VDS - nanoHUB.org
Transcription
VDS - nanoHUB.org
Virtual Source Model: part 2 Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA [email protected] 11/14/14 the MIT VS Model 32 nm technology 2 Lundstrom 11.13.14 MOSFET IV: low VDS I D = W Cox ! sat (VGS " VT ) VGS gate-voltage controlled resistor ID = W µ C (V ! VT )VDS L n ox GS Lundstrom 11.13.14 level 0’ model 1) I D W = !Qn (VG ) " (VDS ) 2) VGS ! VT : Qn (VGS ) = 0 VGS > VT : Qn (VGS ) = "Cox (VGS " VT ) VT = VT 0 ! " VDS 3) ! (VDS ) = FSAT (VDS )! sat 4) FSAT (VDS ) = 5) VDSAT = VDS VDSAT There are only 6 device-specific parameters in this model: Cox ,VT ,! ," sat , µn , L 1/ ! "1+ (VDS VDSAT )! $ # % ! sat L µn + ! 4 Lundstrom 11.13.14 below threshold Qn (VGS ) VGS > VT : Need to treat subthreshold region. VGS ! VT : Qn (VGS ) = 0 Qn (VGS ) = !Cox (VGS ! VT ) VGS VT 5 Lundstrom 11.13.14 subthreshold characteristics log10 {Qn (VGS )} VGS > VT : Qn (VGS ) = !Cox (VGS ! VT ) VGS < VT : Qn (VGS ) ! "eq(VGS "VT ) mkBT VT Lundstrom 11.13.14 VG 6 charge vs. gate voltage Qn (VGS ) Qn = ! Cox (VGS ! VT ) VGS VT "k T% Qn (VGS ) = ! ( m ! 1) Cox $ B ' eq(VGS !VT ) mkBT # q & m = 1+ C D Cox ! 1 7 empirical treatment ( Qn (VGS ) = !Cox m ( kBT q ) ln 1+ eq(VGS !VT ) mkBT ) VGS << VT : ln (1 + x ) ! x Qn (VGS ) ! "Cox m ( k BT q ) eq(VGS "VT ) mkBT Qn (VGS ) = ! ( m ! 1) Cox ( k BT q ) eq(VGS !VT ) mkBT correct G. T. Wright, Threshold modelling of MOSFETs for CAD of CMOS VLSI, Electron Lett., 21, pp. 223–224, Mar. 1985. 8 empirical treatment ( Qn (VGS ) = ! Cox m ( kBT q ) ln 1+ eq(VGS !VT ) mkBT ) VGS > VT : ln (1 + x ) ! ln ( x ) Qn (VGS ) ! "Cox (VGS " VT ) Qn (VGS ) = ! Cox (VGS ! VT ) correct G. T. Wright, Threshold modelling of MOSFETs for CAD of CMOS VLSI, Electron Lett., 21, pp. 223–224, Mar. 1985. 9 Level 1 model 1) I D W = !Qn (VGS ) " (VDS ) ( q(V 2) Qn (VGS ) = ! Cinv m ( kBT q ) ln 1+ e GS !VT VT = VT 0 ! " VDS 3) ! (VDS ) = FSAT (VDS )! sat 4) FSAT (VDS ) = 5) VDSAT = VDS VDSAT mkBT ) There are only 7 devicespecific parameters in this model: Cox ,VT ,! , m," sat , µn , L 1/ ! "1+ (VDS VDSAT )! $ # % ! sat L µn ) + !," 10 intrinsic vs. extrinsic voltages VD RD VG! = VG D VG = VG! VDS ! G VGS ! VGS VD! = VD " I D (VG! , VS!, VD! ) RD VDS VS! = VS + I D (VG! , VS!, VD! ) RS silicon S RS VS 11 Lundstrom 11.13.14 Level 1’ model 1) I D W = !Qn (VGS" ) # (VDS" ) ( q(V ! "V ) mk T 2) Qn (VGS! ) = " Cinv m ( kBT q ) ln 1+ e GS VT = VT 0 ! " VDS # 3) ! (VDS" ) = FSAT (VDS" )! sat 4) FSAT (VDS! ) = 5) VDSAT = VDS ! VDSAT B ) There are only 8 devicespecific parameters in this model: Cox ,VT ,! , m," sat , µn , L, RSD = RS + RD 1/ " " #1+ (VDS ! VDSAT ) %& $ ! sat L µn T + !," 12 outline 1) 2) 3) 4) 5) Traditional MOSFET theory VS model: above threshold VS model: subthreshold VS model: quasi-ballistic and ballistic Summary Lundstrom 11.13.14 13 MOSFETs I D W = !Qn (VGS ) " (VDS ) electrostatics transport ! y = " µnE y ! y = ! sat Lundstrom 11.13.14 14 mobility ideal contacts cross-sectional area, A L n-type semiconductor I ! d = " µ nE y !V + Mobility is a concept that describes long channels (many MFP’s long). Lundstrom 11.13.14 15 mobility Dn = !T " cm 2 s 2 Dn k BT = µn q µn = L >> ! !T " cm 2 V-s 2 ( k BT q ) Lundstrom 11.13.14 16 velocity cm/s ---> velocity saturation in bulk semiconductors 107 ! = ! sat ! = µ nE 105 104 electric field V/cm ---> 17 Lundstrom 11.13.14 Velocity (cm/s) velocity overshoot EC ( µm ) ! SAT ( µm ) D. Frank, S. Laux, and M. Fischetti, Int. Electron Dev. Mtg., Dec., 1992. 18 Lundstrom 11.13.14 The MVS model 1 1 ! µn µapp “apparent mobility” ! sat " !inj “injection velocity” 19 Lundstrom 11.13.14 apparent mobility 1 1 1 = + ! app ! L L 0 VGS > VT VDS n-Si n-Si !T " cm 2 V-s 2 ( k BT q ) 1 1 1 = + µ app µ n µ B p-Si y=0 µn = y µB = !T L cm 2 V-s 2 ( kBT q ) The MFP cannot be “ballistic mobility” longer than the channel length. Lundstrom 11.13.14 20 ballistic limit (low VDS) ID = L << ! , µ B << µ n , µ app " µ B W µ C (V ! VT )VDS L app ox GS µB = 1 1 1 = + µ app µ n µ B !T L cm 2 V-s 2 ( k BT q ) I D = WCox !T (V " VT )VDS 2 ( k BT q ) GS ballistic MOSFET 21 Lundstrom 11.13.14 injection velocity 1 1 1 1 1 1 = + + " + ! !1 ! 2 ! 3 !1 ! 2 E !1 !2 !3 Fn 1 1 1 = + !inj !T Dn ! EC ( y ) Fn y=0 y Qn ! "Cox (VGS " VT ) C cm 2 Lundstrom 11.13.14 22 ballistic limit (high VDS) I D = WCox! inj (VGS " VT ) ! << ! , " inj # "T 1 1 1 = + !inj !T Dn ! I D = WCox!T (VGS " VT ) ballistic MOSFET 23 Lundstrom 11.13.14 The VS nanotransistor model 1) I D W = !Qn (VGS" ) # (VDS" ) ( q(V ! "V ) mk T 2) Qn (VGS! ) = " Cinv m ( kBT q ) ln 1+ e GS VT = VT 0 ! " VDS # 3) ! (VDS" ) = FSAT (VDS" )! sat 4) FSAT (VDS! ) = 5) VDSAT = VDS ! VDSAT B ) There are only 8 devicespecific parameters in this model: Cox ,VT ,! , m,"inj , µapp , L, RSD = RS + RD 1/ " " #1+ (VDS ! VDSAT ) %& $ !inj L µapp T + !," 24 The MVS model 1 1 1 1 ! = + µn µapp µn µ B #1 1 ! sat " !inj = % + $ !T Dn & ! (' )1 Lundstrom 11.13.14 25 conclusions 1) Traditional textbook MOSFET models correctly describe the shape of the IV characteristics of nanoscale MOSFETs – because they are still “barrier controlled devices.” 2) To get the magnitude of the current right, the mobility and saturation velocity need to be relplaced by the apparent mobility and the injection velocity. 3) These two parameters are not “fudge factors” – they have clear physical meaning. Lundstrom Fall 2012 26