, Measurement. No. 25 (19999); p. 285-290.