Negative thermal expansion and local dynamics
Transcription
Negative thermal expansion and local dynamics
Negative thermal expansion and local dynamics P. Fornasini, N. Abd el All, S. I. Ahmed, A. Sanson, M. Vaccari Overview • Negative thermal expansion (NTE) • EXAFS and local dynamics • EXAFS studies of NTE materials Thermal expansion in 2-atomic systems m1 Paolo Fornasini Univ. Trento m2 V (u ) = µ 1 k0 u 2 + k3 u 3 + k4 u 4 +.... 2 Positive expansion € V(x) x 0 x 0 u = x −ux 0 Thermal expansion in many-atomic systems r r r V ( r1, r2 ,K rn ) Crystal potential defined in 3n-dim. configurational space € Positive or negative thermal expansion Isotropic or anisotropic Paolo Fornasini Univ. Trento Paolo Fornasini Univ. Trento NTE in tetrahedral semiconductors Thermal expansion coefficient Thermal expansion coefficient 0.6 4 Germanium -1 -2 α (10 K ) 0 -6 2 0.2 -6 -1 α (10 K ) 0.4 0 Ge -4 CdTe -6 -0.2 -8 -0.4 CuCl 0 20 40 T(K) 60 80 -10 0 20 40 60 80 100 120 T(K) Barron, Birch, White - J. Phys. C 10, 1617 (1977) NTE in framework structures 0.1 Paolo Fornasini Univ. Trento CuCl 0 Δa/a % Cu O 2 -0.1 -0.2 Ag O Zn(CN) 2 -0.5 0 Tiano, Dapiaggi, Artioli, J. Appl. Cryst. 36, 1461 (2003) 2 -0.3 -0.4 Cuprite structure 100 200 300 T (K) ZrW O 2 400 Mary, Evans, Vogt, Sleight Science, 272 (1996) 8 500 Chapman, Chupas, Kepert J. Am. Chem. Soc. 127, 15630 (2005) “Global” approach to NTE r r r V ( r1, r2 ,K rn ) Crystal potential defined in 3n-dim. configurational space Born - von Karman power expansion with respect to atomic displacements anharmonic terms ⇔ thermal expansion Quasi-harmonic approximation: positive Positive contribution negative Negative contribution Mode Grüneisen parameters “Local” approach to NTE Paolo Fornasini Univ. Trento Anharmonicity of effective pair potential V(r) Bond-stretching effect Positive contribution Perpendicular vibrations Negative contribution Tension effect Barrera, Bruno, Barron, Allan - J. Phys. Cond. Matter, 17 (2005) Bond distances Paolo Fornasini Univ. Trento Bragg diffraction, dilatometry r r R = rb − ra Distance between average atomic positions r R € r r r R € Average distance € r ≈R + Δu⊥2 2R € EXAFS, diffuse scattering Perpendicular MSRD Fornasini et al., Phys. Rev. B 70, 174301 (2004) € r r r = rb − ra Thermal factors Paolo Fornasini Univ. Trento Bragg diffraction: MSDs of single atoms Absolute vibrations Perpendicular r Relative vibrations R0 Parallel EXAFS & diffraction: MSRDs Fornasini et al., Phys. Rev. B 70, 174301 (2004) Paolo Fornasini Univ. Trento EXAFS and NTE Expansion of selected bond distances Bond-stretching effect MSRD • parallel • perpendicular Tension effect NTE structures studied by EXAFS (a) Zincblende Cuprite Delafossite Ge, CdTe, CuCl Cu2O, Ag2O CuScO2, CuLaO2 Cu Cu Cu Isotropic NTE Isotropic NTE Anisotropic NTE NTE structures studied by EXAFS (b) Zincblende Cuprite Delafossite TA acoustic modes at BZ boundary with negative Grueneisen parameters Framerwork structure: 2 networks of M4O tetrahedra O O Cu Neutron diffraction: Cu-O NTE Anisotropic Cu motion O Cu O Thermal expansion coefficient Bond expansion in zincblende structures Ge -1 α (10 K ) 4 -6 0 CdTe -4 -8 CuCl 0 Ge - 1st shell % expansion T(K) 80 120 CuCl - 1st shell CdTe - 1st shell 1.0 40 EXAFS 0.5 EXAFS EXAFS XRD 0.0 0 XRD XRD 100 200 T (K) 300 0 PRL 82, 4240 (1999) 100 200 T(K) 300 0 Poster PS1-62, XAFS14 100 200 T (K) 300 PRB 75, 184307 (2007) MSRD: zincblende structure Δu⊥2 Δu||2 € 10.0 Ge - 1st shell CuCl - 1st shell CdTe - 1st shell € ⊥/2 -2 2 MSRD (10 Å ) 8.0 6.0 4.0 ⊥/2 2.0 0.0 ⊥/2 0 100 200 T (K) 300 0 NTE strength increases || 100 200 T (K) 300 0 || 100 200 T (K) Force constants k|| and k⊥ decrease Anisotropy k||/ k⊥ increases 300 Cu-O bond expansion in delafossite structures CuScO CuLaO 2 2 EXAFS -2 Expansion (10 Å) 2 O | Cu | O 1 EXAFS PRB 78, 104302 (2009) n diffr. Sleight et al. J. Solid St. Chemistry 178, 285 (2005) 0 n diffr. -1 0 200 T (K) 400 0 200 T (K) 400 Cu-O MSRD in delafossite structures O Cu O 2 2 ⊥/2 30 -3 2 MSRD (10 Å ) CuLaO : Cu-O CuScO : Cu-O 40 ⊥/2 20 10 || 0 0 200 T (K) 400 || 0 NTE strength increases 200 T (K) 400 Force constants k|| and k⊥ decrease Anisotropy k||/ k⊥ increases 0.1 Bond expansion in cuprite structures Δa/a (%) 0 Cu O 2 -0.1 -0.2 -0.3 Ag O 2 -0.4 0.03 Ag--O Cu--O Expansion (Å) 0.02 EXAFS 0.01 EXAFS 0 diffraction diffraction -0.01 0 200 400 0 T (K) PRL 89, 25503 (2002) 200 400 T (K) - PRB 73, 214305 (2006) 0 200 400 T (K) 600 M-O MSRDs in cuprite structures 0.08 Ag-O Cu-O 2 MSRD (Å ) ⊥/2 0.04 ⊥/2 || 0 || 0 200 0 400 400 T (K) T (K) PRL 89, 25503 (2002) 200 - PRB 73, 214305 (2006) € EXAFS and NTE Paolo Fornasini Univ. Trento Bragg diffraction δR Lattice thermal expansion EXAFS 1st cumulant ≈ δ r Perpendicular MSRD − Bond-stretching effect POSITIVE contribution δ 2 Δu⊥ 2R Tension effect NEGATIVE contribution Bond expansion and asymmetry of the effective potential * Thermal expansion due to asymmetry δa = − 3k 3 δC2 k 0 ♦ 0.5 CdTe Ge 0.4 0.2 % expansion € EXAFS CuCl 1.5 EXAFS 0.3 1.0 0.2 0.1 XRD EXAFS 0.5 0.1 0 0.0 0.0 XRD 0 100 200 T (K) 300 -0.1 0 100 200 T(K) 300 XRD 0 100 200 T (K) 300 EXAFS thermal expansion Paolo Fornasini Univ. Trento Effective potential dependent on temperature 0 EXAFS thermal expansion 1st cumulant = Potential asymmetry u + Potential shift 3rd cumulant See also: XAFS14, Poster Ps1-24 Phys. Rev. B 70, 174301 (2004) Local dynamical properties of NTE materials zincblende cuprite delafossite Cu Ge CdTe CuCl Cu 2O Ag 2O CuLaO 2 CuScO 2 k⊥ (eV/Å2 ) 2.72 2.9 0.9 0.3 2.9 0.5 2.5 1.0 Bending k|| (eV/Å2 ) k ξ = || k⊥ 3.2 8.5 3.8 1.4 11.6 5.9 15.5 24.2 Stretching 1.17 2.9 4.2 5.4 4.0 11.8 6.0 24.2 Anisotropy NTE strength € Conclusions The NN bond always undergoes positive expansion (PTE). For iso-structural crystals, the stronger is the lattice NTE, the stronger are the bond PTE and the perpendicular MSRD. A correlation can be established between MSRD anisotropy and NTE strength. EXAFS measurements substantiate the local model based on the competition between stretching and tension effects. Bond stretching is due to anharmonicity plus shift of the effective pair potential. Authors Paolo Fornasini University of Trento, Dept. of Physics Naglaa Abd el All PhD student Univ. Trento (from Assiut, Egypt) Sameh I. Ahmed Trento PhD, now Univ. of Cairo (Egypt) Andrea Sanson Trento PhD, now Univ. of Verona (Italy) Marco Vaccari Trento PhD, now ESRF (France) Collaborators Giuseppe Dalba Rolly Grisenti Francesco Rocca Gilberto Artioli Monica Dapiaggi Juris Purans Alex Kuzmin Djibril Diop Bridinette T. Sendjia Arthur W. Sleight Trento (Italy) Trento (Italy) Trento (Italy) Padova (Italy) Milano (Italy) Riga (Latvia) Riga (Latvia) Dakar (Senegal) Dakar (Senegal) Corvallis, Oregon, USA