Multiscale Modeling of Indentation: from atom to continuum
Transcription
Multiscale Modeling of Indentation: from atom to continuum
Multiscale Modeling of Indentation: from atom to continuum Hyung-Jun CHANG, Marc FIVEL, David RODNEY, Marc VERDIER, SIMaP-GPM2, Grenoble INP / CNRS [email protected] Colloque Plasticité 2012, 11-13 Avril 2012, Metz Multiscale Materials Modelling Scanning Electron Microscope Transmission Electron Microscope Eye Optical Microscope High Resolution Electron Microscope Discrete dislocation dynamics Molecular dynamics Size [m] Crystal plasticity (polycrystals) Crystal plasticity (single crystals) Time [s] Homogenization technics Continuum mechanics Discrete Dislocation Dynamics (code TRIDIS) Dislocations = edge and screw segments embedded in an elastic continuum (Kubin, Canova and Bréchet 1992) (similar to elastic inclusions) Driving force = elastic stress tensors (internal + applied) v= τb B r b τ Example : Frank Read source directglide) output ExamplePlastic : (112) deformation: tensile test (double Modern Discrete Dislocation Dynamics Codes (e.g. Paradis) (project NUMODIS (CNRS-CEA) L. Dupuy, M. Blétry) Nodal code Frank-Read source + partials Dislocation junctions Stacking Fault Tetraedra Advantage : closer to reality Drawback : Ten times slower Multiscale Materials Modelling Scanning Electron Microscope Transmission Electron Microscope Eye Optical Microscope High Resolution Electron Microscope Discrete dislocation dynamics Molecular dynamics Size [m] Crystal plasticity (polycrystals) Crystal plasticity (single crystals) Time [s] Homogenization technics Continuum mechanics Multiscale Materials Modelling Scanning Electron Microscope Transmission Electron Microscope Eye Example of scale transition : Optical Microscope From Electron dislocation dynamics to continuum mechanics High Resolution Microscope Discrete dislocation dynamics Molecular dynamics Size [m] Crystal plasticity (polycrystals) Crystal plasticity (single crystals) Time [s] Homogenization technics Continuum mechanics Identification of crystal plasticity constitutive equations (Coll. L. Tabourot, C. Déprés, SYMME, Annecy) γ& (s) asu ~ a = 0,09 1/m ⎛τ ⎞ = γ& ⎜ (s) ⎟ ⎜τ ⎟ ⎝ μ ⎠ (s) (s) 0 τ = μb (s) μ K = 32 12 (u) a ρ ∑ su βR = yc ~ b u =1 ⎛ ⎜ 1⎜ ρ& (s) = ⎜ b⎜ ⎜ ⎝ 12 ∑ d su ρ (u) u =1 K ⎞ ⎟ ⎟ − 2βRρ (s) ⎟ γ& (s) ⎟ ⎟ ⎠ 3D tensorial framework ⎧ ⎪ 12 ⎪ τ& μ(s) = ∑ ⎨ u =1 ⎪ 2 ⎪ ⎩ μa su 12 ∑a p =1 sp ρ (p) ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ + Recently revisited by : L. Kubin, B. Devincre and T. Hoc, Acta Mater., (2008) 12 ∑d q =1 uq K ρ (q) ⎞ ⎫ ⎟ ⎪ ⎟ (u) ⎪ (u) − 2βRρ ⎟ γ& ⎬ ⎟ ⎪ ⎟ ⎪ ⎠ ⎭ soit 12 τ& = ∑ h su γ& (u) (s) μ u =1 Finite Element Implementation (ABAQUS : UMAT and VUMAT) Example multicrystal Al (Ph. D. Hyung-Jun CHANG (2009)) Example of DD applications: (See also http://www.numodis.fr) Clear channels in AISI 316L steel Ph.D. Thomas NOGARET (2007) Plastic behavior of BCC Fe Ph.D. Julien CHAUSSIDON (2007) Ph.D. Daniel GARCIA-RODRIGUEZ (2011) Creep of ice single crystals Ph.D. Juliette CHEVY (2008) Micro-compression of Mg pillars Ph.D. Gyu Seok KIM (2011) Crack initiation in fatigue Ph.D. Christophe DEPRES (2004) Ph D. Chan Sun SHIN (2004) (111) Nanoindentation in Cu single crystal Ph.D. Hyung Jun CHANG (2009) 3D simulation of nanoindentation Example #1 : From MD to DD DD coupled to FEM = ideal tool to investigate nanoindentation issues : indentation size effect, pile-up vs sink in mechanism, microstructure formation,… Problems : I- Coupling DD to FEM - Superposition principle [σ]eff = [σ]disl + [σ]FE II- Need of a nucleation criterion for dislocations: 1- What to put in ? 2- When to put it in ? MD or experiments Problem I: Enforcing boundary conditions : DD-FEM coupling method (superposition) E. van-der-Giessen, A. Needleman, Mater. Sci. Eng. , (1995) Full problem Fap d2Ω σ(M) Ω d1Ω DD sub-problem FE sub-problem Fap-FD FD σ(M) Ω UD Uap Dislocation theory (∞ medium) ~ σ = σ$ + σ σ(M) Ω Uap- UD Coupling with Finite Elements (CAST3M) Problem I: Enforcing boundary conditions : DD-FEM coupling method (superposition) Application to nanoindentation Uap- UD 0-FD Problem II: Nucleation criterion : What to introduce ? (Molecular Dynamics modeling) Simulation campaign : Material = Ni (EAM potential) Indenter = spherical repulsive potential Monitored in displacement 2 radii : Rind = 60Å and 120 Å 3 sizes : 174x198x163 Å3 (521.640 atoms) 224x284x285 Å3 (1.675.080 atoms) 301x301x200 Å3 (1.524.600 atoms) (111) (121) Periodic BC Molecular Dynamic simulations of (111) indentation The loading curves : study of the elastic part 4 E 2 ⎛ h F= Rind ⎜⎜ Hertz prediction : 3 1 −ν ⎝ Rind Atomistic results : F = αh p Where And 2.5e-006 1,65 < p < 1,75 20,15< α < 30,65 Ni1 Ni2 Ni3 Ni4 Ni6 Ni8intel Ni8gnu 2e-006 1.5e-006 ⎞ ⎟⎟ ⎠ 3/ 2 (p decreases as Zmax increases) (when F in nN and h in Å) (111) First Pop in (121) F[N] Zmax 1e-006 5e-007 0 0 5e-010 1e-009 h[m] 1.5e-009 2e-009 Molecular Dynamic simulations of (111) indentation The dislocation structure : study of the initial defect Molecular Dynamic simulations of (111) indentation The dislocation structure : structure at equilibrium 2 to 3 prismatic loops High sensibility to boundary conditions Molecular Dynamic simulations The dislocation structure : structure after the first pop in Same process = more prismatic loops with larger size Horizontal half loops propagate to accommodate the indentation print Dislocation nucleation criterion : What to put in ? Atomistic simulations summarized : ; Contact area (111) [110] b3=[110] Prismatic loops Problem II: Nucleation criterion : What to put in ? When to put it in ? Shape of Nucleation (MD,111) Master curve (MD,111) 2.5 F [mN] 2.0 Ni1 Ni2 Ni3 Ni4 Ni6 Ni8 First Generation of Dislocation loops 1.5 1.0 0.5 0.0 0.0 What : 3 Prismatic loops 0.5 1.0 depth [nm] 1.5 When : Follow master curve Good : Criterion without any experimental results Weak : MD response extrapolated for deeper indentation depth ! Alternative nucleation criteria : - Experimental master curve - Geometrically necessary dislocations 2.0 Dislocation Dynamics simulations Specimen Copper single crystal (111 surface) Sphere (r=150nm) Cone (angle = 71.2o) Tip geometries Nucleation method 1. Global criterion : Force controlled Nucleation Master curve from MD (sphere) or Exp (cone) 2. GND criterion : Depth controlled Nucleation Cross-slip probability (effect of Temperature) L δt ⎛ τ * −τIII ⎞ P =β exp⎜ ⎟ L0 δt0 ⎝ kT/ V ⎠ τ III = ∞(no ), 640 MPa(Hard ), 32MPa(Easy ) Dislocation Dynamics simulations (111) Spherical indentation Dislocation evolution (MD global crit. + no cross-slip) 5nm depth 10nm depth (1 0- 1) σ > line tension Î F-R source 60nm depth (1-2 1) Contact area ↑ Î loop length ↑ (1 0- 1) (1 0- 1) (1-2 1) (1-2 1) Loop Length ↑ Line tension ↓ No space to nucleation (1 1 1) (1 1 1) (1-2 1) Nucleation only (similar to MD) 150nm (1 1 1) (1-2 1) 150nm Nucleation and Frank-Read sources (1-2 1) 230nm Frank-Read sources only (111) Spherical indentation Cross-slip effect (MD global crit.) Before unloading (60nm depth) 230nm 230nm 230nm No cross-slip Hard cross-slip Easy cross-slip After unloading (60nm depth) (1 0- 1) (1 0- 1) (1 0- 1) 230nm (1-2 1) (1-2 1) (1-2 1) 230nm 230nm Cross-slip↑ Î more irreversible micro structure (111) Conical indentation : Force-Displacement response (exp. Nucleation crit.) Hardness Total Force 0.5 MD global criterion GND criterion Exp. global criterion 30000 Hardness (MPa) Force (mN) 0.4 35000 0.3 0.2 25000 MD global criterion Exp. global criterion GND criterion 20000 15000 10000 0.1 5000 0.0 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 Total displacement(µm) ( μm) MD global crit. GND crit. Exp. global crit. 0 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 Indenting depth(µm) (nm) ÎTwo phase behavior ( linear to parabolic) Hardness : Decreases with depth Î single behavior ( ≈ linear response) Exp. global crit. Î long range decreasing Indentation Size Effect 3D simulation of nanoindentation Time [s] Exemple #2 : From Dislocation Dynamics to Continuum Mechanics Size [m] Experimental data Sample preparation Crystal ILL : (110), (001), (111) surface orientation Cut by spark erosion from bulk single crystal (high ρini) (110) (001) (111) Crystal B. : (123), (111low) surface orientation Grown from high purity Cu using Bridgman technique (low ρini) (12-3) (-541) (111 low) - 4 surface orientations - 2 initial dislocation densities for (111) orientation Experimental data (conical indentation) Indentation loading curves 1200000 60000 111 110 111 001 123 (111low) 40000 30000 20000 10000 0 0 110 111 111 001 123 1000000 Stiffness (N/m) 50000 Force ( μN) S 500 1000 800000 600000 400000 200000 0 1500 Depth (nm) 0 500 1000 1500 Depth (nm) 90 900 Hardness ( MPa) Area Area( (μμm m22) ) 80 800 70 700 60 50 600 110 111 001 123 Orientation Orientation 111low 500 110 111 001 123 Orientation 111low Strong effect of initial dislocation density & Weak effect of orientation Experimental data (conical indentation) Surface morphologies (AFM) (001) Surface (110) Surface μm 5μm (123) Surface μm μm 5μm 5μm (111) Surface (highρini) (111) Surface (lowρini) μm μm Surface morphology strongly affected by Surface orientation 5μm 5μm To check by FEM modelling Crystal Plasticity Modeling Nanoindentation procedure FEM Experiment Sapphire conical tip Rigid body tip (identical) Tip angle = 71.2o Tip Indentation depth 1400 nm hsphere=200 nm 4 Specimens 4 Cu single crystals Crystal plasticity theory 5mm × 5mm Strain rate control Loading condition −2 & ε = 5 ×10 / sec 5mm × 5mm Velocity control Crystal Plasticity Modeling Dislocation density based model 1/m γ& (s) ⎛ (s) ⎞ (s) ⎜ τ = γ& 0 (s) ⎟ ⎜τ ⎟ ⎝ μ ⎠ τ = μb (s) μ 12 ∑a u =1 su ρ (u) ⎛ 12 ⎞ ⎜ ∑ d su ρ (u) ⎟ ⎟ 1⎜ − 2βRρ (s) ⎟ γ& (s) ρ& (s) = ⎜ u =1 b⎜ K ⎟ ⎜ ⎟ ⎝ ⎠ Crystal plasticity model ⎧ ⎪ 12 ⎪ τ& μ(s) = ∑ ⎨ u =1 ⎪ 2 ⎪ ⎩ μa su 12 ∑a p =1 sp ρ (p) ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 3D ABAQUS simulations 12 ∑d q =1 uq K ρ (q) ⎞ ⎫ ⎟ ⎪ ⎟ (u) ⎪ (u) − 2βRρ ⎟ γ& ⎬ ⎟ ⎪ ⎟ ⎪ ⎠ ⎭ soit 12 τ& = ∑ h su γ& (u) (s) μ u =1 Crystal Plasticity Modeling Parameters used in the crystal plasticity model Elastic properties for T* = CE [E* ] From text book Initial dislocation density and Surface orientation C11 168.4 GPa C12 121.4 GPa C44 75.4 GPa Surface Orientation FWHM (111) (θ scan °) Relative disl. density Initial density (total) (011) 1.35 6~8 1.56×1014/m2 (111) 0.57 3~4 1.20×1014/m2 (001) 0.56 3~4 14/m2 1.20×10 Unknown (123) 0.2 1 3.00×1013/m2 (111low) 0.08 0.2 ~ 0.3 6.00×1012/m2 From X-ray results Hardening parameters b From DD theory α1~6 a1~6 K 2.56×10-10 m yc 1.43×10-9 m Taylor (0.09, 0.09, 0.09, 0.09, 0.09, 0.09) Hetero (0.122, 0.122, 0.07, 0.137, 0.122, 0.625) Normal (0.01, 0.4, 0.4, 0.75, 1.0, 0.4), K=36 Same a1-6 same as α1~6 , K=36 High K (0.01, 0.4, 0.4, 0.75, 1.0, 0.4), K=100 M. Fivel, PhD Thesis, (1997) L. Kubin, B. Devincre and T. Hoc, Acta Mater., (2008) Crystal Plasticity Modeling Effect of orientation (001) Surface (Hetero / Same) (110) Surface 3% 5μm 5μm (ρini= 1.2×1013/m2) (111) Surface (123) Surface Weak effect on loading curve 5μm 5μm Strong effect on surface displacement Crystal Plasticity Modeling / Comparison with experiments Effect of dislocation density for (111) orientation (Hetero / Same) 60000 Force ( μN) 50000 40000 (111) Surface (high ρini) 111 surface orientation Experiment high density low density Simulation 14 2 ρini=1.8x10 /m 14 2 13 2 13 2 12 2 12 2 ρini=1.2x10 /m 30000 ρini=3.6x10 /m ρini=1.2x10 /m 20000 ρini=6.0x10 /m ρini=1.2x10 /m Crystal ILL Crystal B. 5μm 10000 0 0.0 0.2 0.4 μm 0.6 0.8 1.0 1.2 1.4 depth ( μm) (111) Surface (low ρini) μm Strong effect on loading curve Optimized initial dislocation density ρini= 6.0×1012/m2 for (111low) ρini= 1.2×1014/m2 for (111high) What about the other orientations ? 5μm Strong effect on surface shape Crystal Plasticity Modeling / Comparison with experiments Comparison of quantitative results EXP. Force ( μN) 50000 40000 30000 ρini= 1.56×1014/m2 ρini= 1.20×1014/m2 ρini= 1.20×1014/m2 ρini= 3.00×1013/m2 ρini= 6.00×1012/m2 FEM (110) (111) (001) (123) (111low) (110) (111) (001) (123) (111low) 20000 1000000 Stiffness (N/m) 60000 800000 600000 400000 0 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 200 400 Hardness ( MPa) 70 60 110 111 800 1000 1200 1400 Experiment Simulation 900 Experiment Simulation 80 600 Depth (nm) depth ( μ m ) 90 Area ( μm2) exp sim 110 111 001 123 200000 10000 50 (hetero / same) 001 123 Optimized initial densities 700 600 500 111low Orientation 800 x5 2 (011) 1.56×1014/m (111) 2 1.20×1014/mx4 (001) 2 1.20×1014/mx4 110 111 001 123 111low Orientation (123) (111low) 3.00×1013/m21 2 6.00×1012/mx.2 ; X-Rays Crystal Plasticity Modeling / Comparison with experiments Effect of hardening parameters for (111) orientation 70000 EXP 60000 α1~6 Hetero μm Normal 5μm 5μm μm 40000 a1~6 Force ( μN) 50000 μm Experiment FEM Hetero Taylor normal same high K Taylor 30000 20000 Same 10000 5μm 0 0.0 5μm 0.2 0.4 0.6 0.8 1.0 1.2 5μm 1.4 depth ( μm) μm Weak effect on loading curve Obtained hardening parameter Hetero + Same High K Need to check for other orientation 5μm 5μm Influence surface morphology Crystal Plasticity Modeling / Comparison with experiments Comparison of Surface morphology (hetero / same) FEM FEM EXP (001) Surface (111) Surface (high ρini) μm 5μm 5μm 5μm 5μm 5μm μm 5μm (111) Surface (low ρini) μm (110) Surface EXP 5μm μm 5μm μm (123) Surface Confirmed hardening parameter 5μm 5μm b 2.56×10-10 m α1~6 Hetero (0.122, 0.122, 0.07, 0.137, 0.122,0.625) a1~6 K Same same as α1~6 , K=36 yc 1.43×10-9 m Crystal Plasticity Modeling / Comparison with experiments Comparison of pile up morphology (hetero / same) 0.4 Unload FEM Unload EXP 111 (highρini) 0.2 0.1 0.0 0.0 45 90 135 180 225 270 315 360 0 45 90 135 Theta θ 180 225 270 315 360 Theta 0.4 0.4 0.4 Unload FEM Unload EXP 001 Uz ( μm) 0.2 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0 45 90 135 180 Theta 225 270 315 360 0 45 90 135 Unload FEM Unload EXP 110 Uz ( μm) Unload FEM Unload EXP 0.3 Uz ( μm) 111 (lowρini) 0.2 0.1 0 Unload FEM Unload EXP 0.3 Uz ( μm) Uz ( μm) 0.3 0.4 180 Theta 225 270 315 360 0 45 90 135 123 180 225 270 315 Theta The hardening parameter (hetero/Same) is confirmed quantitatively 360 Crystal Plasticity Modeling / Comparison with experiments Conclusion : best set of parameters Elastic [ ] T =C E * E * Initial dislocation density and Surface orientation C11 168.4 GPa C12 121.4 GPa C44 75.4 GPa Surface Orientation Relative disl. density Initial density (total) (011) 6~8 1.56×1014/m2 (111) 3~4 1.20×1014/m2 (001) 3~4 1.20×1014/m2 (123) 1 3.00×1013/m2 (111low) 0.2 ~ 0.3 6.00×1012/m2 Hardening b 2.56×10-10 m α1~6 Hetero (0.122, 0.122, 0.07, 0.137, 0.122,0.625) a1~6 K Same same as a1~6 , K=36 yc 1.43×10-9 m L. Kubin, B. Devincre and T. Hoc, Acta Mater., (2008) 5 nm Molecular Dynamics 50nm 1 2 3 4 5 6 Multi scale modelling of indentation 7 8 9 10 Dislocation dynamics Finite Element Crystal plasticity 11 12 Experiments