16-018 Matsuzawa Snow Transport.pptx
Transcription
16-018 Matsuzawa Snow Transport.pptx
A Technique for Estimating Snow Transport Rate from the Mass Flux at a Given Height MasaruMATSUZAWAandSatoshiOMIYA CivilEngineeringResearchIns>tuteforColdRegion, PublicWorksResearchIns>tute,Japan 1 Introduc)on Snow transport rate (Q): the mass of blowing snow particles that pass through a unit width per unit time (g m-1 sec-1) When planning and designing blowingsnow control facilities, it is necessary to know the cumulative annual snow transport. Tabler (1994) Introduc)on Thesnowtransportrate(Q)isgenerallyes>mated byusingempiricalequa>ons. 𝑙𝑜𝑔𝑄=1.22+0.0859𝑉↓10 • Buddetal.(1966) 𝑄=0.00428𝑉↓10↑3.8 • Tabler(2003) 𝑄=0.0029𝑉↓1↑4.16 • Takeuchi(1980) 𝑄=0.03(𝑉↓1 −1.3)3 • Kobayashi(1972) • Matsuzawaetal.(2010) 𝑄=0.05𝑉↓1.2 4 Vx:windspeedattheheightofx(m) Accurate determination of actual snow transport rate by using wind speed is difficult. Massfluxandthesnowpar)clecounter(SPC) Massflux(q):massofthesnowpar>clesthat passthroughaunitareaperunit>me(gm-2sec-1) SPC can measure An Transmitter: mass flux continuously.Super Luminescent Diode Slit Snow Particles 25 mm Receiver: Photo Diode Slit 0.5 mm 2 mm The SPC optically measures the number and size of airborne snow particles that pass between transmitter and receiver. To clarify the relationship between the mass flux at a given height and the snow transport rate of blowing snow Fieldobserva)onoverview Themassfluxofsnowwasmeasuredattheheightsof0.02,0.05,0.07and0.1m usingabox-shapednet-typeblowingsnowtrap,andattheheightsof0.1,0.3,0.5, 1.0and2.0musingacylindricalnet-typeblowingsnowtrap. Box-shaped net-type blowing-snow trap Cylindrical net-type blowing-snow trap 5 Meteorologicaldatafor thedaysofmeasurement Date Air Windspeedatthe temperature heightof1m(m/ (°C) s) -4.9~-6.5 9.2~12.9 Feb.21, 2012 Feb.3,2013 -6.3~-7.8 Jan.31, -4.9~-5.9 2014 Mar.6,2014 -4.8~-5.9 Precipita)on (mm/h) 0.0 9.7~10.5 6.1~12.5 0.0 0.0~1.2 5.6~7.7 0.0~0.6 6 Calcula)onmethodtodeterminesnow transportratefrommassfluxofsnow 7 Results Therela>onalequa>onQ=kq(kisapropor>onalconstant)was obtainedfortheheightof0.5mandtheheightof1.0m Q=3.0q0.5 q0.5:Massfluxat0.5mheight Q=5.4q1 8 q1:Massfluxat1.0mheight Discussion Es#ma#onmodelofsnowtransportrate Modes of transport Wind Qtotal ≅ Qsal + Qsus Suspension Qsus SaltationQ Creep sal Takeuchi (1990) Es#ma#onmodelofsnowtransportrate, Discussion(cont’) 1)Qinthesuspensionlayer:Qsus q( z ) = N ( z ) ⋅ V ( z ) ・・・(1) Qsus ( z ) = ∫ q( z )dz = ∫ N ( z ) ⋅ V ( z )dz ・・・(2) P ⎛ P ⎞⎛ z ⎞ ⎟⎟ ⎜⎜ ⎟⎟ N(z) = + ⎜⎜ Nt − wf ⎝ w f ⎠ ⎝ z1 ⎠ u* ⎛ z ⎞ V ( z ) = ln⎜⎜ ⎟⎟ k ⎝ z0 ⎠ − wb ku * ・・・(3) Matsuzawa and Takeuchi (2002) ・・・(4) where, N(z):blowingsnowdensity,V(z):windvelocity, P:precipita>onintensity,Nt:blowingsnowdensityatreferenceheightz1, wf:fallingspeedofsnowfallpar>cles, wb:fallingspeedofsuspendedpar>cles k:Karmancoefficient(0.4),u*:fric>onvelocity,z0:surfaceroughness 10 Discussion(cont’) 1)Qinthesuspensionlayer:Qsus ⎛a ⎞ b Pu* a b (ln z − ln z0 ) + b ⋅ z ln z − ⎜⎜ b ln z0 ⎟⎟ ⋅ z q( z ) = kw z1 ⎝ z1 ⎠ wb b=− ku* where,a = ⎛⎜ N − P ⎞⎟ u* ⎜ t w ⎟k f ⎠ ⎝ Qsus ・・・(5) b +1 ⎡ Pu* z ⎛ z ⎞ a z ⎜⎜ ln − 1⎟⎟ + =⎢ b kw z b + 1 z f ⎝ 0 1 ⎠ ⎣ z2 ⎛ z 1 ⎞⎤ ⎜⎜ ln − ⎟⎟⎥ ⎝ z0 b + 1⎠⎦ z1 ・・・(6) 2)Qinthesalta#onlayer:Qsal Qsal = 0.03(V1 − 1.3) 3 ・・・(7) Kobayashi (1972) Q = Qsal + Qsus ・・・(8) 11 Discussion(cont’) Calcula#on Qsus b +1 ⎡ Pu* z ⎛ z ⎞ a z ⎜⎜ ln − 1⎟⎟ + =⎢ b kw z b + 1 z f ⎝ 0 1 ⎠ ⎣ Where, ⎛ P ⎞ u* ⎜ ⎟⎟ a = ⎜ Nt − wf ⎠ k ⎝ z2 ⎛ z 1 ⎞⎤ ⎜⎜ ln − ⎟⎟⎥ ⎝ z0 b + 1⎠⎦ z1 wb b=− ku* Qsal = 0.03(V1 − 1.3)3 ・・・(6) ・・・(7) The following values are assigned to equation (6). z0=1.5x10-4(m),wf=1.2(m/s),wb=0.25(m/s) z1=0.15(m),z2=5.0(m) u*=0.036V10(m/s) Nt=0.021exp(0.401V10)(g/m3) Cases for calculation of Q Precipita>on:0,1,2(mm/h) Windvelocity(V10):5.7–16.7(m/s) 12 Fromobserveddata: Q=3.0q0.5 Q(gm-1s-1) Massfluxofsnowattheheightof 0.5m(q0.5)vs.snowtransportrateQ 200 180 160 140 120 100 80 60 40 20 0 The calculated values are roughly the same as the observed values. P=0 P=1 P=2 Q=3.0q 0 20 40 60 80 q0.5(gm-2s-1) P is precipitation (mm/h). 13 Summary • Thefollowingrela>onalequa>onsbetweenthesnowtransport rateQandthemassfluxqatagivenheightwereobtainedfrom fieldobserva>ons. Q=3.0q0.5 Q=5.4q1 Where, q0.5:massfluxofblowingsnowattheheightof0.5m q1:massfluxofblowingsnowattheheightof1m • Addi>onally,amodelfores>ma>ngthesnowtransportrate fromthemassfluxwasderived. • Thecalculatedvaluesarefoundtoberoughlythesameasthe observedvalues. • Itisconsideredthattheempiricalequa>onsobtainedfromthis studycanbeusedtoes>matethesnowtransportrate. 14 Thankyouforyourajen>on! 15
Similar documents
Clarkson University
Pi , j +1 + Pi +1, j + Pi −1, j + Pi , j −1 − 4 Pi , j = 0 Pi , j +1 + Pi +1, j + Pi −1, j + Pi , j −1 − 4 Pi , j = −
More information