Formacion de complejos entre proteinas: prediccion estructural
Transcription
Formacion de complejos entre proteinas: prediccion estructural
Magíster Bioinformática y Biología Computacional (UCM) 2012/13 PREDICCION DE ESTRUCTURAS Docking entre Proteínas Juan Fernández-Recio Barcelona Supercomputing Center (BSC) [email protected] • Introduction to protein-protein interactions • Geometry-based docking • Energy-based docking and scoring • Flexible docking • Evaluation of docking methods and applications • Future challenges 1 • Introduction to protein-protein interactions • Geometry-based docking • Energy-based docking and scoring • Flexible docking • Evaluation of docking methods and applications • Future challenges Gtggctatcactggcatctttttcggcagcgacaccggtaataccgaaaatatcgcaaaaatgattcaaaaacagcttggtaaagacgttgccgatgtccatgacattg caaaaagcagcaaagaagatctggaagcttatgacattctgctgctgggcatcccaacctggtattacggcgaagcgcagtgtgactgggatgacttcttcccgactct cgaagagattgatttcaacggcaaactggttgcgctgtttggttgtggtgaccaggaagattacgccgaatatttctgcgacgcattgggcaccatccgcgacatcatt gaaccgcgcggtgcaaccatcgttggtcggtctggctatcgacgaagaccgtcagccggaactgaccgctgaacgtgtagaaaaatgggttaaacagatttctgaagag ttgcatctcgacgaaattctcaatgcctgaatggctatcactggcatctttttcggcagcgacaccggtaataccgaaaatatcgcaaaaatgattcaaaaacagcttg gtaaagacgttgccgatgtccatgacattgcaaaaagcagcaaagaagatctggaagcttatgacattctgctgctgggcatcccaacctggtattacggcgaagcgca gtgtgactgggatgacttcttcccgactctcgaagagattgatttcaacggcaaactggttgcgctgtttggttgtggtgaccaggaagattacgccgaatatttctgc gacgcattgggcaccatccgcgacatcattgaaccgcgcggtgcaaccatcgttggtcactggccaactgcgggctatcatttcgaagcatcaaaaggtctggcagatg acgaccactttgtcggtctggctatcgacgaagaccgtcagccggaactgaccgctgaacgtgtagaaaaatgggttaaacagatttctgaagagttgcatctcgacga aattctcaatgcctgaatggctatcactggcatctttttcggcagcgacaccggtaataccgaaaatatcgcaaaaatgattcaaaaacagcttggtaaagacgttgcc gatgtccatgacattgcaaaaagcagcaaagaagatctggaagcttatgacattctgctgctgggcatcccaacctggtattacggcgaagcgcagtgtgactgggatg acttcttcccgactctcgaagagattgatttcaacggcaaactggttgcgctgtttggttgtggtgaccaggaagattacgccgaatatttctgcgacgcattgggcac catccgcgacatcattgaaccgcgcggtgcaaccatcgttggtcactggccaactgcgggctatcatttcgaagcatcaaaaggtctggcagatgacgaccactttgtc ggtctggctatcgacgaagaccgtcagccggaactgaccgctgaacgtgtagaaaaatgggttaaacagatttctgaagagttgcatctcgacgaaattctcaatgcct gaatggctatcactggcatctatggctatcactggcatctttttcggcaatggctatcactggcatctttttcggcaatggctatcactggcatctttttcggcaatgg ctatcactggcatctttttcggcaatggctatcactggcatctttttcggcaatggctatcactgtctgctgctgggcatcccaacctggtattacggcgaagcgcagt gtgactgggatgacttcttcccgactctcgaagagattgatttcaacggcaaactggttgcgctgtttggttgtggtgaccaggaagattacgccgacgatggctatca ctggcatctttttcggcagcgacaccggtaataccgaaaatatcgcaaaaatgattcaaaaacagcttggtaaagacgttgccgatgtccatgacattgcaaaaagcag caaagaagatctggaagcttatgacattctgctgctgggcatcccaacctggtattacggcgaagcgcagtgtgactgggatgacttcttcccgactctcgaagagatt gatttcaacggcaaactggttgcgctgtttggttgtggtgaccaggaagattacgccgaatatttctgcgacgcattgggcaccatccgcgacatcattgaaccgcgcg gtgcaaccatcgttggtcggtctggctatcgacgaagaccgtcagccggaactgaccgctgaacgtgtagaaaaatgggttaaacagatttctgaagagttgcatctcg acgaaattctcaatgcctgaatggctatcactggcatctttttcggcagcgacaccggtaataccgaaaatatcgcaaaaatgattcaaaaacagcttggtaaagacgt tgccgatgtccatgacattgcaaaaagcagcaaagaagatctggaagcttatgacattctgctgctgggcatcccaacctggtattacggcgaagcgcagtgtgactgg gatgacttcttcccgactctcgaagagattgatttcaacggcaaactggttgcgctgtttggttgtggtgaccaggaagattacgccgaatatttctgcgacgcattgg gcaccatccgcgacatcattgaaccgcgcggtgcaaccatcgttggtcactggccaactgcgggctatcatttcgaagcatcaaaaggtctggcagatgacgaccactt tgtcggtctggctatcgacgaagaccgtcagccggaactgaccgctgaacgtgtagaaaaatgggttaaacagatttctgaagagttgcatctcgacgaaattctcaat gcctgaatggctatcactggcatctttttcggcagcgacaccggtaataccgaaaatatcgcaaaaatgattcaaaaacagcttggtaaagacgttgccgatgtccatg acattgcaaaaagcagcaaagaagatctggaagcttatgacattctgctgctgggcatcccaacctggtattacggcgaagcgcagtgtgactgggatgacttcttccc gactctcgaagagattgatttcaacggcaaactggttgcgctgtttggttgtggtgaccaggaagattacgccgaatatttctgcgacgcattgggcaccatccgcgac atcattgaaccgcgcggtgcaaccatcgttggtcactggccaactgcgggctatcatttcgaagcatcaaaaggtctggcagatgacgaccactttgtcggtctggcta tcgacgaagaccgtcagccggaactgaccgctgaacgtgtagaaaaatgggttaaacagatttctgaagagttgcatctcgacgaaattctcaatgcctgaatggctat cactggcatctatggctatcactggcatctttttcggcaatggctatcactggcatctttttcggcaatggctatcactggcatctttttcggcaatggctatcactgg catctttttcggcaatggctatcactggcatctttttcggcaatggctatcactgtctgctgctgggcatcccaacctggtattacggcgaagcgcagtgtgactggga tgacttcttcccgactctcgaagagattgatttcaacggcaaactggttgcgctgtttggttgtggtgaccaggaagattacgccgcgaaattctcaatgcctgaatgg ctatcactggcatctatggctatcactggcatctttttcggcaatggctatcactggcatctttttcggcaatggctatcactggcatctttttcggcaatggctatca ctggcatctttttcggcaatggctatcactggcatctttttcggcaatggctatcactgtctgctgctgggcatcccaacctggtattacggcgaagcgcagtgtgact gggatgacttcttcccgactctcgaagagattgatttcaacggcaaactggttgcgctgtttggttgtggtgaccaggaagattacgcccgaaattctcaatgcctgaa 2 Gtggctatcactggcatctttttcggcagcgacaccggtaataccgaaaatatcgcaaaaatgattcaaaaacagcttggtaaagacgttgccgatgtccatgacattg caaaaagcagcaaagaagatctggaagcttatgacattctgctgctgggcatcccaacctggtattacggcgaagcgcagtgtgactgggatgacttcttcccgactct cgaagagattgatttcaacggcaaactggttgcgctgtttggttgtggtgaccaggaagattacgccgaatatttctgcgacgcattgggcaccatccgcgacatcatt gaaccgcgcggtgcaaccatcgttggtcggtctggctatcgacgaagaccgtcagccggaactgaccgctgaacgtgtagaaaaatgggttaaacagatttctgaagag ttgcatctcgacgaaattctcaatgcctgaatggctatcactggcatctttttcggcagcgacaccggtaataccgaaaatatcgcaaaaatgattcaaaaacagcttg gtaaagacgttgccgatgtccatgacattgcaaaaagcagcaaagaagatctggaagcttatgacattctgctgctgggcatcccaacctggtattacggcgaagcgca gtgtgactgggatgacttcttcccgactctcgaagagattgatttcaacggcaaactggttgcgctgtttggttgtggtgaccaggaagattacgccgaatatttctgc gacgcattgggcaccatccgcgacatcattgaaccgcgcggtgcaaccatcgttggtcactggccaactgcgggctatcatttcgaagcatcaaaaggtctggcagatg acgaccactttgtcggtctggctatcgacgaagaccgtcagccggaactgaccgctgaacgtgtagaaaaatgggttaaacagatttctgaagagttgcatctcgacga aattctcaatgcctgaatggctatcactggcatctttttcggcagcgacaccggtaataccgaaaatatcgcaaaaatgattcaaaaacagcttggtaaagacgttgcc gatgtccatgacattgcaaaaagcagcaaagaagatctggaagcttatgacattctgctgctgggcatcccaacctggtattacggcgaagcgcagtgtgactgggatg acttcttcccgactctcgaagagattgatttcaacggcaaactggttgcgctgtttggttgtggtgaccaggaagattacgccgaatatttctgcgacgcattgggcac catccgcgacatcattgaaccgcgcggtgcaaccatcgttggtcactggccaactgcgggctatcatttcgaagcatcaaaaggtctggcagatgacgaccactttgtc ggtctggctatcgacgaagaccgtcagccggaactgaccgctgaacgtgtagaaaaatgggttaaacagatttctgaagagttgcatctcgacgaaattctcaatgcct gaatggctatcactggcatctatggctatcactggcatctttttcggcaatggctatcactggcatctttttcggcaatggctatcactggcatctttttcggcaatgg ctatcactggcatctttttcggcaatggctatcactggcatctttttcggcaatggctatcactgtctgctgctgggcatcccaacctggtattacggcgaagcgcagt gtgactgggatgacttcttcccgactctcgaagagattgatttcaacggcaaactggttgcgctgtttggttgtggtgaccaggaagattacgccgacgatggctatca ctggcatctttttcggcagcgacaccggtaataccgaaaatatcgcaaaaatgattcaaaaacagcttggtaaagacgttgccgatgtccatgacattgcaaaaagcag caaagaagatctggaagcttatgacattctgctgctgggcatcccaacctggtattacggcgaagcgcagtgtgactgggatgacttcttcccgactctcgaagagatt gatttcaacggcaaactggttgcgctgtttggttgtggtgaccaggaagattacgccgaatatttctgcgacgcattgggcaccatccgcgacatcattgaaccgcgcg gtgcaaccatcgttggtcggtctggctatcgacgaagaccgtcagccggaactgaccgctgaacgtgtagaaaaatgggttaaacagatttctgaagagttgcatctcg acgaaattctcaatgcctgaatggctatcactggcatctttttcggcagcgacaccggtaataccgaaaatatcgcaaaaatgattcaaaaacagcttggtaaagacgt tgccgatgtccatgacattgcaaaaagcagcaaagaagatctggaagcttatgacattctgctgctgggcatcccaacctggtattacggcgaagcgcagtgtgactgg gatgacttcttcccgactctcgaagagattgatttcaacggcaaactggttgcgctgtttggttgtggtgaccaggaagattacgccgaatatttctgcgacgcattgg gcaccatccgcgacatcattgaaccgcgcggtgcaaccatcgttggtcactggccaactgcgggctatcatttcgaagcatcaaaaggtctggcagatgacgaccactt tgtcggtctggctatcgacgaagaccgtcagccggaactgaccgctgaacgtgtagaaaaatgggttaaacagatttctgaagagttgcatctcgacgaaattctcaat gcctgaatggctatcactggcatctttttcggcagcgacaccggtaataccgaaaatatcgcaaaaatgattcaaaaacagcttggtaaagacgttgccgatgtccatg acattgcaaaaagcagcaaagaagatctggaagcttatgacattctgctgctgggcatcccaacctggtattacggcgaagcgcagtgtgactgggatgacttcttccc gactctcgaagagattgatttcaacggcaaactggttgcgctgtttggttgtggtgaccaggaagattacgccgaatatttctgcgacgcattgggcaccatccgcgac atcattgaaccgcgcggtgcaaccatcgttggtcactggccaactgcgggctatcatttcgaagcatcaaaaggtctggcagatgacgaccactttgtcggtctggcta tcgacgaagaccgtcagccggaactgaccgctgaacgtgtagaaaaatgggttaaacagatttctgaagagttgcatctcgacgaaattctcaatgcctgaatggctat cactggcatctatggctatcactggcatctttttcggcaatggctatcactggcatctttttcggcaatggctatcactggcatctttttcggcaatggctatcactgg catctttttcggcaatggctatcactggcatctttttcggcaatggctatcactgtctgctgctgggcatcccaacctggtattacggcgaagcgcagtgtgactggga tgacttcttcccgactctcgaagagattgatttcaacggcaaactggttgcgctgtttggttgtggtgaccaggaagattacgccgcgaaattctcaatgcctgaatgg ctatcactggcatctatggctatcactggcatctttttcggcaatggctatcactggcatctttttcggcaatggctatcactggcatctttttcggcaatggctatca ctggcatctttttcggcaatggctatcactggcatctttttcggcaatggctatcactgtctgctgctgggcatcccaacctggtattacggcgaagcgcagtgtgact gggatgacttcttcccgactctcgaagagattgatttcaacggcaaactggttgcgctgtttggttgtggtgaccaggaagattacgcccgaaattctcaatgcctgaa Biosphere DNA 3 Cell biology Protein function Interaction with other molecules Cells Cell Biology Physiology Protein 3D structure Organisms Folding and stability Ecology Protein sequence Biosphere Genetic code DNA RNA transcription human 650M PPI fly 75M PPI yeast 38K PPI Cell biology Protein function Interaction with other molecules Cells Cell Biology Physiology Protein 3D structure human 25K prot fly 13K prot yeast 7K prot Folding and stability Protein sequence Organisms Ecology Biosphere Genetic code RNA transcription DNA 4 Study of Protein-Protein Interactions Biophysical Analysis Protein Interaction Detection Applications P4A P4 P2A - NMR (chemical shifts) P3 P2 P1A P 6 P7 P1 P5 - sequence conservation - binding essays - mutants & alanine-scanning P8 P9 P10 P1B P9A P9B - two-hybrid test - affinity column, gel assays... - BIAcore - mass-spectrometry - electron microscopy - cross-linking - co-immunoprecipitation - immunofluorescence - knock-out - phylogenetic profiles, gene fusion events... - ... Structural Characterization - protein design - inhibitor discovery: peptide mimicking ligand docking VLS - association mechanism - X-ray - NMR - druggable pockets 5 Structural Analysis at Atomic Resolution: NMR and X-ray Types of protein-protein interactions PERMANENT / NON-OBLIGATORY HOMO- / HETEROOBLIGOMERS / COMPLEXES Jones & Thornton (1996) PNAS, 93, 13 Ofran & Rost (2003) JMB, 325, 377 HOMO- / HETERO-OLIGOMERIC NON-OBLIGATE / OBLIGATE TRANSIENT / PERMANENT Nooren & Thornton (2003) EMBO J, 22, 3486 DOMAIN-DOMAIN INTERFACE CLASSIFICATION PERMANENT / TRANSIENT, SYMMETRIC... Kim et al. (2006) PLOS Comp Biol, 2, e124 (http://www.scoppi.org) 6 Types of protein-protein interactions MULTI-MOLECULAR ASSEMBLIES 3Dcomplex, http://supfam.mrc-lmb.cam.ac.uk/elevy/3dcomplex/Home.cgi Human interactome 130-650K estimated interactions* 25K confirmed interactions# (2K with known structure) homology ? 3K can be modelled In silico structural prediction * Venkatesan et al 2009 Nature Methods 6, 83-90 Stumpf et al 2008 PNAS 105, 6959-6964 20K # Stein, Mosca & Aloy 2011 COSB 21, 200 7 Protein-Protein Docking Generation of the structure of a protein-protein complex from the individual protein structures Motivation … - X-ray, NMR: Determination of complex structures remains difficult - Low-resolution data on PPI available (cryo-EM, MS…) - Understand energetics and mechanism of protein-protein association - Protein design (diagnostic, environment) and drug discovery 8 docking 9 10 11 Protein-protein docking – major methods Exhaustive search (FFT) Stochastic sampling (Monte-Carlo, minimization) Geometric docking Global energy optimization • Introduction to protein-protein interactions • Geometry-based docking • Energy-based docking and scoring • Flexible docking • Evaluation of docking methods and applications • Future challenges 12 Rigid-Body Docking: Geometry Approach Rigid-Body Docking: Geometry Approach 13 Protein Docking Using FFT R Discretize Fast Fourier Transform R R Complex Conjugate Correlation function L Rotate Discretize L L Fast Fourier Transform Surface Interior Protein Docking Using FFT Correlation Comp. cost can decrease by >104 (from N6 to N3lnN3) Surface Y Translation IFFT IFFT R L Interior X Translation 14 FTDOCK ZDOCK Molecular Shape Recognition: Hex 2D Spherical Harmonic Surfaces 15 Geometrical hashing - PatchDock Schneidman-Duhovny et al. Proteins 2003 Duhovny (Schneidman), D., Nussinov, R. Wolfson,HJ. WABI 2002 Multi-protein docking: CombDock ? 16 Symmetric docking: SymmDock Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ Proteins 05 • Introduction to protein-protein interactions • Geometry-based docking • Energy-based docking and scoring • Flexible docking • Evaluation of docking methods and applications • Future challenges 17 Protein-Protein Docking Energy Protein-Protein Docking Energy E 0 RMSD 18 Protein-Protein Docking Energy E = Evw + Eel + Ehb + Ehp (ECEPP/3) E ‘soft’ vdW = el 332.0 qis q j 2 4d ij Max E el= 20 kcal/mole Min E el = -20 kcal/mole = 0.03 kcal/mole * ASA(apolar) RosettaDock Random Start Position Low-Resolution Monte Carlo Search High-Resolution Refinement 105 Clustering Predictions 19 HADDOCK HADDOCK 20 RECEPTOR LIGAND Calculate maps ICM-DISCO protein docking Positioning (x 120) Pseudo-Brownian Monte-Carlo Minimization RIGID BODY DOCKING Energy funct = vdw + el + hb + desolv Monte Carlo sampling (positional) Local minimization NO Solution rejected Metropolis criteria 20000 energy evaluations YES Solution accepted Low energy solutions RMSD > 4 Å Conformational stack Fernández-Recio et al. 2002 Protein Sci. 11, 280-291 pyDock: FFT sampling + energy scoring 80 protein-protein cases R R R L L C ( x, y, z ) f h,k ,l g h x ,k y ,l z n n FTDOCK’s docking sets n FFT h 1 k 1 l 1 ZDOCK’s docking sets REC LIG E 0.1 i j r r i j ei e j d ij r r 2 i j d ij qi q j REC LIG 332.0 i 12 4d ij2 j REC LIG i j 6 ADPi BSAi ADPj BSA j pyDock – Cheng, Blundell, Fernandez-Recio (2007) Proteins 68, 503-515 21 • Introduction to protein-protein interactions • Geometry-based docking • Energy-based docking and scoring • Flexible docking • Evaluation of docking methods and applications • Future challenges 22 ? 23 Docking success depends on flexibility Pons et al. (2010) Proteins 78, 95-108 Docking unbound trypsin/BPTI Prot. Sci., 2002 Docking unbound Docking complexed subunits Distribution of solutions Real complex Best docking solution Correct solution 24 Protein-protein binding mechanism 1894: LOCK AND KEY: E. FISCHER 1958: INDUCED FIT: D. E. KOSHLAND 1999: CONFORMATIONAL SELECTION: R. NUSSINOV Protein-protein binding mechanism 1894: LOCK AND KEY: E. FISCHER - RIGID-BODY DOCKING 1958: INDUCED FIT: D. E. KOSHLAND - small: RIGID-BODY + REFINEMENT - large: FLEXIBLE DOCKING SEARCH 1999: CONFORMATIONAL SELECTION: R. NUSSINOV - PRECOMPUTED ENSEMBLES 25 Protein-protein binding mechanism 1894: LOCK AND KEY: E. FISCHER - RIGID-BODY DOCKING 1958: INDUCED FIT: D. E. KOSHLAND - small: RIGID-BODY + REFINEMENT - large: FLEXIBLE DOCKING SEARCH 1999: CONFORMATIONAL SELECTION: R. NUSSINOV - PRECOMPUTED ENSEMBLES RECEPTOR Calculate maps LIGAND ICM-DISCO protein docking SIDE-CHAIN REFINEMENT Positioning (x 120) Energy = vdw + el + hb + desolv RIGID BODY DOCKING Monte Carlo sampling (ligand interface side-chains) Local minimization NO Metropolis criteria Monte Carlo sampling (positional) Local minimization Solution rejected YES NO 20000 energy evaluations Metropolis criteria Solution accepted Solution rejected 1000 energy evaluations per flexible torsion angle YES Solution accepted Low energy solutions RMSD > 4 Å Conformational stack Fernández-Recio et al. 2002 Protein Sci. 11, 280-291 26 ICM Interface Side-Chain Optimization Prot. Sci., 2002 Grid refinement Algorithm: ICM-BP-SGO of side-chains and positional variables Docking unbound Docking complexed subunits Distribution of solutions Real complex Best docking solution After refinement Correct solution RosettaDock Random Start Position Low-Resolution Monte Carlo Search High-Resolution Refinement 105 Clustering Predictions 27 HADDOCK FireDock Fast Interaction Refinement in Molecular Docking Rigid-Body Docking Side-Chain Optimization 1 Rigid-Body Optimization 2 Rigid-body candidates Refinement Complex Hypotheses Ranking . . . 28 Protein-protein binding mechanism 1894: LOCK AND KEY: E. FISCHER - RIGID-BODY DOCKING 1958: INDUCED FIT: D. E. KOSHLAND - small: RIGID-BODY + REFINEMENT - large: FLEXIBLE DOCKING SEARCH 1999: CONFORMATIONAL SELECTION: R. NUSSINOV - PRECOMPUTED ENSEMBLES FlexDock Detection of Hinges and Rigid Parts in the Flexible Molecule part1 part2 part3 part1 Rigid Parts Docking via Geometric Hashing A A … Assembly of partial dockings into a flexible result 29 ATTRACT 30 Protein-protein binding mechanism 1894: LOCK AND KEY: E. FISCHER - RIGID-BODY DOCKING 1958: INDUCED FIT: D. E. KOSHLAND - small: RIGID-BODY + REFINEMENT - large: FLEXIBLE DOCKING SEARCH 1999: CONFORMATIONAL SELECTION: R. NUSSINOV - PRECOMPUTED ENSEMBLES Precomputed ensembles + docking 31 Precomputed ensembles + docking • Introduction to protein-protein interactions • Geometry-based docking • Energy-based docking and scoring • Flexible docking • Evaluation of docking methods and applications • Future challenges 32 Protein-protein benchmarking 2002-2010 Weng’s benchmark series A Novel Shape Complementarity Function 100% Grid-based shape complementarity (GSC) GSC+Desolvation+Electrostatics Pairwise shape complementarity (PSC) PSC +Desolvation+Electrostatics 90% 80% 70% Success Rate 0.0: 54 cases 1.0: 59 cases 2.0: 84 cases 3.0: 124 cases 4.0: 176 cases 60% 50% 40% 30% 20% 10% 0% 1 10 100 1000 Number of Predictions http://zlab.umassmed.edu/benchmark/ DOCKING VALIDATION CAPRI: A Critical Assessment of PRedicted Interactions http://www.ebi.ac.uk/msd-srv/capri/ 1st CAPRI – Sep02 La Londe (France) Special issue, in: PROTEINS: Structure, Function, and Genetics 52 (July 2003) T01 Hpr (unbound) HPr kinase (unbound) 2nd CAPRI – Dec04 Gaeta (Italy) Special issue, in: PROTEINS: Structure, Function, and Bioinformatics 60 (July 2005) T02 VP6 (unbound) Fab (bound) 3rd CAPRI – Apr07 Toronto (Canada) T03 Hemagglutinin (unbound) Fab (bound) T04, T05, T06 a-amylase (unbound) VHH (bound) T07 TCRb (unbound) speA (unbound) Special issue, in: PROTEINS: Structure, Function, and Bioinformatics 69 (December 2007) 4th CAPRI – Dec10 Barcelona (Spain) Special issue, in: PROTEINS: Structure, Function, and Bioinformatics (November 2010) 33 1st CAPRI - Predictions … 6 groups: 2 acceptable models 3 groups: 1 acceptable models 5 groups: no acceptable models Fernandez-Recio et al. (2003) Proteins 52, 113-117 2nd CAPRI - Predictions T08 7.6Å T10 8.5Å T11 T12 6.0Å 0.7Å 4.1Å 3.0Å T13 11.1Å T14 T18 T19 0.6Å Fernandez-Recio et al. (2005) Proteins 60, 308-313 34 CAPRI 1-3: summary of results Weng 61% F-Recio/Totrov/Abagyan 57% Bonvin 57% 4th CAPRI – Barcelona 2009 X-ray structure 5.9 Å 4.1 Å scorers predictors almost hit 3.8 Å 12.3 Å 5.2 Å 2.5 Å T29 10.3 Å Best in scorers! T32 Fnat 45% T34 2nd best in scorers! T35 8.1 Å Best (only one) in predictors! 5.5 Å 2.3 Å T39 T40 T41 T42 35 Target 29 (bound / unbound) Receptor TRM82 (bound) Ligand TRM8 (unbound) PDB complex 2VDU Predictors (total 41 groups): 0.1*vdw PyDock Model 1 ( ** medium) 40% native contacts Ligand RMSD: 5.9Å; Interface RMSD 1.9Å [4th best of any group !!] From zdock Scorers (total 18 groups): 0.1*vdw PyDock Model 4 (*** high) [best of any group !!] 71% native contacts Ligand RMSD: 2.5Å; Interface RMSD 1.0Å Target 40 (unbound / bound) Receptor PDB complex 3E8L Bovine trypsin PDB 1BTY (unbound) Ligand API-A (bound) Predictors (total 38 groups): Incorrect restraints !!! 0.1*vdw Energy+Restraints (inhibitor L87 AND K145) PyDock Model 2 ( incorrect) Ligand RMSD: 12.5Å Energy+Restraints: inhibitor L87 OR K145 PyDock Model 8 (* acceptable?) Scorers (total 14 groups): 0.1*vdw Energy+Restraints (inhibitor L87 AND K145) PyDock Model 6 (incorrect) Ligand RMSD: 12.5Å Incorrect restraints !!! Energy+Restraints: inhibitor L87 OR K145 PyDock Model 1 (* acceptable) 36 4th CAPRI 10th out of 64 groups 21 other groups 0 5th CAPRI (ongoing) 60% success rate 3th out of 58 groups 37 pyDock protocol for CAPRI PREDICTORS 10K FTDock Rigid-body poses Ele+Des+(0.1*vdw) 2K ZDock pyDockRST Int residues? ~10-50K RotBUS uploaders SCORERS NIP Clustering 4Å (10Å) 10 models ODA vdw? 4Å? 10Å? Submit to CAPRI tinker Fernandez-Recio et al. (2004) JMB 335, 843-865 • Introduction to protein-protein interactions • Geometry-based docking • Energy-based docking and scoring • Flexible docking • Evaluation of docking methods and applications • Future challenges 38 The challenge of size The challenge of flexibility 39 The challenge of low-affinity complexes The challenge of using models for docking 84 protein-protein complex structures >30% seq ID 36 cases with PDB template 30-50% seq ID 23 cases with PDB template 50-70% seq ID 12 cases with PDB template 70-90% seq ID Modeller 80 70 70 X-ray subunits 60 50 Modeled subunits 40 50 30 20 100 150 200 250 RANK 300 350 400 450 500 70 60 Modeled subunits X-ray subunits 50 40 30 20 random 10 10 0 50 Modeled subunits 40 20 random 80 60 30 10 90 X-ray subunits SUCCESS RATE [%] 90 80 SUCCESS RATE [%] SUCCESS RATE [%] 90 0 100 100 100 random 50 100 150 200 250 RANK 300 350 400 450 0 500 50 100 150 200 250 RANK 300 350 400 450 500 40 The challenge of multi-protein complexes Docking 1:1 Stalk Multi-protein docking ?? The challenge of identifying interactions Significant correlation of pyDock with experimental binding energies r = 0.762 ? Data from Kastritis & Bonvin 2010 Identifying PPIs from docking profiles Wass et al. 2011 MolSysBiol 7, 469 41 The ultimate challenge: inhibiting protein-protein interactions Approx. 80% of small organic molecules approved for human use by the FDA target cell-surface receptors and enzymes Only 10–15% of all human proteins are currently «druggable» Network medicine Biomedical applications of cell networks (e.g. Pujol et al, TiPS, 2010; Sardón et al, EMBO Rep, 2010; Soler-López et al, Genome Res, 2011) Protein-protein docking in drug discovery 42 Bibliography Protein-Protein Interaction - General - Protein-Protein Complexes, M. Zacharias ed., Imperial College Press - Protein-Protein Recognition, C. Kleanthous ed., Oxford University Press - Conte et al. (1999) J. Mol. Biol 285, 2177-2198 Docking Simulations - Computational Protein-Protein Interactions, R. Nussinov, G. Schreiber ed., CRC Press - Katchalski-Katzir et al. (1992) PNAS 89, 2195-2199 - Halperin et al. (2002) Proteins 47, 409-443 - Smith & Sternberg (2002) Curr. Opin. Struct. Biol. 12, 28-35 - Bonvin (2006) Curr. Opin. Struct. Biol. 16, 194 - Gray (2006) Curr. Opin. Struct. Biol. 16, 1 - Ritchie (2008) Curr. Protein Pept. Sci. 9, 1-15 - Andrusier et al. (2008) Proteins 73, 271 - May et al. (2008) Curr. Comput. Aided Drug Des. 4, 143-153 CAPRI - Proteins Special Issues (July 2003, July 2005, December 2007, November 2010) “Protein Interactions and Docking” group Barcelona Supercomputing Center [email protected] - Proyecto Master - Doctorado en biomedicina 43