Solving Optimization Problems with Diseconomies of Scale via
Transcription
Solving Optimization Problems with Diseconomies of Scale via
Solving Optimization Problems with Diseconomies of Scale via Decoupling Konstantin Makarychev β Microsoft Research Maxim Sviridenko β Yahoo Labs Simons Symposium on Approximation Algorithms, February 26, 2014 What is a diseconomy of scale? Cost of Resources 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 What is a diseconomy of scale? Cost of Resources 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 What is a diseconomy of scale? Cost of Energy used for Computing 8 7 Energy consumption grows as π₯ π as a function of speed π₯. 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Example: Energy Efficient Routing Given: β’ graph πΊ β’ set of demand pairs (π π , π‘π , ππ ) Goal: β’ route ππ units of unsplittable flow from π π to π‘π So as to minimize energy: π ππ π₯π πβπΈ Example: Energy Efficient Routing Given: β’ graph πΊ β’ set of demand pairs (π π , π‘π , ππ ) Goal: β’ route ππ units of unsplittable flow from π π to π‘π So as to minimize energy: π ππ π₯π πβπΈ Example: Energy Efficient Routing Given: β’ graph πΊ β’ set of demand pairs (π π , π‘π , ππ ) Goal: β’ route ππ units of unsplittable flow from π π to π‘π So as to minimize energy: π ππ π₯π πβπΈ = 5 × 1π + 2 × 2π Whatβs known? ο§ Arbitrary ππ : ο§Andrews, Fernández Anta, Zhang, Zhao β π(#πππππππ + log ππππ₯ ) approximation ο§ All ππ are the same: ο§ Andrews, Fernández Anta, Zhang, Zhao β π(1) approximation π ο§ Bampis, Kononov, Letsios, Lucarelli, Sviridenko β π π approximation ο§ We give π π π approximation for the general case Graph of π π π 2.5 2 1.5 1 0.5 0 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 LP Relaxation ο π«π is the set of π π β π‘π paths ο variable ππ for all π β π«π constraints: β’ πβπ«π ππ = ππ βπ β’ ππ β [0, ππ ] Let Ξ be the set of feasible πβs. ππ LP Relaxation ο π«π is the set of π π β π‘π paths ο variable ππ for all π β π«π Minimize π ππ π:πβπ ππ π2 Subject to π β Ξ constraints: ππ = 1 π β’ πβπ«π ππ = ππ βπ β’ ππ β [0, ππ ] Let Ξ be the set of feasible πβs. cost = 2π × 1 π2 = 2/n LP Relaxation β Local Distributions of Paths Minimize Let ο πΉπ,π = min πΌπ π βΌππ ππ π ππ πΉπ,π (π) subject to π π π π π , where β’ ππ is a distribution over r.v. {πππ }; β’ πππ is the amount of flow π π β π‘π going via π β’ πΌ πππ = πβπ«π :πβπ ππ β’ πππ β {0, ππ } πβΞ Rounding Algorithm LP: Minimize π ππ πΉπ,π (π) subject where πΉπ,π = min πΌπ π βΌππ ππ to π β Ξ π π π:πβπ ππ . Algorithm A: For each π, pick a random path π: π π β π‘π with probability ππ /ππ . Pick paths π independently for all π. Analysis Algorithm A: For each π, pick a random path π: π π β π‘π with probability ππ /ππ . Pick paths π independently for all π. Analysis: Compare LP and ALG edge by edge. For every edge π: ο§ Let ππ = amount of flow from π π to π‘π routed via π by A. ο§ All ππ are independent. ο§ πππ. πππ π‘ π = ππ π πππ π . Analysis We need to compare ο πΌ[πππ. πππ π‘ π ] = πΌ[ππ ο πΏπ. πππ π‘ π = πΌ[ππ π π π ] π π π π π ] π π ο§ Each πππ has the same distribution as ππ . ο§ All πππ are independent. ο§ But πππ are not independent ο Decoupling Inequality (de la Peñaβ90) If β¦ π1 , β¦ , ππ β jointly distributed nonnegative r.v.βs; β¦ π1 , β¦ , ππ β independent nonnegative r.v.; β¦ Each ππ has the same distribution as ππ ; Then π1 + β― + ππ π for some absolute constant πΆπ . β€ πΆπ β π1 + β― + ππ π Decoupling Inequality (de la Peñaβ90) If β¦ π1 , β¦ , ππ β jointly distributed nonnegative r.v.βs; β¦ π1 , β¦ , ππ β independent nonnegative r.v.; β¦ Each ππ has the same distribution as ππ ; Then π1 + β― + ππ π β€ πΆπ β π1 + β― + ππ De la Peña, Ibragimov, Sharakhmetov β03: π πΆπ π πΆπ π β€ 2 for π β (1,2]; β€ π π π for π β₯ 2. Decoupling Inequality (de la Peñaβ90) If β¦ π1 , β¦ , ππ β jointly distributed nonnegative r.v.βs; β¦ π1 , β¦ , ππ β independent nonnegative r.v.; β¦ Each ππ has the same distribution as ππ ; Then π1 + β― + ππ We show that π πΆπ = π π π, π β€ πΆπ β π1 + β― + ππ π where π is a Poisson r.v. with parameter 1. What is the Poisson distribution? ο§ ππ is Poisson with parameter π β β π = π = ππ π βπ . π! ο§ ππ = number of βchosenβ points in the Poisson process: π points; each chosen w.p. π/π What is the Poisson distribution? ο§ ππ is Poisson with parameter π β β π = π = ππ π βπ . π! ο§ ππ = number of βchosenβ points in the Poisson process: π points; each chosen w.p. π/π Decoupling Inequality (de la Peñaβ90) If β¦ π1 , β¦ , ππ β jointly distributed nonnegative r.v.βs; β¦ π1 , β¦ , ππ β independent nonnegative r.v.; β¦ Each ππ has the same distribution as ππ ; Then π1 + β― + ππ We show that π πΆπ = π π π, π β€ πΆπ β π1 + β― + ππ π where π is a Poisson r.v. with parameter 1. Better Language? Yes β Convex Stochastic Order Convex Order Def: π β€ππ₯ π if for every convex π: πΌπ π β€ πΌπ(π). Basic Properties: ο§ ο§ ο§ ο§ ο§ β€ππ₯ is a property of distribution: π =π π‘ π, π β€ππ₯ π βΉ π β€ππ₯ π If π β€ππ₯ π, π β€ππ₯ π βΉ π β€ππ₯ π If π β€ππ₯ π, then πΌπ + π½ β€ππ₯ πΌπ + π½ If π β€ππ₯ π, then πΌπ = πΌπ We can verify ββ€β only for π with π 0 = 0 Example: Random Walk π β€ππ₯ π 8 π = ππ1 7 π1 β€ π2 6 π = ππ2 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Example: π΅ β€ππ₯ π ο§ π΅ β Bernoulli r.v. with parameter π; ο§ π β Poisson r.v. with parameter π ο§ Then, π΅ β€ππ₯ π Proof: π β convex with π 0 = 0 10 π π β₯π π π π΅ = π(π΅) 9 8 π π‘ 7 6 5 4 πΌπ π β₯ πΌπ π = π πΌπ = π πΌπ΅ = πΌπ π΅ = πΌπ(π΅) β π‘ 3 2 1 0 0 0.5 1 1.5 2 2.5 3 Lemma I ο§ If π, π, π are independent r.vβs and π β€ππ₯ π, ο§ Then Z + π β€ππ₯ π + π. Proof: πΌπ π + π = πΌ πΌ π π + π π] β€ππ₯ πΌ πΌ π π + π π] = πΌπ π + π Since for any fixed π§, πΌπ π§ + π β€ππ₯ πΌπ π§ + π . Lemma II ο§ π1 , β¦ , ππ are independent r.v.βs; π1 , β¦ , ππ are independent r.v.βs; ο§ ππ β€ππ₯ ππ for all π ο§ Then π1 + β― + ππ β€ππ₯ π1 + β― + ππ Proof: π1 + π2 + π3 + π4 β€ππ₯ π1 + π2 + π3 + π4 β€ππ₯ π1 + π2 + π3 + π4 β€ππ₯ π1 + π2 + π3 + π4 β€ππ₯ π1 + π2 + π3 + π4 Decoupling Inequality If β¦ π1 , β¦ , ππ β jointly distributed nonnegative r.v.βs; β¦ π1 , β¦ , ππ β independent nonnegative r.v.; β¦ Each ππ has the same distribution as ππ ; Then π1 + β― + ππ β€ππ₯ π β (π1 + β― + ππ ) where π is a Poisson r.v. with parameter 1 independent of ππ βs. Proof of de la Peñaβs Inequality ο ο π π1 + β― + ππ π = πΌ π1 + β― + ππ π π π1 + β― + ππ π = πΌ π1 + β― + ππ π πΌ π1 + β― + ππ π β€ πΌ π β π1 + β― + ππ π = πΌ ππ πΌ π1 + β― + ππ π Why Poisson? ο§ π1 , β¦ , ππ : independent Bernoulli r.v.βs with parameter 1 π; ο§ π1 , β¦ , ππ : Pick a random π β [π], let ππ = 1; ππ = 0 for π β π; ο§ Then π1 + β― + ππ β π π1 + β― + ππ = 1 So π1 + β― + ππ β π(π1 + β― + ππ ) Special Case of the Theorem ο§ π1 , β¦ , ππ are independent Bernoulli random variables with πΌ ππ = 1/π; ο§ π1 , β¦ , ππ are Bernoulli random variables s.t. π ππ = 1 (always) ο§ Then π1 + β― + ππ β€ππ₯ π1 + β― + ππ β€ππ₯ π π1 + β― + ππ 1 β€ππ₯ π1 + β― + ππ β€ππ₯ π Special Case of the Theorem ο§ π1 , β¦ , ππ are independent Bernoulli random variables; ο§ π1 , β¦ , ππ are Bernoulli random variables s.t. π ππ = 1 (always) ο§ πΌ1 , β¦ , πΌπ are non-negative numbers ο§ Then πΌ1 π1 + β― + πΌπ ππ β€ππ₯ πΌ1 π1 + β― + πΌπ ππ β€ππ₯ π πΌ1 π1 + β― +πΌπ ππ General Case We compare ο§ π ππ ο§ π¦βπ΄ π΅π¦ ο§ π¦βπ΄ ο§ π ππ = π¦βπ΄ π β π=π¦ β π΄ π π¦π π π¦π ππ¦ π΅ π¦ π π π΅π¦ βBernoulli: β π΅π¦ = 1 = β π = π¦ π¦ = (π¦1 , β¦ , π¦π ) General Case Let π΄ be the support of π = (π1 , β¦ , ππ ). Then ππ = π¦βπ΄ π π = π¦ β π¦π β€ππ₯ where π΅π¦π is a Bernoulli with parameter β π = π¦ . π β π¦ π΅ π π¦βπ΄ π¦ General Case Let π΄ be the support of π = (π1 , β¦ , ππ ). Then ππ =π π‘ ππ = π¦βπ΄ π π = π¦ β π¦π β€ππ₯ where π΅π¦π is a Bernoulli with parameter β π = π¦ . π β π¦ π΅ π π¦βπ΄ π¦ General Case Let π΄ be the support of π = (π1 , β¦ , ππ ). Then ππ =π π‘ ππ = π¦βπ΄ π π = π¦ β π¦π β€ππ₯ π β π¦ π΅ π π¦βπ΄ π¦ where π΅π¦π is a Bernoulli with parameter β π = π¦ . Thus, π ππ β€ππ₯ π π β π¦ = π΅ π π¦βπ΄ π¦ π¦βπ΄( π β π¦ ) π΅ π π π¦ Now, π¦βπ΄ ( π π¦π ) π΅π¦ β€ππ₯ π β π¦βπ΄( π π¦π ) π π=π¦ =π π ππ Lemma: π π¦π π΅ π β€ π π¦π π΅ Rescale π¦ s.t. π¦π = 1. Then, πΌπ π π¦ π΅ π π β€ π π¦ πΌ π π΅ π π = π π¦π πΌπ π΅ =πΌπ π΅ Special Case of the Theorem ο§ π1 , β¦ , ππ are independent Bernoulli random variables; ο§ π1 , β¦ , ππ are Bernoulli random variables s.t. π ππ = 1 (always) ο§ πΌ1 , β¦ , πΌπ are non-negative numbers ο§ Then πΌ1 π1 + β― + πΌπ ππ β€ππ₯ πΌ1 π1 + β― + πΌπ ππ β€ππ₯ π πΌ1 π1 + β― +πΌπ ππ Proof: πΌ1π1 + β― + πΌπ ππ β€ππ₯ πΌ1π1 + β― + πΌπ ππ ο§ Consider a convex function π with π 0 = 0 ο§ π is superadditive: π π + π β₯ π π + π(π) ο§ π πΌ1 π1 + β― + πΌπ ππ β₯ π πΌ1 π1 + β― + π πΌπ ππ πΌπ πΌπ π πΌπ ππ = π πΌπ ππ β₯ π πΌπ π π(πΌπ )β(ππ πΌπ ππ = 1) = π πΌπ πΌπ ππ Proof: πΌ1π1 + β― + πΌπ ππ β€ππ₯ π(πΌ1π1 + β― + πΌπ ππ ) ο§ Let ππ be a Poisson r.v. with parameter β(ππ = 1), then πΌ1 π1 + β― + πΌπ ππ β€ππ₯ πΌ1 π1 + β― + πΌπ ππ ο§ π = π1 + β― ππ is a Poisson r.v. with parameter 1. Proof: πΌ1π1 + β― + πΌπ ππ β€ππ₯ π(πΌ1π1 + β― + πΌπ ππ ) ο§ Let ππ be a Poisson r.v. with parameter β(ππ = 1), then πΌ1 π1 + β― + πΌπ ππ β€ππ₯ πΌ1 π1 + β― + πΌπ ππ ο§ π = π1 + β― ππ is a Poisson r.v. with parameter 1. Proof: πΌ1π1 + β― + πΌπ ππ β€ππ₯ π(πΌ1π1 + β― + πΌπ ππ ) ο§ Let π = π1 + β― + ππ . Condition on π = π > 0: πΌ π π πΌπ ππ ) π = π = πΌ π( β₯πΌ ππ π π ππ π π πΌπ π) |π β π πΌπ π |π = π = π π(πΌπ π) πΌ ππ |π π = π π(πΌπ π) πΌ ππ = =πΌ π π =π π πΌπ ππ ) =π π π(πΌπ π) πΌ π=π ππ Conclusion ο§ Introduced a new framework for problems with βdiseconomies of scaleβ: ο§ Energy minimization ο§ πΏπ -minimization ο§ Found the exact constant in de la Peñaβs inequality. ο§ Generalized it to other convex and concave functions. π1 + β― + ππ β€ππ₯ π β (π1 + β― + ππ ) Thank you!
Similar documents
2011 Fepto meeting (Neve Shalom) Contact List
2011 Fepto meeting (Neve Shalom) Contact List
More information