SOME TRENDS IN IMPROVING HYPERSONIC VEHICLES
Transcription
SOME TRENDS IN IMPROVING HYPERSONIC VEHICLES
' XIV ISABE, 5-10 September, Florence, Italy $ SOME TRENDS IN IMPROVING HYPERSONIC VEHICLES’ AERODYNAMICS AND PROPULSION (Fundamentals of AJAX Project) V.I. Golovitchev, and J. Hansson Thermo- and Fluid Dynamics Chalmers University of Technology & Golovitchev, V.I., and Hansson, J. S-41 296 Göteborg, Sweden % ' XIV ISABE, 5-10 September, Florence, Italy $ CONCEPT OF ”HYPERSONIC POWERPLANT” Main features: System Utilizes Total Available Energy Normally Not Recovered: heat built-up by aerodynamic drag to reform hydrocarbon fuel in lack of oxygen products of reformation are superior to pure hydrogen in ignition quality proper choice of fuel composition to reduce the amount of soot formed in the reformation process bypass of a part of the available flow kinetic energy to drive supersonic MHD generator / accelerator (electro-magnetic turbine) external energy is used to reduce the total vehicle and local drags by forming ”thermal spikes” electrical energy is used to enhance combustion in the scram-jet engine & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ PREVIOUS PUBLICATIONS Harsha, P., and Gur’janov, E.P., ”AJAX: New Directions in Hypersonic Technology”, AIAA Paper 96-4609, 7th Aerospace Planes and Hypersonic Technology Meeting, Norfolk, Va., April 1996 Bruno, C., Czysz, P.A., and Murthy, S.N.B., ”Electro-Magnetic Interactions in Hypersonic Propulsion Systems”, AIAA Paper 97-3389, 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Seattle, Wa, July 1997 Bruno, C., and Czysz, P.A., ”Electro-Magnetic-Chemical Hypersonic Propulsion System”, AIAA Paper 98-1582, 8th Aerospace Planes and Hypersonic Technology Meeting, Norfolk, Va., April 1998 Brichkin, D.I., Kuranov, A.L., and Sheikin, E.G., ”MHD-Technology for Scramjet Control, AIAA Paper 98-1642, 8th Aerospace Planes and Hypersonic Technology Meeting, Norfolk, Va., April 1998 Bruno, C., Golovitchev, V.I. and Tret’jakov, P.K., ”New Trends in Improving Hypersonic Vehicles and Propulsion: Flow Control by External Energy Supply” ISTS 98-o-1-8V, 21st ISTS, Sonic City, Omiya, Japan, May 1998 & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ ----- FUEL REFORMATION STUDY ----Soot Formation Model (3) 1111111111 0000000000 0000000000 1111111111 0000000000 1111111111 0000000000 1111111111 0000000000 1111111111 HYDROCARBON FUEL (8) (5) Radicals (1) 000000000 111111111 111111111 000000000 000000000 111111111 000000000 111111111 000000000 111111111 000000000 111111111 GASEOUS COMBUSTION PRODUCTS Precursor (8) Soot Particles (7) Soot Particles Soot Particles (7) Soot Particles (2) Acetylene (6) (4) Structure of the phenomenological model (Surovikin’s model) of soot formation and oxidation. & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ ----- Soot Formation Model----( formation path through propargyl radical) H2C C C C3H3 + C3H3 CH CH C H2C C & Golovitchev, V.I., and Hansson, J. % ' $ XIV ISABE, 5-10 September, Florence, Italy ----- Soot Formation Model----( formation path through HACA process) H C C H H +H C H C +C2H2 H H H C -H C C H C H H C C C H H H C H +C2H2 +H (-C2H) H H C H C & H C C C H H C H C C H Golovitchev, V.I., and Hansson, J. H C +C2H2 C C H H C C C C H % ' $ XIV ISABE, 5-10 September, Florence, Italy ----- SOOT FORMATION MODEL----(formation of curved PAH 6/5 as soot precursors) H H C C C +C2H2 -H C +H -H2 +C2H2 +H +C2H2 -H & Golovitchev, V.I., and Hansson, J. % ' Table 1: Processes and rate constants of the soot model No Model 1. 2. 3. 4. 5. 6. 7. 8. & $ XIV ISABE, 5-10 September, Florence, Italy sub , process Fuel (+water) consumption Precursor radical formation Acetylene formation Precursor radical oxidation Acetylene oxidation Soot particle inception Soot particle growth Soot particle oxidation Golovitchev, V.I., and Hansson, J. Reaction rate constants A i E i (mol,cc,s) (cal/mol) E5 ) k5 = A5 exp(, RT 1.001010 5.00104 E6 ) k6 = A6 exp(, RT 4.20104 1.20104 2.00101 4.4610,3 1.51105 2.13101 3.00104 1.52104 9.70104 4.10103 Detailed chemistry Detailed chemistry up to A2R5 Detailed chemistry Detailed chemistry Detailed chemistry Nagle and StricklandConstable constants: EA ) kA = AA exp(, RT kB = AB exp(, ERTB ) ET ) kT = AT exp(, RT EZ ) kZ = AZ exp(+ RT % ' XIV ISABE, 5-10 September, Florence, Italy $ REFORMATION OF CH4 /H2 O MIXTURES Code used is STANJAN, Version 4.8C, May 1992 Table 2: COMPOSITIONS OF REFORMED CH4 /H2 O MIXTURES Species C(S)=graphite C(S)=C60 H2 O= 0.0 0.20 .3333 0.0 0.20 0.3333 CH4 5.1777E-03 6.0520E-03 6.5931E-03 7.2265E-02 6.7374E-02 6.4345E-02 H2 O 0.0 4.8484E-05 3.1665E-04 0.0 3.1639E-05 5.3885E-05 H2 6.6515E-01 6.8887E-01 7.1022E-01 9.0124E-01 8.0737E-01 7.4463E-01 H 4.9137E-04 1.7000E-04 4.9390E-05 7.7242E-05 5.5933E-05 4.3183E-05 CO 0.0 7.8020E-02 1.4444E-01 0.0 1.0667E-01 1.7757E-01 CH3 9.4124E-05 3.6897E-05 1.1304E-05 9.4124E-05 1.1510E-04 9.1936E-05 C 2 H2 7.0310E-03 1.2539E-03 1.4323E-04 1.5198E-02 1.1349E-02 8.9060E-03 C 2 H4 2.5125E-04 1.1206E-04 3.6877E-05 3.7913E-03 3.1609E-03 2.7379E-03 C(S) 3.2177E-01 2.2544E-01 1.3817E-01 7.0594E-03 3.7196E-03 1.4937E-03 Teq ,K 2024.3 1874.2 1725.3 1763. 1732.0 1708.2 Note: Initial mixture parameters: pressure, Po =10.0 bar, temperature, To = 3000.0 K Concentrations are in mole fractions & C60 is fullerene - a molecular form of carbon Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ REFORMATION OF KEROSENE/H2O MIXTURES Code used is STANJAN, Version 4.8C, May 1992 Table 3: COMPOSITIONS OF REFORMED KEROSENE/H2 O MIXTURES Species C(S)=graphite C(S)=C60 H2 O= 0.0 0.20 .3333 0.0 0.20 0.3333 CH4 1.6374E-03 1.6493E-03 1.6612E-03 1.9421E-02 1.9415E-02 1.9436E-02 H2 O 0.0 4.5657E-07 9.4920E-07 0.0 2.5120E-06 4.8678E-06 H2 4.8674E-01 4.9250E-01 4.9808E-01 9.0684E-01 8.9015E-01 8.7470E-01 H 3.3227E-03 3.2411E-03 3.1544E-03 7.3010E-04 6.7860E-04 6.3191E-04 CO 0.0 1.1925E-02 2.3380E-02 0.0 2.0987E-02 4.0328E-02 CH3 2.6845E-04 2.6083E-04 3.2009E-04 3.8415E-04 3.6380E-04 3.4528E-04 C 2 H2 6.3462E-02 5.8866E-02 5.4475E-02 5.3532E-02 5.0463E-02 4.7662E-02 C 2 H4 3.4617E-04 3.3307E-04 3.6877E-05 2.4029E-03 2.3426E-03 2.2883E-03 C(S) 4.4063E-01 4.2816E-01 4.1607E-01 1.5218E-02 1.4267E-02 1.3389E-03 Teq ,K 2389.7 2383.4 2376.6 2061.1 2051.2 2041.6 Note: Initial mixture parameters: pressure, Po =10.0 bar, temperature, To = 3000.0 K Concentrations are in mole fractions (fuel is fully decomposed) & C60 is fullerene - a molecular form of carbon Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ REFORMATION OF METHANOL, CH3 OH Code used is STANJAN, Version 4.8C, May 1992 & Table 4: COMPOSITIONS OF REFORMED METHANOL/H2 O MIXTURES Species C(S)=graphite C(S)=C60 H2 O= 0.0 0.20 .3333 0.0 0.20 0.3333 CH4 9.6024E-05 1.4846E-06 3.0502E-04 1.4874E-06 H2 O 2.2800E-03 7.1149E-02 7.4660E-04 7.1096E-02 H2 6.6088E-01 6.1668E-01 6.6244E-01 6.1673E-01 H 4.1336E-03 5.1655E-03 3.9964E-03 5.1613E-03 OH 2.9592E-06 1.3012E-04 9.2560E-07 1.2988E-04 CO 3.3007E-01 3.0132E-01 3.3217E-01 3.0138E-01 CO2 1.8375E-04 5.4986E-03 6.0637E-05 5.4956E-03 CH3 1.0723E-05 2.1968E-07 3.2918E-05 2.1991E-07 C 2 H2 2.4380E-05 1.2795E-08 2.3136E-04 1.2823E-08 C(S) 2.3103E-03 5.6506E-05 0.0 0.0 Teq ,K 2502.7 2548.0 2494.3 2547.88 Note: Initial mixture parameters: pressure, Po =10.0 bar, temperature, To = 3000.0 K Concentrations are in mole fractions C60 is fullerene - a molecular form of carbon Golovitchev, V.I., and Hansson, J. % ' $ XIV ISABE, 5-10 September, Florence, Italy IGNITION QUALITY OF REFORMED FUEL The code used is SENKIN-CRS4, Version 2.8C, February 1994 ( CH4/H2O mixtures ) 0 10 −1 −1 10 10 −2 −2 10 10 −3 −3 10 Mass fraction Mass fraction 10 −4 10 C(s) CH4 CO CO2 H2 O2 OH −5 10 −6 10 −7 10 −4 10 C(s) CH4 CO CO2 H2 O2 OH −5 10 −6 10 −7 10 −8 −8 10 10 −9 10 ( CH4/H2O mixtures ) 0 10 −9 −9 10 −8 10 −7 10 −6 10 −5 10 Time, s −4 10 (a) all species included −3 10 −2 10 10 −7 10 −6 10 −5 −4 10 10 −3 10 −2 10 Time, s (b) only H2 , CO, and CH4 Fuel reformation conditions: CH4 /H2 O:1.0/0.25, Po =30.0 bar, To = 3000.0 K & Composition vs time histories for reformed fuel, C(s) is graphite, Po = 1.0 bar, To = 1000.0 K Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ FLAME ACCELERATION IN TUBES Previous Studies: H. Gg. Wagner, Some Experiments about Flame Acceleration, Fuel-Air Explosions, University of Waterloo Press, Montreal, Quebec, 1982. Montreal, Quebec, 1982. M. Sichel, and C.W. Kauffman, University of Michigan, 1984, High Pressure Generation. A.K. Oppenheim and H.E. Stewart, Pulsed Jet Generator for Premixed Charge Engines, US Patent 4,926,818, 22 May 1990. J. Chomiak, Flame Acceleration in Tubes - Some Basic Considerations, Archivum Combustionis, Vol. 15, No. 3-4, 1995. T.F. Kanzleiter, K.O. Fisher, Multi-Compartment Hydrogen Deflagration Experiments and Model Development, Nuclear Engineering and Design, 146, pp. 417-426, 1994 & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ GASDYNAMIC THEORY OF DETONATION (Application of detonation) t + (u)x = 0 (u)t + (u + P )x = 0 et + ((e + P )u)x = 0 e = 21 u + ; cp = P + q; = ,1 cv 8 < gas is unburned q = : qq if if gas is burned 8 < > 0 endothermic q , q = : < 0 exthermic 2 2 0 1 1 Initial conditions: & 0 q/c1 2=11.57, =1.4, c1 =354 m/s, (15% H2/85% air), un =0.4 m/s, (M1)B = 4.9 Detonations: a) strong - = 0.31, Sf /F 18, F/F=1.115; b) weak - = 0.327, Sf /F 4860. Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ DETONATION OF H2/O2 MIXTURES (Stoichiometric mixture) P T V H U S W (atm) (K) (cm3/gm) (erg/gm) (erg/gm) (erg/gm-K) (gm/mole) H OH HO2 H2 H2O H2O2 O O2 INITIAL STATE: 1.0000E+00 3.0000E+02 2.0496E+03 4.4704E+07 -2.0320E+09 1.3402E+08 1.2010E+01 Mole Fractions 0.0000E+00 0.0000E+00 0.0000E+00 6.6667E-01 0.0000E+00 0.0000E+00 0.0000E+00 3.3333E-01 C-J DETONATION PROPERTIES (cm/s) & Golovitchev, V.I., and Hansson, J. EQUILIBRIUM STATE: 1.8669E+01 3.6787E+03 1.1147E+03 2.8371E+10 7.2839E+09 1.7423E+08 1.4505E+01 8.1030E-02 1.3460E-01 1.8639E-04 1.6248E-01 5.3471E-01 2.0505E-05 3.8536E-02 4.8431E-02 2.8364E+05 % ' XIV ISABE, 5-10 September, Florence, Italy $ DETONATION OF H2/O2 MIXTURES (Fuel rich mixture - easy to detonate) P T V H U S W (atm) (K) (cm3/gm) (erg/gm) (erg/gm) (erg/gm-K) (gm/mole) H OH HO2 H2 H2O H2O2 O O2 INITIAL STATE: 1.0000E+00 3.0000E+02 3.9078E+03 8.4932E+07 -3.8746E+09 2.3003E+08 6.2992E+00 Mole Fractions 0.0000E+00 0.0000E+00 0.0000E+00 8.5714E-01 0.0000E+00 0.0000E+00 0.0000E+00 1.4286E-01 C-J DETONATION PROPERTIES (cm/s) & Golovitchev, V.I., and Hansson, J. EQUILIBRIUM STATE: 1.6032E+01 3.0527E+03 2.1737E+03 4.6398E+10 1.1087E+10 2.9632E+08 7.1879E+00 3.6925E-02 6.3863E-03 2.9338E-07 6.3710E-01 3.1932E-01 1.6103E-07 2.2526E-04 4.4566E-05 3.6624E+05 % ' XIV ISABE, 5-10 September, Florence, Italy $ ----- The PaSR model - - - Part I ----(Flame with reconnections model) uL c0 Flame surface c Fresh mixture I ck uL Burnt gases c II Front intersection Mathematical formulation: dc = c , ck = c = ck , c d res c mix 0 Analytical solution - L. A. Vulis, 1959: & ck =co = +mix + +c ; res mix c c=co = + c + ; res mix c ck ( c ) , rate multiplier dc = ck = d mix + c c mix + c Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ ----- The PaSR model - - - Part II ----a) model generalization: 1: dcdk = fr (c) = (r00 , r0 )!_ r (c) , Arrhenius kinetics; ck j = co; 2: fr (c) = , Dhmix (co , 2c + ck ) c, ck =0 mix 2 b) model generic relations: ck , co fr (c) ck c, 1 = fr (c) = term , term ; fr (ck ) + (@ fr=@ c)j (c , ck ) = ,(c , ck )=c = c + (1 , )co; = + ; mix = ,(@ fr=@ c)j = ,fr o=(cso + term ) 1 2 c=ck c=ck 2 c) rate expression & ck , co = f (c ) ( c ) = csofr o ; r k mix + c cso + term ck j = co; s , reference species Golovitchev, V.I., and Hansson, J. 2 =0 % ' XIV ISABE, 5-10 September, Florence, Italy $ ----- The PaSR model - - - Part III ----d) limiting case: if fr o mix term the model reduces to ,cso=mix 2 the eddy break-up model e) definition of mix : from RNG viscosity definition follows v u 2 u t = l (1 + t ck = )2 p s = ( l + t + 2 l st ); l q p mix = 2 l st=k = 2c = l= k 1 2 where st is the ”standard” k- value the kinematic viscosity, l= 1=2 is the Kolmogorov time. and k =( ) & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ ENHANCED TURBULENT DEFLAGRATION MODE (numerical modeling) t=0.80 ms 1.54 ms 2.03 ms 2.52 ms 3.50 ms Mixture temperature plots at different instants illustrating enhanced flame propagation & initiated by a powerful spark in a duct with orifice plates. Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ ENHANCED DEFLAGRATION MODE (numerical modeling) t=7.5 ms t=10.5 ms t=11.0 ms t=11.6 ms Temperature scale Temperature plots at different instants illustrating enhanced flame propagation in the 2-volume & confinement with a narrow passage and an opening at a right upper corner of the receiver volume. Golovitchev, V.I., and Hansson, J. % ' $ XIV ISABE, 5-10 September, Florence, Italy VALIDATION OF H2/AIR CHEMICAL MODEL 5 10 10 10 Experiment, 1 atm Experiment, 2 atm Calculation, 1 atm Calculation, 2 atm Balakrish. & Williams Balakrish. & Williams Miller et al. Miller et al. 4 3 φ=1 4 10 Ignition delay, µsec Ignition delay time, µsec 10 2 3 10 2 10 To= 950 K T0=1000 K To=1100 K φ=1 10 1 1 0.70 0.80 0.90 1.00 1000/T, K 1.10 1.20 10 1 10 Pressure, bars Ignition delays for a stoichiometric H2 -Air mixture as functions of pressures and temperatures at the ”extended” second explosion limit conditions. & Golovitchev, V.I., and Hansson, J. % ' $ XIV ISABE, 5-10 September, Florence, Italy ENHANCED DEFLAGRATION MODE (One Possible Explanation) Sensitivity Analysis Enhanced Deflagration Mode Sensitivity Analysis (Stoichiometric H2/Air Mixture) (Stoichiometric H2−Air Mixture) (Stoichiometric H2/Air Mixture) 4e+05 10000 3.5e+05 Po=2.0 bar, To=900 K, tign=8.5 ms Temperature/rate Sensitivity Po=1.0 bar, To=900 K, tign=4.6 ms 5000 Pressure, in bar Temperature/rate Sensitivity 10000 0 3e+05 Igniter room Receiver room 2.5e+05 2e+05 −5000 5000 0 −5000 1.5e+05 −10000 0 5 10 15 20 Reaction numbers 25 30 (c) 1.0 bar 1e+05 0.0e+00 −10000 5.0e−03 1.0e−02 Time. in sec (d) 1.5e−02 0 5 10 15 20 Reaction numbers 25 30 (e) 2.0 bar Absolute sensitivity coefficients for the H2 /O2 reaction mechanism at the end of ignition period; c) t = 4.6 ms, d) pressure vs time histories in donor (pre-detonation) and receiver volumes, e) t = 8.5 ms. & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ THEORETICAL ANALYSIS OF NON-UNIFORM SUPERSONIC FLOWS (Simulation of aerodynamic spike effects) Parameters characterizing non-uniform flows - initiated by S. Guvernuk, 1996: u = f (y)uo; h = g(y)ho; uo = f (0); ho = g(0) for uniform flow f (y) = g(y) = 1 Generalized ”Reynolds” analogy: M2 = u2 2 f 2 2 = M o = mMo ( , 1)h g Possible flow regimes: & m<1: wake-like ) flow with recirculation zones, m=1: ) steady-state flows around the body, m>1: jet-like ) non-steady (resonant tube) flows Golovitchev, V.I., and Hansson, J. % ' $ XIV ISABE, 5-10 September, Florence, Italy SIMULATION OF AERODYNAMIC SPIKE EFFECT (A bead projection to a supersonic stream) a) b) c) The bead was projected to a M1 =2.0 flow from a front end of the cylinder; 1 - bead , 2 - blunt body. The snapshots correspond to different moments a), b), and c) & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ DRAG REDUCTION BY A COUNTER-FLOW MASS INJECTION (Shkval rocket-torpedo) Drag is reduced by creating a local supercavitating ”envelope” of air and combustion products ( 50 %) bubbles in which weapon exceeds a speed 230 mph - a ”bubble” spike. & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ DRAG REDUCTION BY A ”FLAME” SPIKE (Counterflow injection of combustible gases) a) b) The hydrogen was injected into a M1 =2.0 flow through a fuel needle with a conical tip; a) no hydrogen injection, b) injection of hydrogen (GH2 =0.002) and combustion. & Golovitchev, V.I., and Hansson, J. % ' $ XIV ISABE, 5-10 September, Florence, Italy DRAG REDUCTION BY A ”FLAME” SPIKE (Some practical applications) (f) (g) (h) f) Effect of the spike length on 1 -pressure drag, 2 -base drag, 3 - hydrogen combustion Reduction of pressure drag as a function of a relative mass flow rate, G, for fuels of different heat values: g) model experiments, 1-Hu=120 MJ/kg, 2-Hu=16.7 MJ/kg, 3-Hu=13.4 MJ/kg h) real projectile: 1-Hu=16.7 MJ/kg, 2-Hu=13.6 MJ/kg, and 3-Hu=9.0 MJ/kg & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ LAY-OUT OF AERODYNAMIC EXPERIMENTS ( Generation of the laser ”air-spike”) Hardware components: CO2 -laser, 1- focusing lens, 2- plenum chamber, 3- nozzle, 4- testing body, 5- diffuser, 6- strain balance, 7- test section, 8-exhaust chamber (Novosibirsk, Russia, Tret’akov et al) & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ LASER PULSE PARAMETERS (Drag reduction by the laser ”air-spike”) (i) laser pulse (j) laser power (p) 1-Impulse of the CO2 laser at f=45 kHz, 2-the passed and 3-absorbed radiation, 4-the ”effective” impulse (q) Average and peak laser power as a function of the pulse repetition frequency & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ DRAG REDUCTION BY A LASER AEROSPIKE ( Effect of a focused laser beam on the M=2.0 flow around a cone-cylinder) (k) no laser beam (l) there is a laser beam Effect of a focused laser beam at f= 25 kHz. Photos of the upper row are the superpositions of 200 individual & i) snapshots presented in the lower row. In the photo j), the ”bifurcated” shock is well pronounced. Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ LASER ENERGY SUPPLY TO A SUPERSONIC FLOW (Flow gasdynamic structure in the vicinity of the ”hot” spot) 1-shock wave (experiment), 2-shock wave (analytical solution), 3,4-shock wave (numerical solution, =1.2, and 1.67), 5-thermal wake (experiment), 6-thermal wake (estimation) Nothing particular - all structural elements are predictands. & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ LASER ENERGY SUPPLY TO A SUPERSONIC FLOW (How to focus a laser beam?) Standard scheme of a CO2-laser beam focusing Escaping discharge gas velocity behind the light ”detonation” front is defined by u3 Vd = = Vd(1 , 1=3) 2 _ [2( , 1)J= 3]1=3; and directed depending on the wave propagation regime - detonation or deflagration, & Golovitchev, V.I., and Hansson, J. J_ is the laser pulse power % ' XIV ISABE, 5-10 September, Florence, Italy $ LASER ENERGY SUPPLY TO A SUPERSONIC FLOW Predictions (bifurcated shock formation) and Experimental Snapshots a) predictions b) f=50 kHz a) Density field in the presence of a ”hot” in a free stream M1 =2.0; Rq =0.15, Qo =25.0 b) Schlieren picture of a laser spark, f=50 kHz, a focal point position, dj =20 mm. ”Fixed” position of the ”hot” spot in the modeling is equivalent to the energy release & front propagation with the speed of the feeding air flow Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ LASER ENERGY SUPPLY TO A SUPERSONIC FLOW (Predictions and Experimental Snapshots) a) predictions b) f=100 kHz a) Density field in the presence of a ”hot” in a free stream M1 =2.0; Rq =0.15, Qo =25.0 b) Schlieren picture of a laser spark, f=100 kHz, a focal point position, dj =20 mm . At f=100 kHz the shock structure ”has no time” to be developed. & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ DRAG REDUCTION BY A LASER AEROSPIKE ( Effect of a pulsed laser beam frequency on the M=3.0 flow structure around a sphere) a) no energy release b) energy release at f= 2.0 Mach number distributions without and with the energy release; f is the normalized frequency. & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ DRAG REDUCTION BY A LASER AEROSPIKE ( Effect of a pulsed laser beam frequency on the M=3.0 flow structure around a sphere) (m) f=0.5 (n) f=5.0 Pressure histories at the sphere stagnation point at different (normalized) pulse frequencies & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ RESULTS OF AERODYNAMIC EXPERIMENTS (Drag reduction by a laser ”air-spike”) 1.0 Relative drag, Cx/Cxo 0.8 M=2.0 0.6 hemisphere (calc.) hemisphere cone−cylinder (lf=23) cone−cylinder (If=13) cone−cylinder (lf=23) 0.4 0.2 0.0 20.0 40.0 60.0 Pulse frequency, kHz 80.0 100.0 Relative drag reduction vs the laser pulse frequency. & Two data sets for the cone-cylinder are obtained at same conditions, Cxo is free stream drag Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ SIMULATION OF AERODYNAMIC SPIKE EFFECT (Theoretical analysis of non-uniform supersonic flows) Some specific non-uniformities: ,by , ae f (y) = 1 , a ; g(y) = 1 + c , cf 2(y) 1 2 More specific expression for m: y m = 1 + k( R )2 + ::: o 2a(1 + c) k = 1 , a bRo2; where Ro is a body size across From above relation,a specific role of Ro follows & Golovitchev, V.I., and Hansson, J. % ' $ XIV ISABE, 5-10 September, Florence, Italy THE EFFECT OF A ” HOT SPOT ” SIZE ( Observation made by Georgievsky and Levin, 1996) (o) & (p) Supersonic M1 =3.0 flow around a sphere in the presence of energy release. Isolines of Mach number: a) Rq =0.5, b) Rq =0.25, Qo =25 Golovitchev, V.I., and Hansson, J. % ' $ XIV ISABE, 5-10 September, Florence, Italy THE EFFECT OF A ” HOT SPOT ” SIZE ( continuation ) (q) (r) c) Isolines of Mach number, and d) Velocity vector field & in the presence of a ”hot” spot before the sphere, Rq =0.125, Qo =25, M1 =3.0 Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ DRAG REDUCTION AND EFFICIENCY OF ENERGY USE Qs Energy fed into the stream N Power of the reference engine: Z p 1 = ~ Qs = 1Qo( ) Rq V e, r z dV; 1 1 N = 2 Ro 1M1 ( p1 ) = 1 Cq = N=Qs; Q~ o = Qo1( p1 ), = 3 2 2 ( 2 + 2) 2 3 3 2 3 2 1 Table 4: Comparison with the reference engine performance Rq =Ro zq =Ro 1.25 1.5 1.75 2.0 2.5 3.0 0.125 1.00 (0.25) 0.94 (4.31) 0.85 (10.3) 0.80 (13.7) 0.75 (16.7) 0.69 (20.4) 0.250 0.87 (1.37) 0.82 (2.11) 0.71 (3.05) 0.66 (3.38) 0.500 0.83 (0.47) 0.78 (0.58) 0.72 (0.76) 0.65 (0.92) 0.60 (1.02) 0.55 (1.18) Note: Data listed in the table are: Cx , drag reduction (Cq , index of efficiency) & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ MODEL OF ”COLD” NON-IDEAL PLASMA ( Debye - Hückel Approach) Includes an increase in energy due to the Coulomb field: ECoul = 12 V X i eza noi 'i; where 'i is the field potential due to an ion cloud, zi a number of e- charges on the i-particle. The Poisson equation for the collective effect potential 4' , 2' = = (lD ),1 = ; v u u t 4e2 X noi zi2 kT i 0 (lD is the characteristic Debye length) has the spherically symmetric solution ' = ezr i exp (, lr ); D In the limit of r/lD 1 1 X F = Fp:g: , e kTV ) 2 ( nizi 2) 23 ; i 1 X 3 X e PV = kT Ni , 3 ( kTV ) 2 ( nizi 2) 23 : i {z i } | Charged particle numbers ni are calculated using the Saha equations. 2 3 ( 3 & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ HOW TO PRODUCE THE ”HOT” SPOT? By electron beam? & INITIAL STATE: P (atm) 1.0000E+00 T (K) 3.0000E+02 V (cm3/gm) 1.0324E+03 H (erg/gm) 2.1802E+07 U (erg/gm) -1.0242E+09 S (erg/gm-K) 7.2041E+07 W (gm/mole) 2.3844E+01 Mole Fractions O2 1.7361E-01 NO 0.0000E+00 O 0.0000E+00 N 0.0000E+00 AR 1.7361E-04 NO+ 0.0000E+00 N+ 0.0000E+00 E 1.7361E-01 O+ 0.0000E+00 N2+ 0.0000E+00 O2+ 0.0000E+00 NO20.0000E+00 O0.0000E+00 O20.0000E+00 AR+ 0.0000E+00 N2 6.5260E-01 C-J DETONATION VELOCITY (cm/s) Golovitchev, V.I., and Hansson, J. EQUILIBRIUM STATE: 7.9731E+00 1.7350E+03 5.9795E+02 5.7813E+09 9.5061E+08 8.0786E+07 2.9862E+01 4.5648E-02 1.5952E-03 4.8180E-06 3.3291E-12 2.1743E-04 8.5047E-29 0.0000E+00 4.6319E-02 0.0000E+00 0.0000E+00 0.0000E+00 1.6282E-01 2.5829E-04 8.0340E-03 0.0000E+00 7.3511E-01 1.3166E+05 % ' XIV ISABE, 5-10 September, Florence, Italy $ HOW TO PRODUCE THE ”HOT” SPOT? in the presence of heavy ions? & INITIAL STATE: P (atm) 1.0000E+00 T (K) 3.0000E+02 V (cm3/gm) 9.3069E+02 H (erg/gm) 4.5334E+10 U (erg/gm) 4.4391E+10 S (erg/gm-K) 7.1499E+07 W (gm/mole) 2.6449E+01 Mole Fractions O2 1.7508E-01 NO 0.0000E+00 O 0.0000E+00 N 0.0000E+00 AR 1.7508E-04 NO+ 0.0000E+00 N+ 0.0000E+00 E 8.3319E-02 O+ 0.0000E+00 N2+ 6.5811E-02 O2+ 1.7508E-02 NO20.0000E+00 O0.0000E+00 O20.0000E+00 AR+ 0.0000E+00 N2 6.5811E-01 C-J DETONATION VELOCITY (cm/s) Golovitchev, V.I., and Hansson, J. EQUILIBRIUM STATE: 2.4472E+01 4.1657E+03 5.1619E+02 6.2540E+10 4.9740E+10 9.4629E+07 2.7060E+01 9.2809E-02 8.4705E-02 1.2374E-01 5.3152E-04 1.7912E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 6.9803E-01 2.2293E+05 % ' XIV ISABE, 5-10 September, Florence, Italy $ HOW TO PRODUCE THE ”HOT” SPOT? by fission products (4He++)? & INITIAL STATE: P (atm) 1.0000E+00 T (K) 3.0000E+02 V (cm3/gm) 1.0031E+03 H (erg/gm) 1.6830E+11 U (erg/gm) 1.6729E+11 S (erg/gm-K) 7.7850E+07 W (gm/mole) 2.4539E+01 Mole Fractions O2 1.7361E-01 NO 0.0000E+00 O 0.0000E+00 N 0.0000E+00 HE 0.0000E+00 NO+ 0.0000E+00 N+ 0.0000E+00 E 0.0000E+00 O+ 0.0000E+00 N2+ 0.0000E+00 O2+ 0.0000E+00 NO20.0000E+00 O0.0000E+00 O20.0000E+00 HE++ 4.7361E-02 N2 6.5260E-01 C-J DETONATION PROPERTIES (m/s) Golovitchev, V.I., and Hansson, J. EQUILIBRIUM STATE: 4.9050E+01 7.0510E+03 5.4799E+02 2.0606E+11 1.7883E+11 1.1434E+08 2.1525E+01 5.4382E-04 1.4168E-02 1.4144E-01 9.9236E-02 4.5229E-02 1.4457E-01 2.1247E-03 2.3231E-07 2.8142E-03 2.5308E-03 2.5539E-04 1.2572E-13 4.2757E-09 9.9429E-12 1.9542E-10 4.3988E-01 3.2809E+05 % ' XIV ISABE, 5-10 September, Florence, Italy $ HOW TO PRODUCE THE ”HOT” SPOT? Pressure dependence & INITIAL STATE: P (atm) 1.0000E-01 T (K) 3.0000E+02 V (cm3/gm) 9.3069E+03 H (erg/gm) 4.5334E+10 U (erg/gm) 4.4391E+10 S (erg/gm-K) 7.8737E+07 W (gm/mole) 2.6449E+01 Mole Fractions O2 1.7508E-01 NO 0.0000E+00 O 0.0000E+00 N 0.0000E+00 AR 1.7508E-04 NO+ 0.0000E+00 N+ 0.0000E+00 E 8.3319E-02 O+ 0.0000E+00 N2+ 6.5811E-02 O2+ 1.7508E-02 NO20.0000E+00 O0.0000E+00 O20.0000E+00 AR+ 0.0000E+00 N2 6.5811E-01 C-J DETONATION VELOCITY (m/s) Golovitchev, V.I., and Hansson, J. EQUILIBRIUM STATE: 2.2825E+00 3.7709E+03 5.1364E+03 6.1304E+10 4.9425E+10 1.0170E+08 2.6393E+01 7.7608E-02 5.9018E-02 1.7012E-01 4.0011E-04 1.7471E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 6.9268E-01 2.1431E+05 % ' XIV ISABE, 5-10 September, Florence, Italy $ MICROWAVE-INDUCED ENERGY SUPPLY TO SUPERSONIC FLOWS (Mirabo’s lightcraft is a different system) This is just a plenum chamber outside the vehicle. What it could rely on? Pinj/P P, BAR T, K RHO, KG/CU M H, KJ/KG U, KJ/KG Ae/At CSTAR, M/SEC Ivac, M/SEC & INJECTOR COMB END THROAT EXIT EXIT EXIT EXIT 1.0000 1.2063 1.9447 267.45 630.51 1037.75 1477.84 53.317 44.198 27.416 0.19935 0.08456 0.05138 0.03608 [20000.0] 19591.35 18382.89 10661.39 9747.83 9227.82 8855.58 3.2759-1 2.7822-1 1.8870-1 2.9577-3 1.4138-3 9.2186-4 6.8159-4 115617.9 113979.0 106723.8 57697.1 52248.5 49370.6 47450.0 99342.2 98092.8 92194.3 50957.0 46267.5 43797.4 42156.8 PERFORMANCE PARAMETERS - BONNIE’S CODE HAS BEEN USED 1.5800 1.0000 25.000 50.000 75.000 100.00 6150.9 6150.9 6150.9 6150.9 6150.9 6150.9 10585.1 7662.6 11389.2 11789.1 11994.8 12129.6 System performance is high, but drag reduction should be ineffective. Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ DRAG REDUCTION PHENOMENON IS PLASMA SPECIFIC? NO! ” ... These effects, observed in discharges in various gases (air, CO2 , Ar, He) at pressures of 3-30 torr, and for Mach numbers M 1.5 - 4.5, are surprisingly similar in both atomic and molecular gases, despite fundamental differences in mechanisms of ionization and molecular energy transfer... They also persist for a long time after the discharge is off. ( 1 ms in air).” Adamovich I.V., at al., AIAA Journal, vol. 36, No.5, May, 1998 The phenomena can be attributed to the finite-rate plasma energy ”thermalization”. & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ CONCLUSIONS - CRUISE MISSILE CONCEPT At first, to accelerate the missile to flight Mach 6-8 by external rocket boosters Use reformation of hydrocarbon fuel CH /H O mixtures recovering drag losses, normally 4 2 not used in conventional systems. The cooling effect of fuel reformation is sufficient for thermal protection of vehicle Reformed fuel has a high ignition and combustion potentials, providing also incipient soot facilitating the operation of the MHD propulsion system, if the letter will be used The energy bypass can be also achieved with fuel reformation rather than with supersonic MHD propulsion system analyzed by Prof. P.A.Czysz to avoid high M operation conditions in the engine The enhanced turbulent deflagration of rich mixture of reformed fuel products initiated by a high power spark in ”flame holders” of a special geometry looks promising for scram-jet reducing need in LOX in comparison with rocket ejector ram-jet The concentrated energy drag reduction concept has proven to be effective for the cruise range vehicles. preventing the missile deceleration with the benefit that the spike ”products” could envelope the missile in a film of ionized gas which would be impervious to radar pulses, thereby rendering it electronically ”invisible”. The infra-red penalty at close range would be significantly offset by the high speed of the flight. & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ ABSTRACT Among new conceptual trends in improving supersonic and hypersonic aerodynamics, the use of combustion or plasma energy release within selected portions of the flow are reviewed and evaluated with application to vehicle aerodynamics formally relegated to the long-range aircraft, named AJAX, which, if ever built, could cruise at hypersonic speeds. The technical details of a conceivable AJAX design are discussed briefly; the emphasis is placed on fundamental concepts of chemical physics and reactive fluid and plasma dynamics (fuel reformation, enhanced deflagration, and general drag reduction) which these details could be based on to render them applicable to any relevant hypersonic vehicle, including long-range cruise missiles. & Golovitchev, V.I., and Hansson, J. % ' XIV ISABE, 5-10 September, Florence, Italy $ ACKNOWLEDGMENTS Discussions with Prof. V.A. Levin, Prof. P. Czycz, Prof. C. Bruno, and Prof. L.-E. Eriksson and kind help of our PhD student N. Nordin are gratefully acknowledged. Courtesy of Prof. Tretjakov in supplying both available and unpublished experimental data is especially recognized. This work was partially supported by Chalmers Combustion Engine Research Center. & Golovitchev, V.I., and Hansson, J. %
Similar documents
Cuboid Quasi-Steady Loads Report
Quasi Steady Air Loads Report: CUBOID Sorin Pirau, Alexander Forbes, Brandon Liberi, Vrishank Raghav, Narayanan Komerath Experimental Aerodynamics and Concepts Group Daniel Guggenheim School of Aer...
More information