Schrödinger method
Transcription
Schrödinger method
Large scale structure formation with the Schrödinger method Cora Uhlemann Arnold Sommerfeld Center, LMU & Excellence Cluster Universe to be continued in Utrecht University, Netherlands visitor grant sponsored by Balzan Centre for Cosmological Studies Outline 1. Structure formation 2. Analytical description of cold dark matter a. dust model b. Schrödinger method c. coarse-grained dust model 3. Summary Cosmological Structure Formation -13.8 billion years: nearly uniform initial state Inflation • established `boring` initial conditions • quantum fluctuations get amplified • primordial plasma cools → recombination → CMB Structure formation • hierarchical • tiny over-densities act as seeds • congregation via gravitational instability • collapse into bound structures Large scale structure: Dark Matter • linear regime ✓ analytically understood • nonlinear stage ?! N-body simulations inevitable WANTED theoretical N-body double today: rich structures in cosmic web Kravtsov & Klypin (simulations @NCSA) Describing Cold Dark Matter with the Schrödinger method Describing Cold Dark Matter phase space distribution function f(t,x,p) • describes number density & distribution of momenta p numerical realization theoretical expectation W fcg Schrödinger fN N-body p p x x p x Pueblas & Scoccimarro (2009, PRD 80) Schrödinger method: Widrow & Kaiser (1993, ApJ 416) Widrow (1997, PRD 55) Describing Cold Dark Matter N-body picture • N non-relativistic particles • only gravitational interaction fN (x, p, ⇥ ) = Vlasov - Poisson equation ) ⇥t fN (x, p, ) = p rx fN + amrx V rp fN am N X D (x xi (⇥ ) ) D (p pi (⇥ ) ) i=1 pi ⇤ xi = , am ⇤ pi = amrV (xi ) 1 0 N 4⇥Gm @X xj ) hnN iA V (xi ) = D (xi a j6=i Describing Cold Dark Matter phase space distribution function f(t,x,p) • N-body: non-relativistic, only gravitationally • continuous: ensemble average, no collisions Vlasov - Poisson equation fN = f n= d3p f i D (x xi ) D (p pi ) p ⇤ gravitational f (x, p, ⇥ ) = rx f + amrx V rp f potential am p ⇤4f (x, Gmp, ⇥ ) = am rx f + am V (x, ⇥ ) = (n(x, ⇥ ) hni) Z aV (x, ⇥ ) = 4 Gm (n(x, ⇥ ) Z a density n = integro d3p f number p ⇤ f (x, p, ⇥ ) = rx f + amrx V rp f am 4 Gm partial V3+3+1 (x, ⇥ ) = (n(x, ⇥ ) hni) nonlinear Z a variables X Solving is hard! have to choose a special ansatz for f(x,p) reduce some information content n= d3p f Describing Cold Dark Matter continuous distribution function f(t,x,p) • ensemble average • dropping collision terms ~1/N Vlasov - Poisson equation fN = f X density n(x): M (0) = n(x) , velocity v(x): M (1) = nv(x) velocity dispersion 𝞼(x): M (2) = n (vv + ) (x) , … @t M (n) = 1 (n+1) r · M a2 m infinite coupled hierarchy xi ) D (p pi ) p ⇤ gravitational f (x, p, ⇥ ) = rx f + amrx V rp f potential am 4 Gm V (x, ⇥ ) = (n(x, ⇥ ) hni) Z a p ⇤ f (x, p, ⇥ ) = rx f + amrx V rp f am 4 Gm V (x, ⇥ ) = (n(x, ⇥ ) hni)Z n= a Z (n) 3 M (x) = d p p i 1 . . . pin f Hierarchy of Moments 3 n= d p f • • i D (x cumulant mrV · M (n 1) d3p f Describing Cold Dark Matter phase space distribution function f(t,x,p) • N-body: non-relativistic, only gravitationally • continuous: ensemble average, no collisions Vlasov - Poisson equation p ⇤ f (x, p, ⇥ ) = rx f + amrx V rp f am 4 Gm V (x, ⇥ ) = (n(x, ⇥ ) hni) Z a Hierarchy of Cumulants 3 n= • • dp f fN = f X i D (x xi ) D (p p ⇤ gravitational f (x, p, ⇥ ) = rx f + amrx V rp f potential am 4 Gm V (x, ⇥ ) = (n(x, ⇥ ) hni) Z a n= d3p f density n(x): C (0) = ln n(x) , velocity v(x): C (1) = v(x) velocity dispersion 𝞼(x): C (2) = (x) , … @t C (n) = n h X 1 (n+1) (n+1 r · C + C a2 m |S|=0 consistent truncation C ( n) ⌘0 pi ) |S|) · rC (|S|) 9n : |S| 1 ^ |S| i n1 · mrV ! n 8S ) n = 2 Dust model dust model • only consistent truncation of hierarchy • pressureless fluid: density and velocity fd (x, p, ⌧ ) = n(x, ⌧ ) Continuity ⇥⌧ n = Euler ⇥⌧ = (3) D (p r (x, ⌧ )) 1 r(nr ) am 1 (r )2 amV 2am • • limited to single-stream no velocity dispersion, … • • shell-crossing singularities no virialization fd impossible with dust fd Schrödinger method Schrödinger method self-gravitating field = p n exp i ~ Schrödinger - Poisson equation ~2 i~@t = + mV 2 2a m 4⇡G⇢0 V = (| |2 1) a = Schrödinger method Schrödinger method Wigner function, constructed from self-gravitating field Z 3 0 3 0 d xd p exp 3 ( ⇥x ⇥ p ) (x 0 2 x) 2⇥x2 Wigner-Vlasov equation @ t fW p2 = + mV 2 2a m Vlasov equation 2 sin ~ 0 2 (p p ) fW (x, p) = 2 2⇥p ✓ ! ~ (rx rp 2 ⇣ ! p2 @t f = + mV rx rp 2 2a m Z n exp i ~ 3 d x̃ i 0 0 ¯ 0 + x̃) exp 2 p · x̃ ⇤(x x̃) ⇤(x (2 ~)3 ~ Schrödinger - Poisson equation ◆ ! rp rx ) fW !⌘ rp rx f = p Problems • Wigner distribution function not manifestly positive • time evolution not in good correspondence to Vlasov ~2 i~@t = + mV 2 2a m 4⇡G⇢0 V = (| |2 1) a Schrödinger method Schrödinger method • Coarse-grained Wigner function, constructed from self-gravitating field W fcg (x, p) = Z 3 0 3 0 d xd p exp 3 ( ⇥x ⇥ p ) (x 0 2 x) 2⇥x2 (p 0 2 p) 2⇥p2 Z 3 = p n exp d x̃ i 0 0 exp 2 p · x̃ ⇤(x (2 ~)3 ~ i ~ ¯ 0 + x̃) x̃)⇤(x Schrödinger - Poisson equation Wigner-Vlasov equation @ t fW p2 = + mV 2 2a m Vlasov equation 2 sin ~ ✓ ! ~ (rx rp 2 ⇣ ! p2 @t f = + mV rx rp 2 2a m ◆ ! rp rx ) fW !⌘ rp rx f Problems • Wigner distribution function not manifestly positive • time evolution not in good correspondence to Vlasov • solution: add a coarse-graining x p & ~/2 ~2 i~@t = + mV 2 2a m 4⇡G⇢0 V = (| |2 1) a Schrödinger method Schrödinger method • Coarse-grained Wigner function, constructed from self-gravitating field W fcg (x, p) = Z 3 0 3 0 d xd p exp 3 ( ⇥x ⇥ p ) (x 0 2 x) 2⇥x2 (p 0 2 p) 2⇥p2 Z 3 = p n exp d x̃ i 0 0 exp 2 p · x̃ ⇤(x (2 ~)3 ~ i ~ ¯ 0 + x̃) x̃)⇤(x Schrödinger - Poisson equation degrees of freedom • 2: amplitude n & phase ϕ parameters • coarse-graining x , p • fundamental resolution • Schrödinger scale ~ • degree of restriction • dust as special case ~2 i~@t = + mV 2 2a m 4⇡G⇢0 V = (| |2 1) a x p & ~/2 Continuity ⇥⌧ n = Euler ⇥⌧ = 1 r(nr ) quantum potential am ✓ p ◆ 2 1 ~ n 2 (r ) amV + p 2am 2am n Schrödinger method at a glance time-evolution f Wigner Vlasov WANTED shellcrossing N-body double fN x p f W ~!0 fd dust ⌧ xtyp ⌧ ptyp ~/2 . coarse grained Vlasov fcg x p Takahashi (1989, PTP 98) coarse grained Wigner W fcg Features of Schrödinger Method ✅ prevention of shell-crossing singularities ⁉ occurrence of phase jumps ‼ = p nei /~ free of pathologies Features of Schrödinger Method phase space density Multi-streaming ❌ dust model: fails at shell-crossing ✅ Schrödinger method: can go beyond shell-crossing blue S contours: Schrödinger method red dotted Z line: Zeldovich solution (dust model) Virialization ❌ even in extended models: no virialization ✅ Schrödinger method: bound structures like halos FOUND WANTED theoretical N-body double for fN Features of Schrödinger Method Schrödinger method • Coarse-grained Wigner function, constructed from self-gravitating field W fcg (x, p) = Z 3 0 3 0 d xd p exp 3 ( ⇥x ⇥ p ) (x 0 2 x) 2⇥x2 (p 0 2 p) 2⇥p2 Z 3 n̄(x) = exp • 2 2 x ⇤ n(x) C (0) = ln n, C (n+2) = C (1) = r ~2 rrC (n) 4 add coarse-graining on top of that i ~ ¯ 0 + x̃) x̃)⇤(x special p-dependence ⇥1 1 v̄(x) = exp 2 amn̄(x) higher cumulants given self-consistently evolution equations fulfilled automatically n exp d x̃ i 0 0 exp 2 p · x̃ ⇤(x (2 ~)3 ~ Cumulants • lowest two: macroscopic density & velocity ⇥1 = p 2 x ⇤ (nr ) (x) closure of hierarchy CU, Kopp & Haugg (2014, PRD 90, 023517) Multi-streaming • • higher cumulants encode multi-streaming effects during shell-crossing: higher moments sourced dynamically H1L 1 CH1L = = uu C H2L H2L 33 H3L H3L Out[112]= u @10-3 cD C C Out[112]= u @10-3 cD u @10-3 cD Features of Schrödinger Method C C 0 -1 0.0 0.5 1.0 1.5 2.0 2.0 2.5 2.5 x @MpcD a Schrödinger method: cumulants at x = −0.5 Mpc: all equally important after shell crossing x @MpcD Schrödinger method at a glance f f Wigner Vlasov Features of Schrödinger Method ! WANTED N-body double fN blue S: Schrödinger method! red Z: Zeldovich solution Virialization after shell-crossing: all cumulants important dust H1L 1 C =u C 3 C H2L H3L 0 -1 0.0 ! ❌ even in extended models: ! no virialization ✅ Schrödinger method: ! bound structures! fd phase space density Multi-streaming ! ❌ dust model: ! fails at shell-crossing! ! ✅ Schrödinger method: beyond shell-crossing W 0.5 1.0 1.5 2.0 2.5 FOUND! ! ! WANTED! ! ! theoretical N-body double for fN coarse grained Vlasov coarse grained Wigner fcg W fcg Dark Matter power spectrum with the Coarse-grained dust model Coarse-grained perturbation theory f Vlasov fd WANTED dust N-body double coarse grained dust d fcg fN coarse grained Vlasov coarse grained Wigner fcg W fcg Eulerian Perturbation Theory Dust model • express fluid equations in terms of = n 1 and ✓ = r · v / • perturbative expansion: separation ansatz (fastest growing mode) (⌧, k) = 1 X an (⌧ ) n (k) n=1 ✓(⌧, k) = H(⌧ ) 1 X (no vorticity) an (⌧ ) ✓n (k) n=1 Correlation function • 2-point correlation: excess probability of finding 2 objects separated by r homogeneity & isotropy: ⇠(r) = ⇠(r) dP = n[1 + ⇠(r)]dV ⇠(r) distribution with excess & defect r r+ r- random 0 Poisson distribution r+ r- r Eulerian Perturbation Theory Dust model • express fluid equations in terms of = n 1 and ✓ = r · v = • perturbative expansion: separation ansatz (fastest growing mode) (⌧, k) = 1 X an (⌧ ) ✓(⌧, k) = H(⌧ ) n (k) n=1 Density power spectrum 1 X (no vorticity) an (⌧ ) ✓n (k) n=1 105 correlation function = FT of power spectrum Pdd @Mpc-3 D 104 1000 ⇠(r) = 100 10 0.001 • • linear 1-loop 0.01 k @Mpc-1 D 0.1 1 1 2⇡ 2 Z dk k 2 P (k) sin(kr) kr Eulerian Perturbation Theory Coarse grained dust model • consider only 𝜎x correction in Schrödinger method • in 1st order: smoothing of input power spectrum Density power spectrum 105 Pdd @Mpc-3 D 104 1000 finite resolution effects linear dd SPT linear dd cgSPT 1Mpc linear dd cgSPT 2Mpc 1-loop dd SPT 100 1-loop dd cgSPT 1Mpc 1-loop dd cgSPT 2Mpc 10 0.001 0.01 k @Mpc-1 D 0.1 1 trivial effect: density power spectrum gets smoothed Eulerian Perturbation Theory Coarse grained dust model • similar to dust, but mass-weighted velocity • large scale vorticity w̄ := r ⇥ v̄ 6= 0 ❗ nv v̄ := n̄ Vorticity power spectrum Pww(k) corresponding N-body data Pww @HkmêHs MpcêhLL2 h-3 Mpc3 D CU & Kopp (2015, PRD 91, 084010, arXiv: 1407.4810) 100 ww cgSPT 1Mpcêh 10 ww cgSPT 2Mpcêh 1 ww cgSPT 4Mpcêh 0.1 0.01 0.001 0.001 0.01 k @h Mpc-1 D 0.1 1 Hahn, Angulo & Abel (2014, arXiv:1404.2280) Conclusion & Prospects Schrödinger method • models CDM using a self-gravitating scalar field • analytical tool to access nonlinear stage of structure formation • describes multi-streaming & allows for virialization CU, Kopp, Haugg (2014, PRD 90, 023517, arXiv: 1403.5567) Coarse-grained dust model • mass-weighted velocity via Gaussian smoothing • vorticity compatible with N-body CU & Kopp (2015, PRD 91, 084010, arXiv: 1407.4810) Prospects • Schrödinger method in terms of a filtering of the distribution function • approximate hierarchy closures instead of exact truncation • comparison of moments 1D Schrödinger vs. 1D Vlasov-Poisson • disentangle limitations of pressureless fluid & perturbation theory • • consider the effect of varying phase-space resolution ~ understand universal density profiles of halos (NFW) q Thank You for Your Attention Questions?
Similar documents
DIBELS Deep Brief Reading Diagnostic Tools: Development
Plots, Summary Reports, Cross-Year Box Plots, Summary of Effectiveness Reports, Classroom progress graphs, Class List Reports
More information