Print Slides - IfIS - Technische Universität Braunschweig

Transcription

Print Slides - IfIS - Technische Universität Braunschweig
4/7/2016
0 Organizational Issues
• Lecture
– 07.04.2016 – 14.07.2016
– 09:45-12:15 (approx. 2 lecture hours with a break)
– Exercises, detours, and homeworks
Multimedia Databases
• 5 Credits
• Exams
Wolf-Tilo Balke
Younès Ghammad
Institut für Informationssysteme
Technische Universität Braunschweig
http://www.ifis.cs.tu-bs.de
– Oral exam
– Achieving more than 50% in
homework points is advised
Multimedia Databases – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
0 Organizational Issues
0 Organizational Issues
– Castelli/Bergman: Image Databases,
Wiley, 2002
• Recommended literature
– Schmitt: Ähnlichkeitssuche in
Multimedia-Datenbanken,
Oldenbourg, 2005
– Khoshafian/Baker: Multimedia and
Imaging Databases, Morgan
Kaufmann, 1996
– Steinmetz: Multimedia-Technologie:
Grundlagen, Komponenten und
Systeme, Springer, 1999
Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
– Sometimes: original papers (on our Web page)
3
0 Organizational Issues
Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
4
1 Introduction
• Course Web page
1 Introduction
– http://www.ifis.cs.tu-bs.de/teaching/ss-16/mmdb
– Contains slides, exercises,
related papers and a video
of the lecture
– Any questions? Just drop
us an email…
Relational Database Systems 1 – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
2
1.1 What are multimedia databases?
1.2 Multimedia database applications
1.3 Evaluation of retrieval techniques
5
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
6
1
4/7/2016
1.1 Multimedia Databases
1.1 Basic Definitions
• What are multimedia databases (MMDB)?
• Multimedia
– Databases + multimedia = MMDB
– The concept of multimedia expresses the
integration of different digital media types
– The integration is usually performed in a document
– Basic media types are text, image, vector graphics,
audio and video
• Key words: databases and multimedia
• We already know databases, so what is
multimedia?
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
7
1.1 Data Types
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
8
1.1 Documents
• Text
• Document types
– Text data, Spreadsheets, E-Mail, …
– Media objects are documents which are of
only one type (not necessarily text)
– Multimedia objects are general documents
which allow an arbitrary combination of
different types
• Image
– Photos (Bitmaps), Vector graphics, CAD, …
• Audio
– Speech- and music records, annotations, wave files,
MIDI, MP3, …
• Multimedia data is transferred through the
use of a medium
• Video
– Dynamical image record, frame-sequences,
MPEG, AVI, …
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
9
1.1 Basic Definitions
10
1.1 Medium Example
• Medium
• Book
– A medium is a carrier of information in a
communication connection
– It is independent of the transported information
– The used medium can also be
changed during information
transfer
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
– Communication between author
and reader
– Independent from content
– Hierarchically built on text
and images
– Reading out loud represents
medium change to sound/audio
11
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
12
2
4/7/2016
1.1 Medium Classification
1.1 Multimedia Databases
• Based on receiver type
• We now have seen…
– Visual/optical medium
– Acoustic mediums
– Haptical medium – through tactile senses
– Olfactory medium – through smell
– Gustatory medium – through taste
– …what multimedia is
– …and how it is transported (through some
medium)
• But… why do we need databases?
– Most important operations of databases are data
storage and data retrieval
• Based on time
– Dynamic
– Static
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
13
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
1.1 Multimedia Databases
1.1 Multimedia Databases
• Persistent storage of multimedia data, e.g.:
• Stand-alone vs. database storage model?
– Text documents
– Vector graphics, CAD
– Images, audio, video
– Special retrieval functionality as well as corresponding
optimization can be provided in both cases…
– But in the second case we also get the general
advantages of databases
• Content-based retrieval
– Efficient content-based search
– Standardization of meta-data (e. g., MPEG-7, MPEG-21)
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
15
1.1 Historical Overview
Declarative query language
Orthogonal combination of the query functionality
Query optimization, Index structures
Transaction management, recovery
...
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
16
• Relational Databases use the data type BLOB
(binary large object)
Retrieval procedures for text documents
(Information Retrieval)
– Un-interpreted data
– Retrieval through metadata like e.g., file name, size,
author, …
1970
Relational Databases and SQL
1980
• Object-relational extensions feature
enhanced retrieval functionality
Presence of multimedia objects intensifies
– Semantic search
– IBM DB2 Extenders, Oracle Cartridges, …
– Integration in DB through UDFs, UDTs, Stored
Procedures, …
SQL-92 introduces BLOBs
First Multimedia-Databases
2000
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
•
•
•
•
•
1.1 Commercial Systems
1960
1990
14
17
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
18
3
4/7/2016
1.1 Requirements
1.1 Requirements
• Requirements for multimedia databases
(Christodoulakis, 1985)
• To comply with these requirements the following
aspects need to be considered
– Classical database functionality
– Maintenance of unformatted data
– Consideration of
special storage and
presentation devices
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
– Software architecture – new or extension of
existing databases?
– Content addressing – identification of the objects
through content-based features
– Performance – improvements using indexes,
optimization, etc.
19
1.1 Requirements
• Retrieval: choosing between data objects.
Based on…
– a SELECT condition (exact match)
– or a defined similarity connection
(best match)
• Retrieval may also cover the
delivery of the results to the user
21
1.1 Retrieval
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
22
1.1 Content-based Retrieval
• Closer look at the search functionality
• “Retrieve all images showing a sunset !”
– „Semantic“ search functionality
– Orthogonal integration of classical and extended
functionality
– Search does not directly access the media objects
– Extraction, normalization and indexing of contentbased features
– Meaningful similarity/distance measures
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
20
1.1 Retrieval
– User interface – how should the user interact with
the system? Separate structure from content!
– Information extraction – (automatic) generation
of content-based features
– Storage devices – very large storage capacity,
redundancy control and compression
– Information retrieval – integration of some
extended search functionality
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
• What exactly do these images have in common?
23
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
24
4
4/7/2016
1.1 Schematic View
1.1 Detailed View
Query
• Usually 2 main steps
– Example: image databases
Image
collection
3. Query
preparation
Image analysis
and feature
extraction
Digitization
Result
5. Result preparation
Query plan & feature values
Image
database
Result data
4. Similarity computation & query processing
Creating the database
Feature values
Raw & relational data
Querying the database
Image analysis
and feature
extraction
Digitization
2. Extraction
of features
Similarity
search
Search result
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
MM-Database
1. Insert into the
database
MM-Objects + relational data
25
1.1 More Detailed View
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
26
1.2 Applications
Result
Query preparation
Normalization
Segmentation
Feature extraction
Optimization
Feature values
Query plan
Relevance feedback
Query
Raw data
Image
query
Similarity computation
• Lots of multimedia content on the Web
Result preparation
– Social networking e.g., Facebook, MySpace, Hi5, etc.
– Photo sharing e.g., Flickr, Photobucket, Instagram,
Picasa, etc.
– Video sharing e.g.,YouTube, Metacafe, blip.tv, Liveleak,
etc.
Medium transformation
Format transformation
Result data
Query processing
Feature values
MM-Database
Feature index
BLOBs/CLOBs
Relational DB
Metadata
Profile
Structure data
Feature extraction
Pre-processing
Feature recognition
Feature preparation
Decomposition
Normalization
Segmentation
MM-Objects
Relational data
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
27
1.2 Applications
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
28
1.2 Applications
• Cameras are everywhere
• Picasa face recognition
– In London “there are at least
500,000 cameras in the city, and
one study showed that in a single
day a person could expect to be filmed 300 times”
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
29
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
30
5
4/7/2016
1.2 Applications
1.2 Applications
• Picasa, face recognition example
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
• 2007 :learning
phase
• 2015: ~ 98%
correctness
31
1.2 Applications
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
32
1.2 Sample Scenario
• Consider a police investigation of
a large-scale drug operation
• Possible generated data:
• Picasa example
– Video data captured by surveillance cameras
– Audio data captured
– Image data consisting of still photographs taken by
investigators
– Structured relational data
containing background
information
– Geographic information
system data
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
33
1.2 Sample Scenario
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
34
1.2 Sample Scenario
• Possible queries
– Video Query: (Murder case)
– Image query by keywords: police officer wants to
examine pictures of “Tony Soprano”
• The police assumes that the killer must have
interacted with the victim in the near past
• Query: “Find all video segments from last
week in which Jerry appears”
• Query: “retrieve all images from the image library in which ‘Tony
Soprano’ appears"
– Image query by example: the police
officer has a photograph and wants
to find the identity of the person in
the picture
• He hopes that someone else has already
tagged another photo of this person
• Query: “retrieve all images from the database in which the
person appearing in the (currently displayed) photograph
appears”
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
35
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
36
6
4/7/2016
1.2 Sample Scenario
1.2 Characteristics
– Heterogeneous Multimedia Query:
• Find all individuals who have been photographed with “Tony
Soprano” and who have been convicted of attempted
murder in New Jersey and who have recently had electronic
fund transfers made into their bank accounts from ABC
Corp.
37
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
1.2 Example
• … so there are different types of queries
… what about the MMDB characteristics?
– Static: high number of search queries (read access), few
modifications of the data
– Dynamic: often modifications of the data
– Passive: database reacts only at requests from outside
– Active: the functionality of the database leads to
operations at application level
– Standard search: queries are answered through the use
of metadata e.g., Google-image search
– Retrieval functionality: content based search on the
multimedia repository e.g., Picasa face recognition
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
38
1.2 Example
– Coat of arms: Possible hit in a multimedia database
• Passive static retrieval
– Art historical use case
39
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
1.2 Example
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
40
1.2 Example
• Active dynamic retrieval
• Standard search
– Wetter warning through evaluation of satellite photos
– Queries are answered through the use of metadata
e.g., Google-image search
Extraction
Typhoon-Warning
for the Philippines
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
41
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
42
7
4/7/2016
1.2 Example
1.3 Retrieval Evaluation
• Retrieval functionality
• Basic evaluation of retrieval techniques
– Content based e.g., Picasa face recognition
– Efficiency of the system
• Efficient utilization of system resources
• Scalable also over big collections
– Effectivity of the retrieval process
• High quality of the result
• Meaningful usage of the system
• What is more important? An effective retrieval
process or an efficient one?
Depends on the application!
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
43
1.3 Evaluating Efficiency
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
44
1.3 Evaluating Effectivity
• Characteristic values to measure
efficiency are e.g.:
• Measuring effectivity is more difficult and always
depending on the query
• We need to define some query-dependent
evaluation measures!
– Memory usage
– CPU-time
– Number of I/O-Operations
– Response time
– Objective quality metrics
– Independent from the querying interface
and the retrieval procedure
• Depends on the (Hardware-) environment
• Allows for comparing different systems/algorithms
• Goal: the system should be efficient enough!
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
45
1.3 Evaluating Effectivity
46
1.3 Relevance
• Effectivity can be measured regarding an
explicit query
• Relevance as a measure for retrieval:
each document will be binary classified as
relevant or irrelevant with respect to the
query
– Main focus on evaluating the behavior of the system
with respect to a query
– Relevance of the result set
– This classification is manually performed by “experts”
– The response of the system to the query will be
compared to this classification
• But effectivity also needs to consider implicit
information needs
• Compare the obtained response with the “ideal” result
– Main focus on evaluating the usefulness, usability and
user friendliness of the system
– Not relevant for this lecure!
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
47
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
48
8
4/7/2016
1.3 Involved Sets
1.3 False Positives
• Then apply the automatic retrieval system:
• False positives: irrelevant documents, classified as
relevant by the system
collection
collection
– False alarms
Experts say:
this is relevant
ca
searched for
fa
found
cd
found
(= query result)
searched for
(= relevant)
fd
• Needlessly increase the result set
• Usually inevitable (ambiguity)
• Can be easily eliminated by the user
The automatic retrieval says:
this is relevant
49
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
1.3 False Negatives
1.3 Remaining Sets
• False negatives: relevant documents classified by
the system as irrelevant
• Correct positives (correct alarms)
– All documents correctly classified by the
system as relevant
collection
– False dismissals
50
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
fd
ca
searched for
fa
found
• Correct negatives (correct dismissals)
• Dangerous, since they
cd
can’t be detected easily by the user
– Are there “better” documents in the collection which
the system didn’t return?
– False alarms are usually not as bad as false dismissals
– All documents correctly classified by the system as
irrelevant
• All sets are disjunctive and their reunion is the
entire document collection
collection
fd
ca
searched for
fa
found
cd
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
51
1.3 Overview
• Relevant results = fd + ca
– Handpicked by experts!
• Retrieved results = ca + fa
– Retrieved by the system
relevant
irrelevant
relevant
ca
fd
irrelevant
fa
cd
Userevaluation
52
1.3 Interpretation
• Confusion matrix: visualizes the effectivity of an
algorithm
Systemevaluation
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
collection
fd
ca
searched for
fa
found
cd
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
53
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
54
9
4/7/2016
1.3 Precision
1.3 Recall
• Precision measures the ratio of correctly
returned documents relative to all returned
documents
• Recall measures the ratio of correctly returned
documents relative to all relevant documents
– R = ca / (ca + fd)
collection
– P = ca / (ca + fa)
collection
fd
fd
ca
searched for
fa
• Value between [0, 1]
(1 representing the best value)
• High number of false drops mean
worse results
found
cd
• Value between [0, 1]
(1 representing the best value)
• High number of false alarms mean
worse results
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
55
1.3 Precision-Recall Analysis
• Both measures only make sense, if considered at
the same time
• Can be balanced by tuning the system
– E.g., smaller result sets lead to better precision rates
at the cost of recall
cd
56
1.3 Actual Evaluation
collection
fd
ca
searched for
– Precision is easy to calculate
fa
found
cd
• Dismissals (not returned elements) are not so
trivial to divide in cd und fd, because the entire
collection has to be classified
– Recall is difficult to calculate
• Standardized Benchmarks
• Usually the average precision-recall of more
queries is considered (macro evaluation)
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
fa
found
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
• Alarms (returned elements)
divided in ca and fa
– E.g., get perfect recall by simply returning all
documents, but then the precision is extremely low…
ca
searched for
– Provided connections and queries
– Annotated result sets
57
1.3 Example
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
58
1.3 Representation
• Precision-Recall-Curves
Query
fa ca fd cd
P
R
Q1
8
2
6
4
0,2
0,25
Q2
2
8
2
8
0,8
0,8
0,5
0,525
Average
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
Average precision of
the system 3 at a
recall-level of 0,2
System 1
System 2
System 3
59
Which system is the
best?
What is more
important: recall or
precision?
Multimedia Databases– Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
60
10
4/7/2016
Next lecture
•
•
•
•
Retrieval of images by color
Introduction to color spaces
Color histograms
Matching
Multimedia Databases – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig
61
11