Ne consider the question whether it is possible oto study s ingular
Transcription
Ne consider the question whether it is possible oto study s ingular
97 Revista de la Unión Matemática Arpntina Volumen 54, 1988. BOUNDEDNESS OF SINGULAR INTEGRALS . ON NON NECESSARlLY NORMAUZED SPACES OF HOMOGENEOUS TYPE . .- R. A. MACIAS and J. L. TORREA Ne cons i de r the que s t io n whe ther it is po s s ib l e oto s tudy s in gu l ar i n t e gr a l s o n spac e s of hómo g eneous typ e without norma l i z in g the me tr ic . An a ff irma t ive answer i s g iven , provi ded the mea s ur e s a t i s f i e s a s moo thne s s c o nd i t i o n wh i ch i s s tr ic U y l e s s r e s tr i c t ive than d e ones cons ider e d by Aimar [A] and David , Journ6 and S emmes [ DJS] . To a t t a in t h i s we deve l o p u s e ful r e s ul t s o n the st ruc ture o f spac e s o f homo geneous type . ABS TRAC T . I NTRODUC T I O N The s tudy o f pro b l ems i n the s e t t ing o f spa c e s o f homo g eneous type has b e e n prov en t o b e ver y frui t fu l in order to o b t a i n general r e su l t s wh i c h hav e a w i d e r a n g e o f app l i c a t ions . Fr e quent l y i t s e ems unavo i dab l e to know a quant i t a t ive r e l a t io n b e tween the me asure o f t h e b a l l and i t s rad ius e s p e c i a l l y i n order to g e t boundedne s s r esul ts i nvo lv ing int e gra l s . Th i s i s usual ly a t t a lined a s s uming the spac e to b e normal a s for o ins tanc e , in [A] , [ ew] , [DJS ] and [W] . Es s-e n t i all y a space is nor mal i f the mea sure o f a b a l l i s . c omparab l e to i t s radius . I f the open b a l l s a r e o p e n s e t s then the s pa c e can b e norma l i z ed as it is proven in [MS 2 ] . However the r e sul t in g me t r i c i s 1980 Mathemat�c� Su b ject Cla� � � 6 �cat�on . S econdary 4 2B 2 5 . • P r im a r y 4 2 B 2 0 . 98 no t e quival ent t o the o r i g inal o n e . Al s o in ma ny ins tanc e s s o me k i nd o f s mo o thne s s ' co nd i t i o n o n the measure o f the b a l l s needs to b e c o n s id ered a s i n [A] and [DJS ] , s e e [C a ] fo r an e xamp l e i n a d i ffer ent s i tu a t i o n . '. , We po s e our s e l v e s the que s t i o n up to whi c h point the s e r e s tr i c t io ns ar e nec e s s ary . Tha t i � , fo r ins tanc e , wh e ther i t i s po ssible t o g ive c o nd i t io ns fo r the boundedn e s s o f s ingu l a r i n t e gr al s o n 12 , fo l l owing Co t l ar l s l emma appr o a c h , pr e s erving the o r i g i na l metr i c . Wh i c h a l l ows t o keep truc k o f the s hape of the trunc a t ions . I n a no rma l s pac e c o nd i t i o n s wer e g iven in [A] , [DJS ] and [W] . We show in The o r em A th a t an a f f i rma t ive answer can b e g iven c o ns ider ing trunc a t io n s adap t e d to the measur e of the ba l l s r a ther than to the ir radius , provided we impo s e a smo o thne s s c ond i t io n on the measure ( s e e ( 1 . 7 ) ) , wh i ch i s s tr i c t l y l e s s r e s tr i c t ive than the o n e s ado p t e d in [A] and [ DJS ] . Thr ough s ev er a l examp l e s we d i s cu s s i ts meaning in § 4 . We s hould pb int out tha t i n [W] no smo o thne s s c o nd i t i o n i s as sumed , however th i s wo r k cOntains s ome s er i ous er r o r s , s e e our r emark ( 2 . 2 3 ) . In o r d er to a c h i ev e our purpo s e we are l ed to ma ke . in § 2 a c a r e ful s tudy of int e gra t io n · pr ob l ems , wh ich we be l i eve t o b e of independent inter e s t and u s e fu l n e s s when wo rk ing o n s pac e s of homo geneous type . I §1 . MA I N R E S U L TS Before s ta t ing the r e sul t s we r e c a l l s ome b a s ic fa c t s and d e fin i t i o ns . A qua s i - d i s tanc e o n a s e t X i s a no n ne ga t ive s ymme tr i c func t i o n , d ( x , y) ' d e f i ned o n X x X such tha t d ( x , y) O i f and o n l y i f x·y , and ther e ex i s t s a c o n s tant K s a t i s fying • (1 .1) d ( x , y) for every x , y and z i n .;;; K [d ( x , z ) +d ( z , y) ] , X. As i t is proved i n [MS 2 ] g iven a quas i - d i s t anc e d the r e ex i s t a qua s i - d i s tanc e d I , un i fo rmly e qu ival ent t o d , a f i n i t e c o ns tant C and a numb er a , O 1 , such tha t < �, ';;; ·99 l a a I d ' ( x , y) - d ' ( x , z ) 1 .;;;; e r - d ' (y , z ) , provided d ' ( x , y) .;;;; r and d ' ( x , z ) .;;;; r . The r e fo r e we a s s ume , wi thout 1 0 5 5 o f gener a l i ty , the ex i s t e nc e o f o < a .;;;; 1 such tha t (1 . 2) l a S I d ( x , y) - d ( x , z ) 1 .;;;; K d ( x , y) - d (y , z ) , ho l d s whenever d ( x , y) > d ( x , z ) . The s e t s { ( x , y) E X x X : d ( x , y) < 1 / n } , n > O , de fi ne a b a s i s o f a me tr izab l e uni form s truc tur e on X . The b al l s B ( x , r ) = { y E X : d ( x , y) .;;;; r } form a b a s is o f ne i ghb orho o d s for the t o po l o gy induc ed b y the un i form s truc tur e . We c a l l ·t he attent i o n on the fac t tha t B ( x , r ) i s no t b e ing us ed to d e no t e the s e t B O (x , r ) . = { y E X : d ( x , y) < r} , as ' i t i s usual . I t c a n b e s e en tha t B ( x , r ) i s no t in general the c l o sure of B O ( x , � ) . As w i l l b e c ome appar ent l y the s e t s B ( x , r ) ar e mor e adj us t e d to our purpo s e s . A s pa c e o f homo geneous type i s a s e t X endowed w i t h a quas i d i s t anc e d ( x ,y) and a Bo r e l measure 1l s a t i s fy ing a "doub l ing c o nd i t io n" L e . ther e ex i s t s a c o ns tant A s uc h tha t 1l ( B ( x', 2 Kr ) ) .;;;; All ( B ( x , r ) ) , ( 1 . 3) fo r every r > O . We s ay tha t the s pac e o f homo geneous type i s no rmal i f tber e ex i s t f i n i t e and p o s i t ive c o n s t an ts A 1 , A 2 , K l and K 2 such that A r .;;;; ll ( B ( x , r ) ) .;;;; A 2 r 1 X B (x , r ) B (x, r) {x} wh en K 2 1l ( { x } ) .;;;; r .;;;; K l ll ( X) if r > K ¡ ll (X) and if r < K 2 1l ( { x } ) . To a s sume tha t X i s norma l provid e s a knowledge o f the me a s u r e o f a ball given i t s r ad ius . Th i s fac t wa s bas ic , whe n d o ing 100 2 inte gr a t io n in pap er s d eal ing w i th L bound edne s s o f s ingu l ar integral s l ike [A) , [DJS) and [W) . We want t o avo id any hypo t� e s i s of th i s t yp e . I Hence we us e a " s rno o thne s s " cond i t io n on the �easllr e a l t er na t ive t o the ones adop t ed in [A) and [DJS ) . ;;.c- e o f horno geneous type 'X i s s a id to s a t i s fy pro per ty The s H i f ther e ex ists a , O < a � 1 , �.uch tha t I , ho l d s fo r every x e x app ear ing in ( 1 . 2 ) . and O < s � r , whe r e S i s the c o n s t ant S inc e , fo r ins tance , as surning H d o e s no t e l irnina t e spac e s c og t a i n ing po int s w i th po s i t ive rne asur e ( 1 . 4 ) i s s tr ic t l y l e s s �e s tr ic t ive than tho s e cond i t iCins cons id er ed in [A] and [DJS) . We pr e s ent in §4 sorne exarnp l e s wh ich w i l l h e l p t o c l ar i fy the rne aning of hypo the s i s H . The s tandard hypo the s i s o n the s ingul ar integral kernel K ( x , y) rnus t a l s o be rnod i f íed in order to avo id hypo the s i s o f the no r rna l i z a t io n typ e . We s ha l l s tudy s ingular int e gr a l kerne l s K ( x , y) s a t i s fy ing the fo l l owing (K . 1 ) I K ( x , y) I � C p ( B ( x , d ( x , y) ) - (K . 2) There exists a, O < a � 1. . l , fo r ev er y x�y . such that for every integer k ;¡;¡' l kp(B(y,d(x,y)) - 1 I K(x, y) - K(x, z) I + I K(y,x) -K( z ,x) I � CA-a prov ided Ak p ( B (y,d (y, z) ) Let (K . 3) , � p ( B ( y , d ( y , x) ) . O < r < R < óo K ( x , y) d p J J ( y) O , f or e ve r y x e r r<p (B ( x , d ( x , y» ) �R K ( x , y) d p ( x) O , for every r<p (B ( x , d (x , y» ) SR G iven O < r < R < K r , Rf ( X) = � , d e f ine J r<p (B ( x , d (x , y» ) <R K ( x ,y) f ( y) dp ( y ) . y e X. 101 Th e L 2 r e sul t can be s ta ted as fo l l ows . THEOREM A . L e t X b e a s p � a e o f hom o g e n e o u s typ e w i t h p r o p e r ty H. A s s um e t h e k e r n e Z sat i s f i e s .1) and then t here exi s t s C s u a k tha t (K , (K . 2) K(x, y) O f o r e 7/e ry O < r < R, K r , Rf D 2 (K . 3) <,;; Cll. f 11 2 a n d f e L 2 ( X) . ( 2 . 2 ) b e l ow i t c an b e s e en tha t c o n (K . 2) is weaker than ( z ,y) (K . 2) ' I K(x,y) -K(x, z) 1 + I K(y,x) -K ( z ,x) I <,;; d (x,y) .p C(Bd (y,d (x � y) ) ) provided 2d (z ,y) d (y,x) . I n order to ' s impl ify the' notation and since no con fus i o n a r i s e s in the following we shall write I E I instead of p (E) and dx instead of dp (x) . Hav ing into a c c o unt l emma d i t ion < §2. T E CH N I CAL RESULTS LEMMA ( 2 . 1) . ' A s s u m e O < dei,y) < [K(2K) 1 - 13 ] - 13r • Th e n 1 13 1 o � B ( z , r - 5r - 13d(y, z) 13) e B (y,r) e B ( z , r + r - d ( z ,y ) 13) , f o r e v e ry 5 s u a h tha t K(2i) 1 - 13 <,;; 5 < r13d(y, z) - a . l :"' Pro o f . By the assumptions r -5 r 13 d(y , z) 13 > O . Take x in B ( z , r - 5 r 1 - 13 d ( y , z ) l3 ) , the n d ( x, y ) < 2Kr . App l ying ( 1 . 2) d (x,y) <';; d (x, z ) +K( 2Kr) 1 - l3d (y, z) 13 <';; r . The'n x E B (y,r) . By a,nother application o f ( 1 ; 2) we obtain t h e rema ining incluss ion . LEMMA (2 . 2) . " If A j I B (y , s) J < I B (y, r) 1 , t h e n ( 2K) j s < r . Pr o o f . I t fo l l ows immediately from the doub l ing prop e r ty ( 1 . 3) . 5 ./ ' 1 02 LEMMA \ ( 2 . 3 ) . A s s um e X s a t i s fi e s prop e r ty H, ( 1 . 4 ) , t h e n e i t h e r l {x} 1 > fo r e v e r y x E X o r l {x} 1 = O fo r e v e ry E X . Pr o o f . t f there exists z E X o f measure zero , then given any E X and 15 > O l {x } 1 <; I B ( z , d( z ,.x) +c S d ( z , x) I - S ) 1 - I B ( z , d( z ,x) ) - cSd(z ,x ) I - S 1 <; <; A I B ( z ,d ( z ,x) ) 1 1 - a. B ( z , c ) l a. . Letting 15 tend to zero , we obtain l {x} 1 = DEFINITION ( 2 . 4 ) . Let r > O;we denote E(x,r) = {y: IB(x,d(x,y)) I <; r} . LEMMA ( � . 5 ) : L e t R sup { d (x,y) : y E E (x, r) } , t h e n E (x,r) e B (x, R) . · Bo ( x , R) ( 2 . 6) ( 2 . 7) IE(x,r) I <; r . (2 . 8) I B (x,R) I <; Ar . ( 2 . 9 ) If I B (x,R) I <; r t h e n E(x,r) B (x,R) . ( 2 . 1 0 ) If I B(x, R) I > r t h e n E(x ,r) BO (x,R) . then is bounded , on Pro o f . As it is well known if I x l the other hand if I x l = then I B (x, s) I goes infinity if s tends to infinity, therefore R If y belongs to E (x, r) by definition of R , d (x,y) <; in particular E (x,r) e B ( x , R) . Let assume I B(x,R) I <; r . I f E B (x� R) then I B (x, 4 (x,y) ) I I B (x, R) I <; r . This says that y E E (x,r) , in particular E (x,r) = B (x,R) . Thus ( 2 . 9 ) is pro ved and ( 2 . 6 ) , ( 2 . 7 ) and ( 2 . 8 ) in this case . Assume now I B (x, R) I r . Therefore d(x,y) < R for ever y in E (x, r) and there exists a se quence {Y j } j such that Y j E E (x,r) and r j d(x'Yj ) increases to R. Then E (x, r) = j B (x,r . ) = BO (x, R) O X X o . = e < 00 00 R, us > U = 1 < oo . to y <; QO X y J 1 03 and l B (x, r . ) I .;;;; r . l E (x, r ) I = lim j ...¡..oo J This proves ( 2 . 1 0 ) and completes the proof of ( 2 . 6 ) , ( 2 . 7 ) and ( 2 . 8 ) . LEMMA ( 2 . 1 1 ) . I B (y , d(z, y) ) I < A I B ( z ,d ( z ,y) ) I < A 2 I B ( y ,d ( z ,y) ) l . Pr o o f . I t is irnmediate from the doubling property ( 1 . 3 ) and (1 .1) . With the notation of Lernma ( 2 . 5 ) , we have LEMMA ( 2 . 1 2 ) . If X s a t i s fi e s H t h e n E (x, r) B (x,R) , fo r e v e ry x i n X and r > O . . Pro o f . Let us assume I {x} I O . Then given O < n < R , . 1 O .;;;; IB(x,R) I - IBo(x,R) I .;;;; IB(x,R+R H3n S) I - IB(x, R-R - Sn S) I .;;;; .;;;; AIB(x,R) 1 1 -a IB(x,n) la. Therefore I B (x, R) 1 .;;;; I B o (x, R) 1 .;;;; r . Thus E (x,r) B (x,R) . Let us suppose l {x} 1 > 0 . Then by lernma ( 2 . 3 ) , l {y} 1 > 0 for eve ry y E X . Thus {y} B (y, E) for sorne E = E (Y) > O (see [MS 2 ] ) . By ( 2 . 9 ) we can assume I B (x ,R) I > r . I n this case there exists a se quence {Y j } j such that Y j E E (x,r) and r d(x,y ) in creases to R. Let 0 < E j < r j satisfying B (Y jj , E j ) {Yj j } . Thus O < I {x} · 1 I B (y . , r . +r l. - a E a.) I .;;;; A I B (y . ,r .) 1 1 "'CX I B (y . , E .) l a . By ( 2 . 1 1 ) this is les s than = = = = = :< J J J J J J = J J This implies the existence of an infinite number of �oints contained in B (x, R) with measure greater than a constant which 104 is impos.s ible . COROLLARY (2 . 1 3) . If X s a ti s fi e s H a n d ¡ {xl i E X, fo r s o me then I B ( y, r) I I Bo (y ,r) I fo r any y E X and r > O . Let us denote C(x , k) E (x,Ak+ 1 ) \ E (x,Ak ) . LEMMA ( 2 . 1 4) . A s s um e I x l � Ak+ 1 � ¡ {x} l . The n C(x , k) f 0 fo r e v e ry x E X . " < I B (x,r) I AJ"+ 1 } . Assume N f 0 and {r Pro o f . Let N AJ : j j lét r E N j . Since B B (x,r) y e: B B (x,d(x ,y) ) there exists y such that Aj < I B (x,d(x,y) ) I � A j + 1 , then C(x, j ) f 0 . Therefore it is enough to prove Nk f 0 . In order to do this we shall show that Nk 0 impl i es Nj = 0 for every j > k . Let k l min {j > k : Nj f 0} and r 1 be the infi mum of N k I . Thus , r l > O and Ak 1 � I B (x,r 1 ) ¡ � Ak 1 + 1 If I B (x, r I ) I Ak 1 then r I E Nk 1- 1 which is a contradic�ion . Therefore r 1 must be long Nk 1 . On the other hand , ( 2K) - l r 1 rt=. N k<1 ilIip lying I B (x,r 1 ) I � A I B (x, ( 2K) - l r 1 ) I � AAk � Ak 1 , which is again contradiction. o I = = = � = = U = = to a In the following we assume X satisfies property H . Let RXk sup { d (x,y) : y E E (x, Ak ) } . x 1 05 E (x,Ak ) = B (x, R� ) . In particular , ( 2 . 1 5) C (x, k) = B (x, R� + I ) -B (X, �) . Moreover by ( 2 . 7 ) and Lemma ( 2 . 1 4 ) , if I x l Ak + l ;> l {x} l , By lemma (2 . 1 2) , ;> ( 2 . 1 6) LEMMA h [ 2K ( 2K) l - a] l / a . Ah I B (x, d"(x� z) ) 1 < A i - 1 , ( 2 . 1 7 ) . L e" t U B B u p p o B e imp Z i e B (2K) ;> Then C(x,i)t.C(z,i) ¿ [B(x,R�+l +S�+ l) -B(z,R�+ l -S�+l )] [B ( z,R.+S. ) -B ( z,R.-S. ) ] , U x 1. x x 1. 1. U x 1. where By Pr oo f . (2 . 1 6) and the assumption Thus using Lemma ( 2 . 2 ) [ 2K (2K) l -al l / ad(x, z) <; ( 2K) hd(x,z) < R� <; R�+l . (2 . 18) Then we can apply Lemma ( 2 . 1 ) with = ! K ( 2 K) I - a te obtain B(z,R�-S:C) e B(x,R�) e B(z,R�+S:C) , j = i ,i+1 , where Having into account ( 2 . 1 5 ) if Y E C(x, i) 4C ( z , i ) we have four possibil i ties P I y E C (x, i) -B ( z , R � +I ) ' Then y E B(z,F,�+ 1 �S�+l) -B(z,R�+l) P z : y E C (x, i ) () B ( z , R�) . Then y E B(zI,R�) -B(z,R�-S�) P 3 : y E C{z , i) -B ( z , R � +I ) : Then y E ( ,R�+I ) -B (z, R� 1 -�+1) ' y E C ( z , i ) () B (x,R �) Then y E B(z,R:C+S :C) -B(z,R�) eS J J J J J : • 1. P4 : B • z 1. 1. 1. 1. 1. • 1. • + - 1 06 - is The proof c omp l e t e . COROLLARY ( 2 . 1 9 ) . On t h e a o ndi t i o n s o f the L e mma a b o v e Mo re o v e r if Y E >. S�) . I A i - 3 C(x, i) llC ( z , i) I B. ( -1. , R Xi - � • t.b é n By (2 . 1 8) d ( x ; z ) < R�x a nd 4 ( Rx. - S x. ) > R x. . Thus using ( 2 . 1 6 ) and the doubling condition of the measure . 1 A i - < I B ( x , R X. ) I < A I B ( z , R X. ) I < A 3 1 B ( z , R x. -· S . ) I . On the other hand if y C(z , i) then I B ( z ,d(z ,y) ) I > A i . I f C(x, i) - � ( z , i) then either P 1 o� P 2 h o l d . I n the first case y � . E ( z ,A i+ 1 ) therefore I B ( z ,d(z ,y) ) 1 > A i + 1 . I n the sec., ond case d(z ,y) > R� - S � therefore I B ( z, d ( z ;y) ) 1 > I B ( z , R� - S �) I > A i - 4 . Pro of. � -- � � � � � � E Y e � � � � � (2 . 1 7) I C(x, i) llC ( z , i) I CA i ( l - a. ) I B ( z , d (x, z) ) l a. . Property H imp l i e s COROLLARY ( 2 . 2 0 ) . In t h e a o n d i tions o f L e mma O;;;;; Pro o f . From (2 . 1 8) it fo l l o s w tha t we c a n apply Lemma ( 1 e ) d (x , z) e) B ( z , R �� ) e B ( x , R �� + � R �� - (2.1) . e e B ( x , 2 R �� ) . Therefore t ak ng i ne = t K ( 2K) 1 - e d ( x , z ) e and app l ing do ub li n g 1 07 property 1 D. < < < C I B ( x , R�) 1 1 -a I B ( z , d ( x , z ) ) l a 1 CA i ( l - a ) I B ( z , d ( x , z ) ) l a . Clearly the same boun� is true for D i + 1 . Let X i ( x , y) = X C ( x , i ) ( y ) . Observe thÚ (2 . 2 1 ) LEMMA X' 1. ( x , y ) < X 1. 1 ( y , x) + X 1. ( y , x) +, X 1. + 1 ( y , x) . ( 2 . 2 2 ) . If A i < I x l , i t f � Z Z OW8 I (i , q , x) J I B ( X , d ( X , y) ) I q x i ( x , y) d y I' ( i, q,y) = f I B ( x , d ( X , y) ) I qX i ( x , y) dx, If e i th e � A l P�o o f · � < CA i ( l + q ) < c A l q ! A i (l + q ) . I x l o � l { x } 1 � A i b o th i n t e g�a Z 8 a�e 2 e �o . J I B ( X , d ( X , y) ) I � X i ( x , y ) dy < CA i q I E ( x , A i + 1 ) I < CA i ( l + q ) Let us consider I ' (i , q ,y) , by Lemma ( 2 . 1 1 ) and ( 2 . 2 1 ) I ' (i , q ,y) A l q l [ I B ( y , d ( x , y) i l q X i ( x � y ) dx < A l q I [ I (i- l , q , y ) + I ( i , q , y H · I ( i l ,q ,y) ] < < + < (l + q ) . l l < cA q A i in Lemma ( 2 . 2 2 ) seems to be a substitute for e�ity in Theorem ( 2 . 1 ) of [W] . That ine quality is not true in general as can be seen taking X = ' { O , 1 , 2 , 3 , ,n, . . . } ; � (n) = l ; d (n,m) = I n-m i and considering f to be X [ O ; l] < f < X [ O , 2 ] or X [ � � ) < f < X [ O , � ) REMARK ( 2 . 2 3 ) . (1) • l ' • • 1 08 § 3. P RO O FS O F T H E O R E MS We shall use the following · CO TLAR ' S LEMMA . L e t H, b e a Hi l b e r t s p a c e and T 1 , T2 , , TN a Le t c :Z [0 ,00) fi n i t e o f l i n e a r and c o n t i n u o u s . op e ra to r s o n H . such that J If II T � T . II � See [C] . y c (l) 1 / 2 = l= _ oo .;;; c ( i - j ) A < 00 • • + and l e t T � b e t h e a dj o i n t o f T . . and II T . T � II .;;; J � • c (i- j ) � then N 11 I T . II i= 1 � � .;;; A . We denote K . (x,y) = K(x,y) X . (x,y) and define. T j f(x) = JK j ( X,y) f(Y) dY, for any function f in L 2 (X) . Using Lemma ( 2 . 2 2 ) and proceeding as in [A] it follows that T . is uniformly bounded on L 2 and the kernel of the adj oint operator T� is K� (x,y) = K . (y ,x) . Moreover T I T f (x) J { J K i (y ,X) Kj (y, Z) dy}f( Z} d Z . j and I T�T� . f (x) 1 2 .;;; J I JK �. (y,X) K . (y, Z) dy l l f( Z ) 1 2 dz x x J I J K (y,X) K j (y, �) dy l dz . i Applying again Lemma ( 2 . 2 2 ) and the boundedness of the kernel the second factor is bounded by a constant independent of. i and j . AssuJl!.e that , whenever j > i (3 . 1 ) J l f K ( y ,x) K j ( ) d 1 dz - CAa ( i - j ) . Then, in this case n T F / n ; .;;; C Aa ( í- j ) J 1 f ( z) 1 2 [ f 1 f K ( y , x') K ( y , z) d Y 1 dx] d z j i .;;; CAa ( i - j ) lIf 11 ; J J J J Pp o o f o f Th e o r e m A . J J � J i J . y, Z y ..... • If i > j , using again (3 . 1 ) . 109 :E;; C f l f ( z) 1 2 [f I JK i (y,X) K j (y , Z) dy l d�1 dZ :E;; :E;; CAex ( j - i ) 1I f" � . It is clear that the same estimate holds for " T . T� " 22 . Therefo re aplying Cotlar s Lemma the Theorem fol1ows . Let us prov� ( 3 . 1 ) . �y (K . 3) 1 f I JK i (y ,X) K j ( y, Z) dy l dZ J l f [K . (y, Z) -K . (X, Z)I K . (y,X)dy l dZ :E;; :E;; f I K . CY,X) I ff I K . Cy , Z) :-K . (X, Z ) I dz } dy . Take C 1 = Ah , where ( 2 K) h [ 2 K( 2 K) 1 - 131 1 /13 . Let 1 1 = C 1 I B ( Y , Ar (y , x) ) 1 :?Aj - 1 IK. (y,x) l { f IK. (y,Z) -K. (X,Z) Idz }dy . iI T F/ " � l. I • J . J J l. J l. J ;> J l. By J an� Lemma ( 2 . 22 ) f I K j (Y, Z) I dz :E;; C f IB ( y, J( y, Z ) I dz C . (y ) (K . l ) C Also . :E;; ,j f I K . (X, z ) I dz :E;; C . J . Therefore using once more ( K . 1 ) and Lemma ( 2 . 2 2 ) X . (y,x) dy :E;; 1 :E;; C J B 1 . (y,d(y,x) 1 1I C 1 1 B ( Y , d ( Y , x) ) 1 A Xi (y,X) :E;; f [ IB (y,dA j(y ,x) ) 1 1 I B (y,d(y, x)) 1 dy :E;; � G It remains to consider J- - a. l. . 1 10 1 2 f = 1 C 1 ! B (y , d (y , x» ! <AJ' - f ! K . ( y , x) ! { ! K . ( y , Z ) - K . ( X , Z ) ! d z } dy . J J J. of I n order to p rove the bound edne s s 121 = J 1 C 1 ! B (y , d (y , x» ! <AJ. > • 12 > let f ! K . (y, x) l { I K (Y , Z ) -K (x, z) I X . (y, z) d Ú dy . J J. . > o> Ob s erve: tha t i f x E C ( y , i ) , z E C ( y , j ) and Ah I B ( y , d ( x , y) ) I < Aj - 1 , l A ! B ( y , d (x,y) ) I .,¡;; 1 < A - j I B ( y , d ( y , z ) ) ! , whe r e l = max ( h - j + 1 , - i - 1 ) . Then A j +l ! B (y , d ( x , y ) ) ! < I B ( y , d ( y , z ) ) l . The r e fore us ing ( K . 2 ) and ( K . 1 ) 12 1 .,¡;; C J f X . (y ,x) X . (y , z) ' . J. { A - ex ( J -i ) J d ) ( x) B , , ( B ))�1 dz } dy . .., z� ., y.. d(,... (y . ,.... -;-; I y y I I ........ Appl ying Lemma ( 2 . 2 2 ) 1 21 CA - ex (j - i ) .,¡;; We need to s how 122 .,¡;; C = a • s imi l ar bound fo r J C 1 ! B ( y , d ( y , x» 122 J ' _ ! K i (y, X) ! { I Xj (y, z ) - x (X , Z ) ! I K ( x, z) I dz }dy j . ! <AJ 1 X . (y, x) 1 J. . 1 ¡B(y ,d (x ,y) ) I { I B(x, d (x , z) ) I dz } dy . C 1 ! B (y , d ( y , x» I <AJ C (y , j ) �C ( x, j j J J > B y Coro l l ary ( 2 . 1 9 ) we ge t f x» c 1 I B ( y , d (y , x J.. (y,x) ' _ l I B (y,d(x,y) ) I <AJ By Co ro l l ary ( 2 . 2 0 ) and Lemma ( 2 . 2 2 ) I ! C (y , j ) �C(x, j ) l dy . 111 Therefore §4 . EXAM P L E S We present some examples in order to understand better proper ty H and the relation between the metric and the measure . In previous works , besides the re quirement for X to be normalized, the following hypothes is has being imposed (4 . 1 ) , I B (x, r) I - I B (x, s) I <: C (r-s) Yr l - Y , for every O <: s < r and some y > O . The case y = l has being considered in [A] and y pos itive in [ DJS ] . Observe that the condition is really meaningful when s is close to r , since otherwise the normal ization of the space suffices . Thus , it is clear that (4 . 1 ) is more restrictive as y increases , ' t her� fore it is enough to consider y <: 1 . Clearly (4 . 1 ) implies H . The contrary is not true even in the case o f normal ized X; see ' example (4 . 5) . Thus , all the examples cons idered in [A] are included , as for instance Rn with parabolic metrics and Lebes gue measure , compact groups with a quasi -metric induced by a Vitali fami+y, etc . EXAMPLES OP SPACES THAT DO NOT SATISPY H . (4 . 2) Let X = [ R - ( 2 , 4) ] { 3 } , d (x,y) the usual distance and measure defined by ( { 3 } ) = 2 and ( E -. { 3 } ) = , l E I , where I E I stands for Lebesgue measure . It is easy to see that (X, d, ll) is a space of hbmogeneous _ type that does not satis fy the conclusion of Lemma ( 2 . 3 ) . ( 4 . 3 ) Por n > O , let I be the open interval in R centered at n J.I Jl U II 1 12 " 2n + t of radius ( 2n) - 1 . Le t . X = 00 U n= 1 { [ 2 n - l , 2 n] U I } n Take d ( x , y ) the eucl idean d i s tanc e and d e f ine the me a sure l.l l.l (E) = J I 1 JXE(x) (X [ 2n- 1 , 2n] (x) +nx1n (x) ) dx . I t i s c l e ar tha t ( X , d , l.l ) l i s a n spac e o f homo geneous type . Mo reover ho l d s for every n > O . On the o ther hand 1 1.l ( B ( 2n , Z1 ) ) 1 - 0. 1.l ('B ( 2 n ' 2n ) ) a. a s n tends , to i nf i n i ty for any O < O + a. � 1. E XAMPLES OF S PACE S SATI S FY I NG H . (4 . 4) The s p ac e ' cons idered in ( 2 . 2 3 ) s a t i s fi e s H . L e t ( X , d Y , l.l ) b e a spac e oí homo geneous ' typ e , whe r e d i s d i s t anc e , y > O and such that ( 4 . 5) l.l (B ( x , r ) ) I t i s we l l known , s e e for ins tanc e [MS ll , tha t · i f � � = min ( l , ) then d Y s a t i s f i e s ( 1 . 2 ) . We s hal l prove tha t prop e r ty H ii true fo r a. � min ( l , S / A ) . We ob s erve that it i s s u ff ic i ent to t ak� r > 2n > O o n prop e r ty H . Let E = r 1 - S n S D l.l ( B ( x , r + E ) ) A 1 A ¡:; - wher e ' . l.l ( B ( x , r - E ) ) = ( r +. E ) A - ( r - E ) A 2E , r - E � ¡:; < r + E . From r > 2n > O i t fo l l ow s 1 13 y. ( 4 . 6 ) L e t ( X . , d . � , � . ) , i = 1 , 2 , as in � "� � t aking X = X 1 x X 2 , � = � 8 � 2 and 1 ( 4 . 5) . I t i s c l ear tha t I ( X , d , � ) b e come s a spa c e o f homo geneous typ e . Mor e ov e r i t can b e shown tha t � (B (i, r) ) for d ( i, y) < r ; d ( i , z ) < r and � = min ( � 1 ' � 2 ) ' Pro c e e d i ng a s in (4 . 5) i t fo l l ows tha t ( X , d , � ) s a t i s fi e s H , w i th S ) = min ( 1 , = min e1 , X CI. min ( S l ' S 2 ) ) . A 1+A2 ( 4 . 7 ) As an imm ed i a t e" appl i c a t i on o f ( 4 . 6 ) we cons ider R n = R n1 x . • • � �. = Leb e s gue me a s ur e i n The r e fo r e taking A i ge t n xR k , R n . � ... ...... 1 , n �· , thus � �. (B ( x �. , r ) ) n i / Y i and S i = min ( 1 , Y i 1 ) , b y ( 4 . 5) , we min ( 1 , y i ) n �. Then we a r e in the c o nd i t ions o f ( 4 . 6 ) and ( X �d , p ) s a t i s f i e s H" w i th min e 1 ; _1_ , . . . , _1_) Yk Y1 " "" 114 a. = min e 1 ,�) REFE RENC E S A I MAR , H . , S�nguta� �nteg�at� and app�ox�mate �dent� t�e� on � paee� 06 homogeneou� tifpe, T r a n s . Am e r . Ma th . Soc . 29 2 ( 1985) , 1 35- 15 3 . [C a ] C AL D E R O N , A . P . , Inequat�t�e� 60� the max�mat 6unet�on �etat�ve to a met�� e, S t u d i a M a t h . 5 7 ( 1 9 7 6 ) , 3 9 7 - 3 0 6 . [C ] C O TLAR , M . , A eomb�nato��at �nequat�t if and � t� ap pt�ea t�on� to L 2 � paee� , R e v . Ma t h . C u y a n a 1 ( 1 9 5 5 ) , 4 1 - 5 5 . [CW] [D J S ] [MS 1 ] C O I FMAN , R , a n d W E I S S , G . , Ext en� �on� 06 Ha� d if � paee� and B u l l . Ame r . Ma t h � S o c . 8 3 ( 1 9 7 7 ) , 569-645 . the�� u� e �n anat if� �� , DAV I D , G . , J O URNE , J . L . a n d S EMM E S , S . , Op é�ateu�� de Cat de�6n- Z ifgmund, 60net�on� pa�a-ae e� ét�ve� et �nte� pota t�on, R e v . Ma t . Ib e r o a me r i c a n a , 1 ( 1 9 8 5 ) , 1 - 5 6 . MAC I A S , R . A . a n d S E G O V I A , C . , S�ng uta� �nteg�at� on gene �at�zed L�p� e h �tz and Ha� d if � paee� , S t u d i a M a t h . 6 5 ( 19 79 ) , 55-75 . [MS 2 ] [W] L�p� eh�tz 6unet�on� on � pa ee� 06 homogeneou� t if pe, A d v . i n Ma t h . 3 3 ( 19 79 ) , 2 5 7 - 2 7 0 . - - - - - - - - - - - - - - - - - - - - - - - - - - , W I T TMA N , R . , Ap pt� eat�on 06 a theo�em 06 M . G . K�e�n to � �nguta� �nteg�at� , T r a n s . Am e r . S o c . 2 9 9 ( 19 8 7 ) , 58 1 -5 9 9 . R . A . Macías Pro grama E special de Matemática Apl icada , CONICET and Univer s idad Nacional del Litoral , Argentina Current Addre s s : PEMA , Güemes 3450 C . C . 9 1 3000 Santa Fe , Argent ina J . L . Torrea Univers idad Autónoma de Madrid Cantob lanco , 28035 Madrid , España Rec ib ido en j unio de 1 9 8 9 .