ľadeusz Gerstenkorn*
Transcription
ľadeusz Gerstenkorn*
ACTA UNIVERSITATIS LODZIENSIS F O L IA O E C O N O M IC A 194, 2005 ľadeusz Gerstenkorn* A C O M PO U N D OF AN INFLATED PASCAL DISTRIBUTIO N W ITH TH E PO ISSO N O NE Abstract In this p a p er there is presented a com pound o f an inflated Pascal d istrib u tio n with the Poisson one. In the in tro d u c to ry p a rt o f the pap er is giving an overview o f the last results in topic o f co m p o u n d in g o f d istrib u tio n s, considering also the Polish results. In succeeding Sections, probability function o f the com pound distribution Pascal-Poisson, factorial, crude and incom plete m om ents as well recurrence relations o f this distrib u tio n are presented. M S C Iassilication: 60 Key words: com pound distributions, com pound inflated Pascal-P oisson d istrib u tio n , inflated Pascal d istrib u tio n , Poisson distribution, factorial, crude and incom plete m om ents, recurrence relatio n s for the m om ents. I. IN T R O D U C T IO N T h e problem o f the com pounding o f probability distributions goes back to the tw enties o f the 20lh century. It is w orth here to m ention the papers by M . G reenw ood and G .U . Yule (1920; they to o k the p aram eter o f the Poisson d istrib u tio n as a gam m a variate) and E.S. Pearson (1925; he gave a device o f m aking the param eter o f a distribution o f Bayes theorem ). In forties the problem was dealt with by L. Lundberg (1940; the Pólya d istribution as a com pound one), F.E. S atterthw aite (see a rem ark on the com parison o f S atterthw aite’s idea o f the generalized Poisson distribution w ith a com pound distribution in W. Feller’s paper, 1943; 390), W. Feller (1943; some com pound distributions as “ contagious” ones), G . Skellam (1948; the binom ial-beta giving Pólya-Eggenberger distribution), M .E. Cansado * Professor, F a c u lty o f M athem atics, U niversity o f Ł ódź and U niversity o f T rad e , Ł ódź. [ 21 ] (1948; com pound Poisson distributions). Some interrelations am ong com p ound and generalized distributions gave J. G urland (1957). Im portant theoretical problem s arc contained in papers by II. Tcicher (I960, 1962), W. M o lenaar (1965) and W. M olenaar and W .R. Zwct (1966). Also in sixties we find the results by T. Ś rodka (1964; R ayleigh with gam m a, gam m a with Rayleigh; 1966 - Laplace with norm al N(0, 3) left truncated at zero, with gam m a, Rayleigh, Wcibull, exponential), by S.K. K atti and J. G u rlan d (1967; Poisson-Pascal), D.S. D ubcy (1968; com pound W cibull). T h en we have papers by D. S. D ubcy (1970; com pound gam m a, beta and F ), T. G ersten k orn and Środka (1972; generalized gam m a with gam m a), H. Jakuszcnkow (1973; Poisson with norm al N(m, n) left truncated at zero, with generalized tw o-param eter gam m a, with M axwell and Rayleigh), W. D yczka (1973; binom ial with beta (incom plete m om ents)) T. G ersten korn (1982; binom ial with generalized beta), T. G erstenkorn (1994; gene ralized gam m a with exponential), T. G erstenkorn (1996; Pólya with beta), G .E . W ilm ot (1989; Poisson-Pascal and others). M .L . H uang and K.Y. b u n g (1993; D com pound Poisson distribution as a new extension o f the N eym an T ype A distribution). A wide list of references to the problem considered one can find in review studies by N.L. Johnson and S. K otz (1969; chapter 8: 183-215), G. P. Patil et al. (1968) and now adays by G. W im m er and G . A ltm ann (1999). II. T H E C O M P O U N D IN G O F PR O B A B IL IT Y D IS T R IB U T IO N S Below, we give a definition and relations needed for the com pounding o f distributions. Definition 1. T he com pound distribution L et a ran d o m variable X y have a distribution function ,Г(л:|у) depending on a p aram eter y. Suppose th at the param eter у is considered as a random variable Y with a distribution function G(y). T hen the distribution having the distribution function o f X defined by H (x) = J F (x\cy)dG (y) —00 (1) will be called com pound, with th a t с is an arbitrary constant o r a constant bounded to som e interval (G urland, 1957; 265). I he occurrcncc of the constant с in (1) has a practical justification because the d istribution o f a random variable, describing a phenom enon, often depends on the param eter which is a realization o f an o th er random variable m ultiplied, however, by a certain constant. T h e variable which has distribution function (1) will be w ritten down in sym bol as “X л Y " and called a coi. .pound o f the variable X with respect to the “ co m p ounding” У. R elation (1) will be w ritten symbolically as follows: H (x) = F (x \c y ) A G (y ). (2) У C onsider the case when both variables are discrete, the first one with a probability function P (X = X i \kn) depending on a p aram eter n being a ran d o m variable N with a probability function P (N = n). T hen (1) is expressed by the form ula h(Xl) = P (X = x t) = £ P ( X = x t\N = k n ) -P (N = n). /1=0 III. T H E IN F L A T E D PA SC A L л (3) P O IS S O N Y Definition 2. T he distribution of the form P£X = i\Y) = 1 — s + s ■P (X = j'ol ľ ) for i = i0, s • P (X = i\Y ) for i = 0, 1, 2, i0 - l , i 0 + l , n, (4) where 0 < s < 1 and the variable У, being in the condition, has a distribution G(y), we call an inflated conditional distribution. It is a discrete distribution with an inflation o f the distribution P (X = i|Y ) at a point i = i0. D istribution (4) were introduced, nam ed as inflated, by S.N. Singh (1963) and M .P. Singh (1965-66, 1966) and later discussed by m any authors. Some inform ation ab o u t these results one can find in T. G erstenkorn (1977) and G. W im m er, G. A ltm ann (1999). Lemma 1. T he com pounding o f an inflated distrib u tio n with another distrib u tio n gives a distribution with the same inflation. T h e proof, as rather easy one, is here om itted. Theorem 1. W e assum e th a t X is a variable w ith inflated Pascal d istrib u tio n P as{nk, p) depending on a p aram eter n, i.e. Pas(nk, p) - Pa,( X = i\N = n) = 1 —s + s Cnkf°•"« ,0 * ------------n (-----p ° qnk for i = i0 i«! 1iS— №>•-». °nk j — p-q where p > 0 , /c > 0 , p+q= for i = 1 0 , 1, 2 , i0 ~ 1, i0 + 1, ... and x 11' - 11 = jc(x + l)(x + 2)...(x + 1 - 1) is the so-called ascending factorial polynom e. Let N be a variable with the Poisson distribution Pa(n, Я) P0(N = n, Я) = — e~ A, n! n = 0, 1, 2, ..., Я>0. By using the form ula (3) we get MO = 1 — s + s P - ; ‘olexp(0 — Я) for i = i0, h'for i = (3) 0 , 1, ..., i0 - 1, i0 + 1, ... w here p > О, Я > 0, 0 = qk and Vm = (6) Í * [i’ l]dF (x) is the so-called ascending (or reverse) factorial m om ent determ ined by the equality: Mm = Е[(кХУ ‘-~4 = X ( k n f ‘- (Г n\ exp( - 0), Proof. A t first we determ ine /1,( 10) = P (X = i0): hs(i0) = P S(X = i0) = 00 rni-V'-- 1 ! J = £ ( l - s + s ---- 7 7 — p ioqnk) - cxp( — Я) = n= 0 ■ 1 «о! п=о n\ (7) A nalogously we calculate /1,( 1'). If in (5) we take s = 1 we obtain the com pound Pascal-Poisson distribution w ithout inflation h(i) = - - ^ ‘-е х р ( 0 - Л ) , / = 0, 1, 2, ... R. Shum w ay and J. G urland (1960) have also obtained this result but using a m ethod o f generalization o f distributions. T h e m o m en t (6) or (7) is to be determ ined in dependence on crude or factorial m om ent. In the p ap er by R. Shumway and J. G urland (1960; 92) we find the follow ing form ula м и = z s : k ‘ f s ‘j /=i ;= i where Sj are Stirling num bers o f the second kind, к is a param eter and <*[,■) is a factorial m om ent “m = I x tadF (x) — 00 where x r‘] = x ( x — l)(x —2 )...(x — i + 1) and S' arc Stirling num bers o f the third kind. In general the factorial m om ent a m are easier to be calculated th an the crude ones. But one can pass from the factorial m om ents to the crude ones. T his problem has been exactly discussed in the paper by T. G erstenkorn (1983) where one can also find a table o f Stirling num bers o f the third kind. IV . T H E C O M P O U N D P A S C A L -P O IS S O N D IS T R IB U T IO N A N D IT S M O M E N T S T he com pound Pascal-Poisson without inflation can be written symbolically Pap(k, p, Я) ~ Pa(nk, p) л P0(X) П T his d istribution has been presented in an equivalent form by S.K. K atti and J. G u rlan d (1961) as a generalization o f the Poisson distribution w ith the Pascal one. Corollary 1. T he m om ent o f the rlh order o f the com pound distribution Pascal-Poisson is the m ean value o f an ap p ro p riate m om ent o f Pascal d istribution if the param eter n appearing in the form ulae o f m om ents of the Pascal distribution is considering as a random variable o f the Poisson d istrib u tio n , i. e. fyr](k, P, X) = a[r](nk, p) л P 0( l) П br(k, p, A) = ar(nk, p) л P 0(A). П T ak in g in account these form ulae, we have Theorem 2. T he factorial m om ent b[r](k, p, A) o f the com pound distribution Pascal-Poisson is expressed by b[r](k, p, A) = u fá (8) where ^ir] is the reverse factorial m om ent o f the Poisson distribution, i.e. t w n= 0 Proof. b[r](k,p, A) = !r' - n - , e x P( - X ) . (9) n' л В Д = ( ^ j( ( n k ) [r~1] л Р Д )) = A lready in G. B ohlm ann (1913; 398) we find the relation between the crude and factorial m om ents br = Í s rjb lr] ]= о (10) where S j are Stirling num bers o f the second kind. T he table o f these n u m b ers can be fo u n d , fo r instance, in A. K a u fm a n n (1968) o r in J. Łukaszew icz and M. W arm us (1956). Corollary 2. D irectly from (8) and (10) we have br(k ,p , A) = W - Y / ť l j= o W where S rj are Stirling num bers o f the second kind. (11) Rccurrcncc relations for crudc moments Theorem 3. C rude relations o f the com pound Pascal-Poisson Pap(k, p, A) distribution arc expressed by 1) br+ t (k, p, X) = £ ( ) £ S}bu+ n(/c, p, A), (12) i = o V / J=0 2) br+ |(fc, p, A) = Y j S fr v + n(k, P, A) -I- - ^-br(k, p, A). (13) 4 0 P roof A d 1) br+ i(k, p, A) = ar+ i(n/c, p) л P„(A) = /I = nkP„ í ( - V m + 1. p) a <11=0 V1/ " = = f Ź ( r\ n k a f r k + l ,p ) A P„(А)). 4 i-0 \ v я (14) Now we will calculate the expression in parentheses using (10), some properties o f factorial polynom ials, and the following proposition: Proposition 1. F actorial m om ent o f the Pascal Pa(n k ,p ) distribution is given by W ' ’ 11 (see: D yczka, 1973: 223 (63), (64)). nka^nk + 1, p) л P„(A) = П = I S lj ( - \ \ n k + l ) ^ - i ] л P 0(A) = 7=0 W = Ż S j^Y (nfc(nfc + l))W --4 A P 0(A) = ;=o \ 9 / я = Z S j ^ W j=o \ 9 / +1' - 1 , A P o(A )= n ^=0 T ak in g account this result and (11) in (13) we have (12). Ad 2) W. D yczka (1973: 225 (70)) has show n th at a,+ i(nk, p) = P (nkar (nk + l ,p ) + — / . ar(n k ,p )). 4 J p A Using this form ula in (14) and regarding the first com ponent, we have J nk ^ ar(nk + 1, p) л Pn{X) = nk ^ £ S' ( J ) (nk + 1)[J-~ 11 л Pn( l ) = J = t ^ ^ Y +V ü b t , = J= 0 W is'jblj+1](k,p,k). j =o I hen regarding the second com ponent we have P d ar(nk, p) л P0(X) = J d{ P f „/pV d P d u <l n T he result (13) is then evident. Incomplete moments An incom plete (truncated, generalized) crude m om ent mr(t) o f order r o f a distrib u tio n function F(x) is defined by 00 mr(t) = jV d F (x ). t F o r incom plete factorial m om ent we have analogously mrn(0 = \ x [r]dF (x). In the discrete case we assum e th at t in the sum is an integer. It is quite evident th at a com plete m om ent is a special case o f the incom plete one. W. D yczka (1973: 212, (22)) has shown th at incom plete crude m om ents arc expressed by the incom plete factorial ones in the follow ing way: *=o where S', are Stirling num bers of the second kind. U sing this no tio n for our case, we have Theorem 4. Incom plete factorial m om ents o f the com pound Pascal-Poisson Pap(k, p, A) distribution are expressed by i- о where 0 = qkl and ß [r +4 is the reverse factorial m om ent given by (9). Proof. W. D yczka (1973: 227, (73)) has shown th at delink, p, t) = a[r](nk, p)a0(nk + r , p , t - r ) = C om p o u n d in g this expression w ith P 0(A), we have (<f*(n/c)tr+,,- 1]) л P 0(;.)) = A. П Let us calculate the expression in parantheses: 00 (ak) У qnk(nkyr+i.-i] л p до = у (nfc)[,+ 1 .-1 1 H - ^ - e x p ( - Я) = „=n n! 00 nn + n11ľ . exp( - 0) = exp(0 - ?)ц{г+п. = exp(0 - A) £V (nk)[r+l„ = r. n\ T ak in g in account these calculations, we have t-r-lp T + l A = uw - En t 1= exp(° ~ ^ + = = br(k, p, A) - exp(0 - X)pr £ P.. ß [r+nI=П »• As a sim ple conclusion, we have C orollary 3. Incom plete crude m om ents o f the com pound Pascal-Poisson Pap(k, p, A) d istribution are expressed by r hr( k ,p ,X ,t) = X ( S ;/) M( / c ,p ,A ) - p j c x p ( f l- ;.) L цИи+ц- REFEREN CES B ohlm ann G . (1913), F orm ulierung und B egründung zweier H ilfssätze der m athem atischen S tatistik, M ath. A nn., 74, 341-409. C an sad o M .E . (1948), O n the com pound and generalized Poisson d istrib u tio n s, A nn. M ath. S la t., 19, 414-416. D ubey D .S. (1968), Л com pound W eibull distribution, Naval Res. le g is t. Q uart., 15, 2, 179-182. D ubey D .S. (1970), C om pound gam m a, beta and F d istributions, M etrika, 16, 1, 27-31. D yczka W. (1973), Z astosow anie skladania rozkładów d o w yznaczania m om entów (A pplication o f c om pounding o f distributions to d eterm ination o f m om ents; in Polish), Z e sz y ty Nauk. Politech. łó d z k ie j, 168, M atem aty k a 3, 205-230. Feller W . (1943), O n general class o f „contag io u s” distributions, A nn. M ath. S ta t., 14, 389-400. G erstenkorn T ., Ś rodka T. (1972), Kombinatoryka i rachunek prawdopodobieństwa (C om binatorics and pro b ab ility theory; in Polish), PW N , W arszaw a, V ll ed.: 1983. G erstenkorn T . (1977), Jednow ym iarow e rozkłady dyskretne ze zniekształceniem (Onc-dimcnsional inflated discrete distributions; in Polish), [in:] M etody statystyczne w sterowaniu jakością (Statistical m ethods in q uality control), ed. Sz. Firkow icz, R eports on the conference o f the Polish A cad, o f Sciences (Jabłonna, N ov. 23-28, 1975), O ssolineum , Polska A kadem ia N auk, W rocław 1977, 195-208. G e rsten k o rn T . (1982), T h e com pounding o f the binom ial and generalized beta distributions, [in:] Proc. 2 '“‘ Pannonian Conf. on M athem . S tatistics (T atzm annsdorf, A ustria, 1981), ed. W. G rossm ann, G . Ch. Pflug, W. W ertz, D. Reidel Publ., D o rd re ch t, H olland, 87-99. G e rsten k o rn 'Г. (1983), R elations betw een the crude, factorial and inverse facto rial m om ents, [in:] Trans, o f the N inth Prague Conf. on Inform ation Theory, Statistica l Decision Functions and Random Processes (Prague, June 28-July 2, 1982), A cadem ia Publ. H ouse of the C zechoslovak A cad, o f Sciences, Prague 247-252. G e rsten k o rn T . (1994), A com pound o f the generalized gam m a d istrib u tio n w ith the L aplace distribution truncated at zero, Bull. Soc. Sei. Letters Ix>dz, 44, Recherches sur les deformations, 17, 5-10. G e rsten k o rn T . (1996), Л com pound o f the Pólya d istrib u tio n w ith the b eta one, Random Oper, and Stoch. E qu., 4, 2, 103-110. G reenw ood M ., Y ule G .U . (1920), A n inquiry in to the n a tu re o f frequency d istribution representative o f m ultiple happenings with p articular reference to the occurance o f m ultiple atta ck s o f disease or o f repeated accidents, J. R r /. Stat. Soc., 83, 255-279. G urland J. (1957), Som e interrelations am ong com pound and generalized distributions, Biometrika, 44, 265-268. H uang M .L ., F ung K .Y . (1993), D com pound Poisson distribution, Statistical Papers, 34, 319-338. Jakuszenkow H. (1973), N ow e złożenia rozkładów (N ew com pounds o f d istributions; in Polish), P rzegląd S ta ty sty czn y, 20, 1, 67-73. Jo h n so n N .L ., K o tz, S. (1969), Distributions in S tatistics - D iscrete D istributions, H o u g h to n M ifflin C om p., B oston. K a tti S.K ., G u rla n d J. (1961), T h e Poisson-Pascal d istrib u tio n , B iom etrics, 17, 527-538. K aufm ann A . (1968), Introduction á la combinatorique en vue des applications, D u n o d , Paris. L undberg O. (1940), On Random Processes and Their A pplication to Sickness and Accident Statistics, A lm quist and W iksells B oktryckeri - A. B., U ppsala. Ł ukaszew icz J., W arm us M . (1956), M etody num eryczne i graficzne (N um erical and graphical m ethods; in Polish), P W N , W arszaw a. M o le n aa r W. (1965), Som e rem ark s on m ixtures o f d istributions, Bull. Intern. S tatist. Institute, 35й1 Session o f the Intern. Statist. In st., Beograd, Book 2, 764-765. M o ie n aa r W ., van Zwet W .R . (1966), O n m ixtures o f d istributions, Ann. M ath. S ta t., 37, 1, 281-283. Patii G .P ., Joshi S.W ., R ao C .R . (1968), A Dictionary and Bibliography o f Discrete Distributions, O liver and Boyd, E din burgh. Pearson E.S. (1925), Bayes’s theorem , exam ined in the light o f experim ental sam pling, Biometrika, 17, 388-442. S attcrth w aile F.E . (1942), G eneralized Poisson distribution, Ann. M ath. S ta t., 134, 410-417. Seweryn J.G . (1986), Some probabilistic properties o f Bessel distributions, Z e szyty Nauk. Politechn. Ł ó d zk., 466, M a tem aty k a 19, 69-87. Shum w ay R ., G u rla n d J. (1960), A fitting procedure for som e generalized Poisson distributions, Skandinavisk A ktuarietidskrift, 43, 87-108. Singh M .P. (1965-1966), Inflated binom ial distribution, J. Sei. Res. Banares H indu Univ., 16, 1, 87-90. Singh M .P . (1966), A n o te on generalized inflated binom ial d istrib u tio n , Ind. J. S la t., Ser. A , 28, 1, 99. Singh S. N. (1963), A note o f inflated Poisson d istribution, J. Ind. Stat. Assoc., 1, 3, 140-144. Skellam J. G . (1948), A p robability d istribution derived from the binom ial d istribution by regard ing the pro b ab ility o f success as variable between the sets o f trials, J. Roy. Statist. Soc., Ser. B, 10, 2, 257-261. Ś ro d k a T . (1964), N ouvelles com positions de certaines d istrib u tio n s, Bull. Soc. Sei. In u re s, 15, 5, 1-11. Ś ro d k a T . (1966), Złożenie rozk ład u L aplace’a z pew nym uogólnionym rozkładem gam m a, M axw ella i W eibulla (C om pounding o f the L aplace d istrib u tio n with a generalized gam m a, M axw ell a n d W cibull d istrib u tio n s; in Polish) Z e s z y ty N a u k . P olitech. Ł ó d zk., 77, W łókiennictw o, 14, 21-28. T eicher H . (1960), O n the m ixtures o f d istributions, Ann. M ath. S ta t., 31, 55-72. T eichcr 11. (1962), Identifiability o f m ixtures, Ann. M ath. S ta t., 32, 244-248. W illm ot G .E . (1989), A rem ark o n the Poisson-Pascal and som e other c ontagious distributions, Sta tist. Probab. L ett., 1, 3, 217-220. W im m er G ., A ltm an n G . (1999), Thessaurus o f Discrete Probability D istributions, Stam m , Essen. Tadeusz Gerstenkorn ZŁOŻENIE INFLACYJNEGO ROZKŁADU PASCALA / . ROZKŁADEM POISSONA Streszczenie W pracy prezentow ane jest złożenie inflacyjnego rozkładu Pascala z rozkładem Poissona. W części wstępnej pracy p o dany jest przegląd w yników badaw czych dotyczących tem atu złożeń rozkładów ze szczególnym uwzględnieniem polskich a u torów . W dalszych rozdziałach p o d a n o funkcję p raw dopodobieństw a rozkładu złożonego Pascal-Poisson oraz jeg o m om enty silniowe, zwykłe, niekom pletne oraz związki rekurencyjne.