- SelectedWorks
Transcription
- SelectedWorks
Wroclaw Univesity of Economics From the SelectedWorks of Józef Z. Dziechciarz 2003 Applicability of the Discriminant Analysis Framework for Polish Manufacturing Sector Performance Assessment Jozef Z. Dziechciarz, Wroclaw Univesity of Economics Dorota Kwiatkowska Ciotucha, Wroclaw University of Economics Urszula Załuska, Wroclaw University of Economics Available at: http://works.bepress.com/jozefz-dziechciarz/74/ 2 MER Revija za management o razvoj MER [ournal for Management und En,u . MER [ournal for Management and Dev. ISSN 1408 - 9343 CDe 65·01 Letnik in śt. / Jahrgang und Nr. / Vol. and No.: Programski svet / Herausgeberrat 5 (2003) 2 MER Evrocenter, Gubno - Maribor, November / Editorial Council; Pro! dr. Janko Belak, Univerza v Mariboru in ~fER Evrocenter za management in razvoj, Maribor in Gubno, Slovenija Pro! dr. Vesna Brćic-Stipćević; Ekonomski 2003 Izdajatelji / Herausgeber / Publisher: fakultet, Sveućiliśte u Zagrebu, Zagreb, Hrvatska Abteilung fur Controlling und strategische Pro! dr. Ićzef Dziechciarz, Unternehmensfuhrung, Institut fur Wirtschaftswissenschaften, Pakultat fur Wirtschaftswissenschaften und Informatik, Universitat Klagenfurt, Klagenfurt, Osterreich Akademia Ekonomiczna im. Oskara Langego we Wrocławiu (Oskar Lange University of Oconornics), Wrocłav, Polska Ekonomski fakultet, Sveućiliśte u Zagrebu Ekonomiczna im.Oskara Langego we Wrocławiu, Wrocław, PoJska (Faculty ofEconomics and Business, University of Zagreb), Zagreb, Hrvatska Ekonomski fakultet Rijeka, Sveućiliśte u Rijeci (Faculty of Economics, University of Rijeka), Rijeka, Hrvatska Fakulta ekonomiky a manaźmentu Economics and Management), (Fakulty of Slovenska polnohospodarska univerzita v Nitre, Nitra, Republika Slovakia Institut fur Betriebswirtschaftslehre der Kleinund Mittelbetriebe an der Wirschaftsuniversitat Wien, Wien, Osterreich Institut fur Arbeitswissenschaft, RuhrUniversitat Bochum, Bochum, Deutschland Instytut Inżynierii Zarzadzania (Institute of Management Engineering), Wydział Informatyki i Zarzadzania, Politechnika Poznańska, Poznań, Akademia Pro! Ing. Vladimir Gozora, PhD., Fakulta ekonomiky a manaźrnentu, Slovenska polnohospodarska univerzita v Nitre, Nitra, Republika Slovakia Pro! Ing. [aroslav Hornolka, esC., Provoznć ekonomicka fakulta, Ćeska zernedelska univerzita v Praze, Praha, Ćeska Republika Pro! Dr. Gyorgy Kadocsa, Szervezesi es Vezetćsi Intezet, KeJeti Karoly Gazdasagi Kar, Budapesti Musżaki Fóiskola, Budapest, Magyarorszag I Hungary Pro! Dr. Norbert Kailer, Institut fur Arbeitswissenschaft, Ruhr- Universitat Bochum, Bochum, DeutschJand Pro! dr. Stefan Kajzer, Univerza v Mariboru in MER Evrocenter, Maribor in Gubno, SJovenija Pro! dr. Vinko Kandżija, Ekonomski fakultet Rijeka, Sveućiliśte u Rijeci, Rijeka, Hrvatska Pro! Dr. Dietrich Kropfberger, Abteilung fur Controlling und strategische Unternehmensfuhrung, Institut fur Wirtschaftswissenschaften, Wirtschaftswissenschaften Fakultat fur und Inforrnatik, Polska Lehrstuhl Organisation und Personal, European Business School Schlof Reichartshausen, Pro! Dr. Josef Mugler, Institut fur Oestrich -Winkel, Deutschland MER Evrocenter za management Mittelbetriebe an der Wirschaftsuniversitat Universitat Klagenfurt, Klagenfurt, Osterreich Betriebswirtschaftslehre in razvoj (MER der Klein - und Eurocentre for Management and Development), Gubno, SJovenija Provoznć ekonomicka fakulta (Faculty of Economics and Management), Ćeska zernedelska univerzita v Praz e, Praha, Ćeska Wien, Wien, Osterreich Republika Szervezesi es Vezetesi Intćzet, KeJeti Karoly Gazdasagi Kar, Budapesti Musżaki Fóiskola Pro! dr. Zenon Wiśniewski, Wydział Nauk (Institut of Organization and Management, KeJeti Karoly Faculty of Econornics, Budapest Polytechnic), Budapest, Magyarorszag I Hungary Univerza v Mariboru (University of 1:aribor), Maribor, Slovenija Wydział Nauk Ekonomicznych i Zarzadzania (Faculty of Economic Sciences and Management), Uniwersytet Mikołaja Kopernika w Toruniu, Toruń, Polska Pro! Dr. Jean-Paul Thornmen, Lehrstuhl Organisation und Personal, Eurapean Business School Schlof Reichartshausen, WinkeJ, DeutschJand Ekonomicznych Oestrich- i Zarzadzania, Uniwersytet Mikolaja Kopernika w Toruniu, Toruń, Polska Dr.-inź. Magdalena K. Wyrwicka, Instytut Inżynierii Zarządzania, Wydział Informatyki i Zarzadzania, Politechnika Poznańska, Poznań, Polska Recenzenti / Rezensenten / Reviewers: Prof dr. Janko Belak, Univerza v Mariboru in MER Evrocenter, Slovenija Prof dr. Vesna Brćić-Stipćevu; Sveućiliśte u Zagrebu, Hrvatska Prof dr. hab. JózefDziechciarz, Akademia Ekonomiczna im. Oskara Langego we Wrocławiu, Polska Doc. dr. Mojca Duh, Univerza v Mariboru, Slovenija Dr. hab. Marek Fertsch, Politechnika Poznanska, Polska Prof dr. Lovorka Galetić, Sveućiliśte u Zagrebu, Hrvatska Prof dr. [oźe Glogovśek, Nova Kreditna banka Maribor, d. d. in Univerza v Mariboru, Slovenija Dr. hab. Bohdan Godziszewski, Uniwersytet Mikołaja Kopernika w Toruniu, Polska Prof RNDr. [aroslav Havlićek, Csc., Ceska zemćdelska univerzita v Praze, Cesl«i Republika Prof Ing. [aroslav Homolka, CSc., Ceska zernćdćlska univerzita v Praze, Ćeska Republika Prof Ing. Jan Hron, DrSc., dr. h. C., Ceska zernedelska univerzita v Praze, Ćeska Republika Prof Dr. Gyiirgy Kadocsa,Budapesti Musżaki . Fóiskola, Budapest, Magyarorszag/ Hungary Prof Dr. Norbert Kailer, Ruhr-Universitat Bochum, Deutschland Prof dr. Stefan Kajzer, Univerza v Mariboru in MER Evrocenter, Slovenija Prof dr. Vinko Kandżija, Sveućiliśte u Rijeci, Hrvatska Doc. dr. Iożica Knez-Riedl, Univerza v Mariboru, Slovenija Prof dr. Janko Kralj, Univerza v Mariboru, Slovenija Prof Dr. Dietrich Kropjberger, Universitat Klagenfurt, Osterreich . Prof Dr. hab. Gabriela Łukasik. Akademia Ekonomiczna im. Karola Adamieckiego w Katowicach, Polska Prof Dr. Thomas A. Martin, Fachhochschule Kaiserslautern, University of Applied Sciences FH-Campus Zweibrucken, Deutschland Prof Dr. Iosef Mugler, Wirschaftsuniversitat Wien, Osterreich Prof. Dr. Christoph Midler, Universitat Hohenheim, Deutschland Prof dr. hab. Stanislaw Nowosielski, Akademia Ekonomiczna im. Oskara Langego we Wrocławiu, Polska Prof Dr. Dr. h. c. f. Hanns Pichler, Wirschaftsuniversitat Wien, Osterreich Prof Dr. Hans Iobst Pleitner, Universitat Sto Gallen, Schweiz Prof dr. Danijel Pućko, Univerza v Ljubljani, Slovenija Prof Dr. Dietmar Ross], Wirtschaftsuniversitat Wien, Osterreich Prof Dr. Walter Ruda, Fachhochschule Kaiserslautern, University of Applied Sciences FH-Campus Zweibrucken, Deutschland Prof dr. Marjan Senjur, Univerza v Ljubljani, Slovenija Doc. Ing. Miroslav Svatos, CSc., Ćeska zernedelska univerzita v Praze, Ćeska Republika Prof Ing. Karel Svoboda, CSc., Ceska zemedelska univerzita v Praze, Ceska Republika Prof Dr. [ean-Paul Thommen, European Business School Schlofś Reichartshausen, Oestrich -Winkel, Deutschland Doc. Ing. Ivana Tichg, Ph. D., Ćeska zemedelska univerzita v Praze, Ceska Republika Dr. hab. Stefan Trzcielinski, Politechnika Pomanska, Polska Prof Ing. Jiii Tvrdon, CSc., Ćeska zemedćlska univerzita v Praze, Ceska Republika Prof dr. hab. Zenon Wiśniewski, Uniwersytet Mikołaja Kopernika w Toruniu, Polska Dr. inź. Magdalena K. Wyrwicka, Politechnika Poznańska, Polska Zaloźba / Verlag / Publishing house MER: MER Evrocenter Gubno 17, SI - 3261 Lesićno, Slovenija / Slowenien / Slovenia tel.: +386 (o)) 580 50 40 fax: +386 (o l3 580 50 41 e-mail: [email protected] http.Y/www.mer-evrccenter.si/ Naslov urednlśtva / Redaktionsanschrift Editorial and administrative Mer Journal rur Management und Entwicklung erscheint zweimal jiihrlich, im Mai und November. Der Preis pro Exemplar betragt (einschliefślich Steuer) fur Abonnenten aus Slowenien 3.500 SIT und fur Abonnenten aus dem Ausland 23 €. Ihre Abonnenten-Bestellung nimmtdie Marketingabteilung unter der Anschrift der Redaktion entgegen. Bei diesen BesteJlungen verringert sich der Verkaufspreis um die vereinbarte Rabattstufe. / office address: MER Evrocenter Zaloźba MER v Mariboru Koroska 113 b, SI - 2000 Maribor Slovenija / Slowenien / Slovenia tel.: +386 (0)2 229 85 85 fax.: +386 (0)2 229 85 81 e-mail: publishingrś'mer-evrocenter.si http.v/www.mer-evrocenter.si/ Odgovorni urednik / Chefredakteur prof. dr. Janko Belak, / Editor-in-Chief: SI - 2000 Maribor Pomoćnlca odg. urednika / Stellv. Chefredakteurin / Assistant Editor-in-Chiefin: doc. dr. Mojca Duh, SI - 2351 Kamnica Urednik- / Redakteur- / Editor-Consultant: prof. dr. Stefan Kajzer, Koordinatorica / Koordinatorin SI - 2000 Maribor / Coordinator: Marija Urśić Lektoriranje / Lektoren / Readers: Danijela Ravnjak (za SI) Christiane Kordić (fur DE) Barbara Żniderśić (for EN) Oblikovanje / Gestaltung / Design: Mat jaz Tornaźić Tehnićna ureditev in realizacija / Technische Technical realisation Realisierung / : Bruno Żniderśić Priprava za tisk / Druckvorbereitung / Preparation for print: Repro studio OK, Maribor Tisk / Druck / Printers: Koda Press - Tiskarna Saje, Maribor Copyright © MER Evrocenter, Gubno 2003 ISSN 1408-9343 MER Revija za management in razvoj izhaja dvakrat letno, maja in novembra. Cena posamezne śtevilke znaśa (vkljućno z davkom) za naroćnike iz Slovenije 3.500 SIT in za naroćnike izven Slovenije 23 €. Abonentska naroćila sprejema marketinśka sluźba na naslovu uredniśtva, Pri teh naroćilih bo prodajna cena zniżana za dogovorjeno stopnjo rabata. Mer Journal for Management and Development is published twice a year, in May and in November. The price of each magazine (ine. tax) is 3.500 SIT in Slovenia and 23 € abroad, Applicalions for annual subscriptions can be sent to the Marketing department at Editor's address, Annual subscriptions will be given a red uetion. Vsebina / Inhalt / Contents Znanstveni Poroćila Banki Wissenschaftliche Beitrage Berichte Reports Scientific Papers SOCIAL RESPONSIBILITY 5 OF A FAMILY BUSINESS DES KREDIT- STEUERSYSTEMS [ożica Knez-Riedl 2 BEDEUTUNG FORDERUNG FAMILIENUNTERNEHMEN 90 UND FUR DIE ENTWICKLL~G \"0_- IN POLEK ~ Gabriela Eukasik, Teresa Famułska VON KLEINEN FAMILIENUNTERNEHMEN GRUNDUNGS-, 6 IN DER ENTWICKLUNGS- UND TAILOR-MADE EDUCATION FOR SMAli ENTREPRENEURS DBERGABEPHASE [aroslav Havlićek, Jan Hron, Ivana Tidui __ 100 Norbert Kailer 7 3 WISSENSMANAGEMENT BEIM GENERATIONENWECHSEL IN KLEINEN CROATIAN FAMILY Lovorka Galetić 82 DER IM Kl.EIXEX L>'-U UNTER."r:IDiŁ-'; ~ 110 8 OF WORK ASPEKTEN Maria Dobisova, Hana Borsukowi FAMILIENBETRIEBEN ASPECTS EINIGEN MITTELSTANDISCHEN Dietmar Rbssl 4 Zu ARBEITSVERHALTNISSE - FAMILY CONFLICT IN ApPLICABILITY ANALYSIS ENTERPRISES MANUFACTURI 120 OF THE DISCR~flXAXT FRAMEWORK FOR POUSH G SECTOR PERFO~TE ASSESSMENT Józef Dziechciarz, Dorota Kwiatkowska-Ciotucha, Urszula Załuska 150 Znanstveni ćlanki Poroćda Wissenschaftliche Beitriige Berichte Scientific Papers Reports DRUZBENA ODGOVORNOST DRUZINSKIH 5 PODIETII Gesellschaftliche Familienbetriebs Verantwortung des Social Responsibilir of a Family Business joźica Knez-Ried, 90 POSPESEVANJE USTANOVITVE, RAZVOJA IN PREDAJE MALI H DRUZINSKIH PODJETIJ Fordening von kleinen Familienuntemehmen in der Grundungs-, Entwicklungsund Ubergabephase Promotion ofSmall Family Enterprises in the Start-up, Development and Tronsfer Phase Norbert Kailer 3 ~ 128 Tailor-made Education for Smali Entrepreneurs 7 8 120 138 NEKATERI VIDIKI DELOVNIH RAZMERI) V MALIH IN SREDN)E VELIKIH POD)ET)IH NA SLOVASKEM Zu einigen Aspekten der Arbeitsverhaltnisse im kleinen und mittelstandischen Unternehmen Some Aspects of Labour Re/ations in Smali and Medium Sized Enterprises in Slovak Republic Mdria Dobisovd, Hana Borsukovd 110 VIDIKI KONFLIKTA DELO - DRUZINA V DRUZINSKIH POD)ET)IH NA HRV ASKEM Ashkte der Familienarbeitskonflikte in oatischen Familienbetrieben Aspects ofWork - Family Conflict in Croatian Family Ente;ferises Lovorka Ga etić Die hier veroffentlichten Beitrage werden auf dem Symposium MER 2003 prasenticrt. MALIM PODJETNIKOM PRILAGOJENO IZOBRAZEV AN)E Spezifische Ausbildung der KMU-Untemehmer Iaroslav Havlfcek, jan Hron, Ivana Tichd __ 100 MANAGEMENT ZNAN)A PRl MEN)AVI GE ERACI) V MALIH DRUZINSKIH POD)ETIIH Wissensmanagement beim Generationenwechsel in kleinen Familienbetrieben Knowledge Management at the Generation Transfer in Smali Family Enterprises Dietmar Ross! The Importance of Credit and Tax System for the Development of Family Businesses in Poland Gabriela iukasik, Teresa Famulska 6 Ćlanki, ki so objavljeni v tej MER Reviji, so bili predstavljeni tudi na simpoziju MER 2003. POMEN KREDITNEGA IN DAVCNEGA SISTEMA ZA RAZVOI DRUZINSKIH PODIETIJ NA POLJSKEM Bedeutung des Kredit- und Steuersystems fur die Entwicklung von Familienuntemehmen in Polen 144 UPORABNOST DISKRIMINANTNE ANALIZE ZA PRESO)O USPESNOSTI PROIZVODNEGA SEKTOR)A NA POL)SKEM Anwendbarkeit der Diskriminanzanalyse fur die Ermittlung des Erfolgs des Produktionssektors in Polen Applicability of the Discriminant Analysis Framework for Polish Manufacturing Sector Performance Assessment f6zef Dziechciarz, Dorota KwiatkowskaCiotucha, Urszula Załuska 150 Articles, published in this MER Iournal were presented at the MER 2003. MER REVIjA / MER 5 (2003) 2: JOURNAL POROCILA 1tEPOaTS / BERJCHTE Applicability of the Discriminant Analysis Framework for Polish Manufacturing Sector Performance Assessment Józef Dziechciarz Dorota Kwiatkowska-Ciotucha Urszula Załuska Introduction 1 ous advantages, including: robustness over time, interpretability and straightforwardness. The n recent years in Poland the demand for the specific use of the discriminant function for the information manufacturing I deseribing individual situation of the industrie s or branches branch is understood (the branches assessment may be for- mulated as follow: - Having the discriminant as unit, group or class) is function that was rapidly growing. During these years - authors estimated on the data from the given time were working on the assessment of the Polish period - the future situation of objects (e.g. manufacturing branches result some papers Compiegne 2001, financial indicators manufacturing performance. GfKl Munich branches - Having the discriminant (ASMDA used for clustering and of investors' point of view. The objects open be used comparability? analysis to The results applied assessment. determined branches of discriminant to the branches situation to lower - level (e.g. down as the enterprise. tion of the later task. This is due to severe problems with the data on low aggregation levels. This task is becoming more and more important was in the context solve the which requires enterprise rating. This may be of the financial indicators for reasonable, comparable, stable methodology to The technique by the comparability guarantee belonging (e.g. Groups) The goal of the analysis here is the applica- question remains - which financial indicators may classification NACE Classes) are classified. It may go as far ordering in accordance with their attractiveness from function that was estimated on the data from the higher level Selected 2001). were enterprises) may be assessed. As the were presented specific economic attempt choice to activity area. It has been deterrnine of Basel II recommendations enterprise rating on measurable assumed that if the use of the discriminant qualitative and quantitative basis - common for function leads to true classification of individual the whole branch. Prejem ćlanka / Eingang des Beitrags / Paper received: objects (Branch) - it means that the financial 10·5·2003 construction Recenzijska ocena / Rezension / Review evaluation: raziskovalno poroćilo / Forschungsbericht / researcn report may check in this manner, indicators used for discriminant function which indicators have discriminative properties. The elassie Fisher linear discriminant analysis technique was chosen because of its numer- 150 21 The Data are comparable. Additionally, one The Polish Central Statistical Office (cus) collects the data describing the enterprise's eondition on the quarterly and yearly basis. In order to assess branch condition - the situation of JÓZEF DZIECHCIARZ DOROTA individual firms belonging to this branch is to KWIATKOWSKA-CIOTUCHA URSZULA debt ratio (long-term debt I equity), nominant be examined. To cover all aspects of the enter- (0,5); prises activity the folIowing areas should be 4) EFFICIENCY ANALYSIS - cost ratio X9 ineluded into analysis: sale's tendency; liquidity; (prime cost of sales / sales), destimulant or des- debt timulant with threshold value situation; Corporate efficiency and profitability. finance and managerial accounting l; X10 fixed assets utilization ratio (sales / fixed assets), stimulant; productivity on one employee (sales / aver- literature gives a variety of measures describing Xll the management quality (see [2,5]). The follew- age number of employees), stimulant; ing indicators have been chosen for the analysis 5) PROFITABILITY ANALYSIS - X12 profit mar- - the nature of the variable (stimulant, destimu- gin on sales (net income / sales), stimulant or lant, nominant) stimulant with threshold value o; and suggested nominal values are stated: l) return on X13 assets (net income / total assets), stimulant or SALE'S TENDENCY ANALYSIS xi the - stimulant with veto threshold value o; X14 return dynamics of incomes from sale in fixed prices on equity (net income / equity), stimulant or from January stimulant with veto threshold value o. 2002 - chain base index - analog- ous period previous year = 100%, stimulant; 2) LIQUIDITY ANALYSIS - xz current The research was carried out on data gath- ratio ered according to the For the evaluation NACE. (current assets / current liabilities), nominant of the Polish manufacturing sector performance with recommended the data for the branches from the statistical value range [1,2 - 2,0]; X3 DR. ZAŁUSKA JÓZEF DZIECHCIARZ, Professor, Head of the Department of Eeonometries, Wrodaw University of Economics ADDRESS: Wrodaw University of Eeonomies, ul. Komandorska 118/120,53-345 Wrodaw, Po/and Tel/fax: +48713680 359 E-mai/: [email protected]/ MAIN SCIENTIFIC-RESEARCH FIELD: econometru: modeling, eeonometrie modeling with variab/e and random eoefficients, modeling on qua/itative data and mu/tivariate methods of data analysis, small business administration, market research, market data analysis, macroeconomic data modeling, macroeconomic data analysis, business surveys, manufaeturing branehes data analysis, SMEs management, quick ratio (current assets - inventories / cur- reports col1ected by the Polish Central Statistical SMEs situarion assessment, rent liabilities), nominant Office have been used. The yearly data from infonnation needs determination value range [1,0 - 1,5]; tory utilization X4 with recommended finished goods inven- ratio in days (finished goods inventory / sales * 360), destimulant; X5 + receivable turnover D for 92 groups and for (Manufacturing) 181 elasses ofSection was used. DR. DOROTA KWIATKOWSKA- researcher and lecturer at the Department of Forecasting and Economic Analyses, Wrodaw University of Eeonomies CIOTUCHA, cash (financial means) cyele ratio in days (inventory turnover 2000, 31 The analysis - accountsIn accordance with the goal of the research payable turnover), destimulant; AODRESS: 3) total DEBT ANALYSIS assets), - X6 nominant value range [0,57 - 0,67]; debt ratio (total debt I with recommended X7 debt-equity (total debt / equity), nominant mended value range ratio with recom- [1,0 - 3,0]; X8 long-term the discriminant function is constructed in order to predict the profit generation ability by the enterprises. The discriminant function eon- structed is based on the data aggregated to the level of Groups. The discrimination criterion Wrodaw University of Eeonomies, Ul. Komandorska 118/120,53-345, Wrodaw, Poland Tel/fax: +48713680359 E-mail: [email protected] MER MAIN REVI)A / MER SCIENTIFIC-RESEARCH FIELD: forecasting in enterprise, sale forecasting, financial forecasting, data analysis, ciustering, nonhierarchical 5 (2003) 2: JOURNAL POROCJLA dividing the whole Groups entity on two sub- nating power are included. In the standard forward stepwise procedure - at the starting point was the profit level. Depending whether the profit was positive or negative - the there is only one variable in the model. In the Groups population next step the next (one) variable is added. The (92 in total) was divided into two subpopulations. manufacturing branches data analysis, 5MEs management, were: DR. URSZULA choice criterion for the inclusion is the increase of the Mahalanobis distance between subpopulations. In the standard backward stepwise pro- of manufacturing Groups with positive net profit in year 2000 - cedure - at the starting point all variables are in altogether 52 objects (Groups), the model. In the next step one variable is omit- nI ZAEUSKA, researcher and lecturer at the Department of Forecasting and Beonomic Analyses, Wrocław University of Economics Out of them there no - subpopulation SMEs situation-assessment, determination TS populations classification, macroeconomic data analysis, business surveys, information needs RE."O / BERICHTE - subpopulation of manufacturing ted. The choice criterion for the omitting is the Groups with net loss in year 2000 - altogether 40 increase of the Mahalanobis objects (Groups). subpopulations. For the discriminant function construction distance between Here, both procedures lead to the same list AODRESS: Wrocław University of Economics, Ul. Komandorska 118/120,53-345, Wrocław, Poland tel/fax: +48713680359 E-Mail: [email protected] MAIN SCIENTIFIC-RESEARCH the financial indices shown in section 2 were of variables included in the discriminant func- used. Because of the adopted discrimination cri- tion. These are: X9cost ratio, X3liquidity quick terion (profit level) - the list of indicators was ratio, X7 debt-equity ratio, X5 cash (financial modified in the way that the indicators describ- means) cycle ratio. Variables are listed in accor- ing profitability (i.e. variables X12,Xl3,Xl4) were dance with their declining discriminative power. eliminated. Two versions of data were used for discrim- FIELD: forecasting in enterprise, sale forecasting, financial forecasting, business cyc/es forecasting, data analysis, clustering, nonhierarchical dassification, macroeconomic data analysis, business tendency surveys, manufacturing branches data analysis, 5MEs management, 5MEs situation assessment, information needs determination The variables that were used for the discriminant function construction (i.e. variables xi - XlI) the routine testing procedures ducted. In particular were eon- the cross correlation as inant function estimation - raw and standardised. From practical point of view the discriminant function based on the raw data is more convenient. On the other hand the parameter well as the mean equality and the normality of estimates the distribution units. In contrast the discriminant function esti- were examined. As the result the observation occurred that only variable X6 mation depend on variables measurement based on standardised observations (debt ratio) is normally distributed. Researchers show the weights each variable contributes very frequently report, that most of the eco- the discrimination nomie variables are not normally distributed. In tive impact comparison spite of the fact that the variables are not nor- criterion - high absolute value of the param eter mally distributed - all eleven variables were to criterion. It allows the relaon the discrimination estimate indicates heavy impact of the variable taken for further analysis. In case of variables X8 on the discriminative power of the discriminant and XlI mean equality testing show the lack of function. significant differences between means in two subpopulations arithmetic - this in tum leads Equation (1) and (2) shows the discriminant function estimation results for raw data (M(O)) to the conclusion that those two variables are and standardised data (M(S)): lacking of the discriminative features - they were M(O) = -18.215x9 + 1.792X3-0.394 omitted in the analysis. For the reminder of the x7 -0.006x5 +17.391 variables the cross correlation was examined. In M(S) = -0.726x9 + 0.389x3 -0.260X7 most cases the correlation was low. -0.216x5 +1.332 Using standard forward stepwise and back- Standard (2) statistical evaluation criminant TICA package the discriminant power assessment of the whole function as well function was estimated. This results in specific, iterative vari- function requires of the dis- ward stepwise procedures offered by the STATIS- discrimination as the individual variables. For the discrimina- able selection for the model. The task is that in tive power assessment of the discriminant func- the model only variables with strong discrimi- tion the Wilks' lambda statistics l has been used. 152 Józef Dziechciarz, ApPLICABILITY OF THE DISCU],{INANT ANALYSIS FRAMEWORK FOR POLISH Dorota Kwiatkowska-Ciotucha, MANUFACTURING SECTOR Urszula Załuska: PERFORMANCE ASSESSMENT 150 - 154 I Disaiminant TABLE l function quality measures Lambda Wilks' F(1,87) Significance level p Tolerance value X9 0.577 29.970 0.000 0.852 X3 0.459 6.176 0.015 0.768 X7 0.443 2.803 0.098 0.807 Xs 0.440 2.212 0.141 0.929 Source: Own computation. Lambda statistics have values from the [o; l] interval and its low value proves high discriminative power of the function. For the discriminative power assessment of the individual (k-th) variable the Wilks' partial lambda statistics l.k and tolerance value have been used. Partial lambda statistics measures the impact of the individual variable on the composite value of the statistics lambda l (how much will the value of statistics l increase provided k-th variable is driven out of the discriminant function). The tolerance value was computed as (1-R2) ofthe kth variable with all other variabies included in the model (the proportion of variance that is unique to the k-th variable). For the obtained discriminant function the obtained Wilks' statistics lambda l with corresponding higher - out of 52 manufacturing Groups only one was wrongly classified (i.e. 98.1% accuracy). In the case of 40 manufacturing Groups with negative financial result (net loss) the classification accuracy was lower i.e. 92.5%. Fuli assessment of the discriminant function quality requires that for validation a different data set is used, different than analytical one i.e. data set used for estimation of the function. As the validation data set a population of 181 manufacturing Classes was used. It was known, to which subpopulation the individual object (Class) was belonging. The subpopulation po consisted of 97 objects, and subpopulation pl consisted of 84 Classes. Cross-validation on the validation data set indicates additionally the robustness and applicability of the discriminant function. Classification matrix for validation data set is shown in the TABLE3 •.. = 0.42880 statistics F (4; 87) = 28.973, •• TABLE 3 P = 0.000). The additional model's characteristics are given in the TABLE2 ... They indicate low cross correlation of financial indicators used for the discriminant function construction as weli as the significance of used varia bles. Classification matrix shown in the TABLE2 ]to ]t1 Total 2 I Classification accutacy fur analytical data set Properly classified objects (in %) 98.1 92.5 95.7 Source: Own computation. 3TP • . p=0.56 p=O..:!.L 51 3 3. 54 I 38 Total accuracy for validation data set Properly classified objects (in %) 86.6 83.3 85.1 ]to ]tl p=0.54 p=0.46 13 84 70 14 98 83 Source: Own computation . •. illustrates the classification accuracy for the analytical data (Group level, data used for function estimation). There were 95.7% properly classified objects. For the objects with positive financial result (net profit) this accuracy was TABLE ]to ]tl I Classification I I Classification matrix shown in the Table 3 illustrates the classification accuracy for Class level, data used for validation of the discriminant function. There were 85.1% properly classified objects. The number of false classified objects was almost equal in both subpopulations. The value of discriminant function for majority of false classified objects was close to cut-off value (discriminant function value diriding objects into two subpopulations, in our case cut-off value was equal=o.acy). Although the discriminative power for the .. . n data set was lower of some ten per- 153 8 MER REVI)A / MER 5 (2003) 2: JOURNAL POROĆILA centage points, REPoltr.; / BERICHTE the constructed discńminant function based on financial indicators proved its applicability as a useful tool for prediction of profit generation ability. It may be used for each aggregation level i.e. Group, Class or even enterprise. there is improvement potential additional exercise has been made. A new discriminant function has been construct- ed. As the analytical data set the 181 objects (Classes level) was used. The new discriminant function consists of the same financial indicators as the previous one. Apart of the variables X9, X3, X7, X5, which were included in previous function, there was only one additional indicator included (X4 finished goods inventory uti- ratio - with lowest discrimination power). This new discriminant function classi- fies properly 864)10 objects. The improvement in comparison with previous version of discriminant function is very small, only some 1.4%. This means that there is no need to go to very low aggregation level while constructing dis- crimination function. The further research requires analysis of the discrimination accuracy for the individual enterprises as well as the possibility of the profit generation ability prediction. 154 Altman E. I. {I993]: Corporate financial distress and bankruptcy. A complete guide to predicting and avoiding distress and profiting from bankruptcy, Wiley, New York. Brigham E. F., Gapenski LiC. {2000]: Financial Management, The Dryden Press, Chicago. Gnanadesikan R. {1997]: Methods for Statistical Data Analysis of Multivariate Observations, znd ed., Wiley, New York. Kwiatkowska-Ciotucha D., Zal uska Dziechciarz f. {2002] : Manufacturing Branches in Poland - A Classification Attempt. In: Opitz O., Schweiger M. (eds.), Explanatory Data Analysis in Empirical Research, Springer, Berlin, PP.479-487. Tyran M. R. {1992j: The Vest-Pocket Guide to Business Ratios, u., To check whether lization Literature Prentice- Hall, New York. Izjava o poslanstvu in navodila avtorjem / Missionserklarung Mission Statement and Guidelines for Authors und Anweisungen fUr Autoren / http://www.mer-evrocenter.si/ V MER Reviji objavljamo prispevke s podroćja managementa in razvoja podjetij ter regij in drugih okolij, ki dosegajo potrebno vsebinsko in jezikovno raven obravnave in ki tudi formalno ustrezajo zahtevam za uvrstitev med: izvirne znanstvene ćlanke, pregledne znanstvene ćlanke, strokovne ćlanke, raziskovalna poroćila, recenzije, kritike in prikaze knjig. Izpolnjevanje formalnih kriterijev za objavo ugotavlja uredniśtvo, znanstveno in strokovno oceno prispevkov dajo recenzenti, jezikovno oceno o prispevku pa poleg recenzentov śe lektorji MER Revije. Prispevki naj bodo napisani v angleśkem jeziku ter opremljeni z naslovom, povzetkom in kljućnimi besedami v angleśćini. Avtor preda prispevek z vsemi prilogami na raćunalniśki disketi ali CD-jU. Tekst naj bo napisan v wordu za windows in urejen v datotekah: tekst prispevka, povzetek in kljućne besede, vsebinski po udarki, podatki o avtorju oz. avtorjih. Tako urejeno dokumentacijo s priloźenirna dvema izvodoma izpisov in portretno sliko pośljete na naslov uredniśtva. Za prispevke, posiane po elektronski pośti, uredniśtvo ne zagotavlja zanesljivega prejema in zanje ne prevzema odgovornosti. Reviji objavljeni prispevki niso honorirani. V MER Natanćnejśa navodila najdete spletni strani http./ /www.mer-evrocenter.si/ na nasi Naslov uredniśtva / Redaktionsanschrift / Editorial office address: MER Evrocenter Zalożba MER v Mariboru Koroska 113 b SI - 2000 Maribor Slovenija / Slowenien / Slovenia Tel.: +386 (0)2 229 85 85 Fax: +386 (0)2 229 85 81 . E-mail: [email protected] http://www.mer-evrocenter.si/ Im MER Iournal werden jene Beitrage veroffentlicht, die sich mit den Fragen des Managements und der Entwicklung der Unternehmen, Regionen und anderen Umgebungen auseinandersetzen und dabei die notige inhaltliche als auch sprachliche Ebene erreichen, damit man sie formai in eine der folgenden Kategorien einreihen kann: originelle wissenschaftliche Beitrage, ubersichtliche wissenschaftliche Beitrage, Fachbeitragc, Forschungsberichte, Rezensionen, kritische Auseinandersetzungen und Buchbesprechungen. Die Erfullung der formalen Kriterien fur die Veroffentlichung der Beitrage stellt die Redaktion fest, die wissenschaftliche und fachliche Bewertung nehmen die Rezensen ten vor, sprachlich werden die Beitrage - neben den Rezensenten - auch von den Lektoren des MER Iournals bewertet. Die Beitrage sollten in englischer Sprache verfasst und mit dem Titel, der Zusammenfassung und den Schlusselwortem versehen sein. In the MER [ournal we publish contributions from the field of management and development of enterprises and regions and other environments, which reach the required eontent and language level and formally fulfil editorial requirements and which also formally suit the requirements for placement among: • original scientific papers, • review scientific papers, • professional papers, • research reports, reviews, critics and book presentations. Implementation of formal criteria for publication of a contribution is carried out by the editor, scientific and professional evaluation of the contribution is done by reviewers; language evaluation of the contribution is reviewed and checked. Conttibutions must be written in the English language, furnished with abstract and key words in the English language. The author will submit the contribution to the MER Evrocentre with all enclosures on a disk or cd. The text should be written in Word for Windows and saved on a disk in the following files: Contribution, Abstract and Key words, Content Points, Data about the Author, Disk or cd should be marked with the surname of the author and title of the contribution and accompanied by rwo copies of the contribution and all enclosures, as well as a portrai JhOi:CXITa h, ~e editor =0;: ~:ee ~'e~;:o:.:o~ - ~~"-:..zcuxez: