Networks of Outrage (LONDON).key
Transcription
Networks of Outrage (LONDON).key
What are the topics of populist anti-immigrant movements on Facebook? Cornelius Puschmann, Julian Ausserhofer, Markus Hametner, Noura Maan Humboldt Institute for Internet and Society/Der Standard Social Media and Society Conference Session 5B Goldsmiths, University of London 13 July 2016 !Advertisements! My employer(s): • Alexander von Humboldt Institute for Internet and Society, Berlin • Hans-Bredow-Institute for Media Research, Hamburg Conference: • Association of Internet Researchers’ conference (AoIR 2016) 5-8 October 2016, Berlin Project: • "Networks of Outrage: Mapping the emergence of new extremism in Europe" (Alexander von Humboldt-Institut for Internet and Society, Berlin & Der Standard, Vienna) period: January-October 2016 funded by VolkswagenStiftung 2 Theory: NPS and counter publics Networked public sphere • The public sphere is characterized by the interrelations of politics, civil society and (eventually) mass media (Habermas, 1962/1991) • The networked public sphere (NPS) takes a reconfigured digital media environment into account (Benkler, 2006) • The NPS emerges through shared practices (Boyd, 2010) and exists at the intersection of technology and sociality • It has been argued that the NPS is affective (Papacharissi, 2014) and (increasingly?) subject to forms of "political turbulence" (Margetts et al, 2016) 4 Counter-publics • Counter-publics were originally conceived as a counterweight to the overbearing/dominating state • Counter-publics in social media emerge and dissipate rapidly, in addition to being increasingly radical: "the mass-media public sphere will become more open to radical opinion as a result of the coincidence of societal crises and the growth of virtual counter-public spheres" (Downey and Fenton, 2003, p. 199) ➡ How can the discourse of populist social media counter-publics be characterized? 5 Our case: PEGIDA PEGIDA: a networked populist movement • Patriotic Europeans Against the Islamisation of the West (PEGIDA) • anti-muslim, anti-immigration, antiglobalization movement • founded in Dresden in late '14, Facebook group launched in early '15 • franchises have been formed in cities across Germany and abroad (NL, UK, IE, AU, …) • strong courtship by the AfD (new right-wing party, similar to UKIP) 7 PEGIDA on social media • PEGIDA is very active on social media (205k likes to the Facebook page pegidaevdresden) • PEGIDA’s Facebook page primarily captures discourse in support of the movement • Twitter more mixed — discourse and counter-discourse, English vs. German 8 First study: PEGIDA's sources on Twitter (Puschmann et al, 2016) • manual content analysis: coded for stance towards PEGIDA and source type • non-traditional news sources, blogs, and social media are favored by the supporters of PEGIDA (77% of all URLs) • traditional news sources are favored by its opponents (65% of all URLSs) 9 Second study: PEGIDA on Facebook • January 2015 - May 2016 • 3,400 posts • 415,000 comments • 1,460,000 likes • weekly rally attendance: 21,000 (January '15) - 2,000 (July '16) • Facebook posts Facebook comments more activity from the organizers, but less engagement? 10 Attendance at weekly rally Method: Correlated topic model (CTM) Texts as feature spaces 12 Correlated topic models/LDA (Blei et al, 2003/Blei, 2012) 13 Blei, 2012, p.78 Results: Topics in comments by day 1.0 0.6 0.4 0.2 1.0 0.0 0.2 1.0 0.0 0.4 0.6 0.8 frauen−köln−polizei 0.8 afd−maas−partei−spd 0.2 0.2 0.0 0.0 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 0.6 0.4 0.2 1.0 0.0 0.8 0.6 0.2 0.0 dresden−grüße−stolz−super 0.2 0.4 0.8 0.6 0.4 0.2 1.0 0.0 0.8 0.6 europa−islam−muslime−religion flüchtlinge−geld−mann 0.8 1.0 0.8 0.6 0.4 0.2 1.0 0.0 0.8 0.6 0.2 1.0 0.0 0.4 1.0 0.8 0.6 0.4 0.2 1.0 0.0 0.8 0.6 0.2 1.0 0.0 0.4 krieg−putin−regierung−russland 0.0 afd−europa−flüchtlinge−türkei flüchtlinge−pack−politik−politiker flüchtlinge−politiker−regierung−ungarn demo−dresden−lügenpresse−medien 0.4 1.0 0.8 0.6 0.4 0.2 1.0 0.0 0.6 0.4 0.2 1.0 0.0 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 geld−kinder−schule arbeiten−flüchtlinge−geld 0.2 europa−flüchtlinge 0.4 1.0 0.6 0.4 0.2 1.0 0.0 0.4 0.6 0.8 asylanten−grünen 0.2 1.0 0.0 0.8 0.6 linken−politiker−recht−wählen afd−frauen−islam−kinder 0.0 0.4 familie−flüchtlinge−kinder−tochter 0.8 politik−politiker−recht 0.8 1.0 0.0 0.2 0.4 0.6 0.8 bürger islam 1.0 0.6 0.4 0.2 1.0 0.0 0.6 0.8 frauen−köln−polizei 0.4 0.2 0.2 1.0 0.0 1.0 0.0 0.8 afd−maas−partei−spd 0.2 0.2 0.0 0.0 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 0.6 0.4 0.2 1.0 0.0 0.8 0.6 0.2 dresden−grüße−stolz−super 0.0 0.4 flüchtlinge−geld−mann 0.8 1.0 0.8 0.6 0.4 0.2 1.0 0.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4 0.2 1.0 0.0 0.8 0.6 0.4 0.2 1.0 0.0 0.8 europa−islam−muslime−religion 0.2 afd−europa−flüchtlinge−türkei 1.0 0.0 0.2 0.4 0.6 0.8 flüchtlinge−politiker−regierung−ungarn demo−dresden−lügenpresse−medien 0.6 0.6 0.4 0.2 1.0 0.0 0.4 0.6 0.8 geld−kinder−schule 0.2 1.0 0.0 0.8 0.6 krieg−putin−regierung−russland 0.0 0.4 flüchtlinge−pack−politik−politiker 0.2 europa−flüchtlinge arbeiten−flüchtlinge−geld From steady and recurring topics… 0.4 1.0 0.8 0.6 0.4 0.2 1.0 0.0 1.0 0.6 0.4 0.2 1.0 0.0 0.4 0.6 0.8 asylanten−grünen 0.2 1.0 0.0 0.8 0.6 linken−politiker−recht−wählen afd−frauen−islam−kinder 0.0 0.4 familie−flüchtlinge−kinder−tochter 0.8 politik−politiker−recht 0.8 1.0 0.0 0.2 0.4 0.6 0.8 bürger islam 1.0 0.6 0.4 0.2 1.0 0.0 0.2 1.0 0.0 0.4 0.6 0.8 frauen−köln−polizei 0.8 afd−maas−partei−spd 0.2 0.2 0.0 0.0 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 0.6 0.4 0.2 1.0 0.0 0.8 0.6 0.2 0.0 dresden−grüße−stolz−super 0.2 0.4 0.8 0.6 0.4 0.2 1.0 0.0 0.8 0.6 europa−islam−muslime−religion flüchtlinge−geld−mann 0.8 1.0 0.8 0.6 0.4 0.2 1.0 0.0 0.8 0.6 0.2 1.0 0.0 0.4 1.0 0.8 0.6 0.4 0.2 1.0 0.0 0.8 0.6 0.2 1.0 0.0 0.4 krieg−putin−regierung−russland 0.0 afd−europa−flüchtlinge−türkei flüchtlinge−pack−politik−politiker flüchtlinge−politiker−regierung−ungarn demo−dresden−lügenpresse−medien 0.4 1.0 0.8 0.6 0.4 0.2 1.0 0.0 0.6 0.4 0.2 1.0 0.0 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 geld−kinder−schule arbeiten−flüchtlinge−geld 0.2 europa−flüchtlinge 0.4 1.0 0.6 0.4 0.2 1.0 0.0 0.4 0.6 0.8 asylanten−grünen 0.2 1.0 0.0 0.8 0.6 linken−politiker−recht−wählen afd−frauen−islam−kinder 0.0 0.4 familie−flüchtlinge−kinder−tochter 0.8 politik−politiker−recht 0.8 1.0 0.0 0.2 0.4 0.6 0.8 bürger islam 1.0 0.6 0.4 0.2 1.0 0.0 0.2 1.0 0.0 0.4 0.6 0.8 frauen−köln−polizei 0.8 afd−maas−partei−spd 0.2 0.2 0.0 0.0 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 0.6 0.4 0.2 1.0 0.0 0.8 0.6 0.2 0.0 dresden−grüße−stolz−super 0.2 0.4 0.8 0.6 0.4 0.2 1.0 0.0 0.8 0.6 europa−islam−muslime−religion flüchtlinge−geld−mann 0.8 1.0 0.8 0.6 0.4 0.2 1.0 0.0 0.8 0.6 0.2 1.0 0.0 0.4 1.0 0.8 0.6 0.4 0.2 1.0 0.0 0.8 0.6 0.2 1.0 0.0 0.4 krieg−putin−regierung−russland 0.0 afd−europa−flüchtlinge−türkei flüchtlinge−pack−politik−politiker flüchtlinge−politiker−regierung−ungarn demo−dresden−lügenpresse−medien 0.4 1.0 0.8 0.6 0.4 0.2 1.0 0.0 0.6 0.4 0.2 1.0 0.0 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 geld−kinder−schule arbeiten−flüchtlinge−geld 0.2 europa−flüchtlinge 0.4 1.0 0.6 0.4 0.2 1.0 0.0 0.4 0.6 0.8 asylanten−grünen 0.2 1.0 0.0 0.8 0.6 linken−politiker−recht−wählen afd−frauen−islam−kinder 0.0 0.4 familie−flüchtlinge−kinder−tochter 0.8 politik−politiker−recht 0.8 1.0 0.0 0.2 0.4 0.6 0.8 bürger islam 1.0 0.6 0.4 0.2 1.0 0.0 0.6 0.8 frauen−köln−polizei 0.4 0.2 0.2 1.0 0.0 1.0 0.0 0.8 afd−maas−partei−spd 0.2 0.2 0.0 0.0 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 0.6 0.4 0.2 1.0 0.0 0.8 0.6 0.2 dresden−grüße−stolz−super 0.0 0.4 flüchtlinge−geld−mann 0.8 1.0 0.8 0.6 0.4 0.2 1.0 0.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4 0.2 1.0 0.0 0.8 0.6 0.4 0.2 1.0 0.0 0.8 europa−islam−muslime−religion 0.2 afd−europa−flüchtlinge−türkei 1.0 0.0 0.2 0.4 0.6 0.8 flüchtlinge−politiker−regierung−ungarn demo−dresden−lügenpresse−medien 0.6 0.6 0.4 0.2 1.0 0.0 0.4 0.6 0.8 geld−kinder−schule 0.2 1.0 0.0 0.8 0.6 krieg−putin−regierung−russland 0.0 0.4 flüchtlinge−pack−politik−politiker 0.2 europa−flüchtlinge arbeiten−flüchtlinge−geld …to busty and resurgent topics 0.4 1.0 0.8 0.6 0.4 0.2 1.0 0.0 1.0 0.6 0.4 0.2 1.0 0.0 0.4 0.6 0.8 asylanten−grünen 0.2 1.0 0.0 0.8 0.6 linken−politiker−recht−wählen afd−frauen−islam−kinder 0.0 0.4 familie−flüchtlinge−kinder−tochter 0.8 politik−politiker−recht 0.8 1.0 0.0 0.2 0.4 0.6 0.8 bürger islam Clustering daily topics by similarity flüchtlinge−politiker−regierung−ungarn asylanten−grünen geld−kinder−schule flüchtlinge−pack−politik−politiker linken−politiker−recht−wählen afd−maas−partei−spd politik−politiker−recht dresden−grüße−stolz−super europa−flüchtlinge krieg−putin−regierung−russland bürger afd−europa−flüchtlinge−türkei arbeiten−flüchtlinge−geld flüchtlinge−geld−mann frauen−köln−polizei afd−frauen−islam−kinder demo−dresden−lügenpresse−medien europa−islam−muslime−religion islam familie−flüchtlinge−kinder−tochter 200 150 100 20 50 0 Results • Aggregating comments by day/week seems promising • CTM topics on the PEGIDA page combine social concerns (citizenship, work, money, children), concrete events (cologne), domestic (spd, maas, linken, grüne) and foreign politics (turkey, hungary, russia) • There is further analytic potential in: • the expression of topics across documents • the degree of similarity of topics and documents • the relation of metadata (user, pre/post-event) to topics 21 Thank you for listening! flickr/barnyzk References Benkler, Y. (2006). The wealth of networks: How social production transforms markets and freedom. New Haven, CT: Yale University Press. Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77. http://doi.org/ 10.1145/2133806.2133826 Blei, D. M., & Lafferty, J. D. (2007). A correlated topic model of Science. The Annals of Applied Statistics, 1(1), 17– 35. http://doi.org/10.1214/07-AOAS114 Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022. http://doi.org/10.1162/jmlr.2003.3.4-5.993 Boyd, D. M. (2010). Social network sites as networked publics: Affordances, dynamics, and implications. In Z. Papacharissi (Ed.), A networked self: Identity, community, and culture on social network sites (pp. 39–58). London: Routledge. http://doi.org/10.1162/dmal.9780262524834.119 Downey, J., & Fenton, N. (2003). New media, counter publicity and the public sphere. New Media & Society, 5(2), 185–202. http://doi.org/10.1177/1461444803005002003 Habermas, J. (1991). The structural transformation of the public sphere: An inquiry into a category of bourgeois society. Cambridge, MA: MIT Press. Margetts, H., John, P., Hale, S., & Yasseri, T. (2016). Political turbulence: How social media shape collective action. Princeton, NJ: Princeton University Press. Papacharissi, Z. (2014). Affective publics: Sentiment, technology, and politics. Oxford: Oxford University Press. Puschmann, C., Ausserhofer, J., Maan, N., & Hametner, M. (2016). Information laundering and counter-publics: The news sources of islamophobic groups on Twitter. In International AAAI Conference on Web and Social Media. Menlo Park, CA: AAAI Press. Retrieved from http://www.aaai.org/ocs/index.php/ICWSM/ICWSM16/paper/view/ 13224/12858 23 Results: Topics by user Second study: PEGIDA on Facebook Facebook comments per user (log scale). Facebook likes per post over time. Facebook comment length in characters (log scale). 25 User-topic heatmap 1 2 arsch europa bürger gutmenschen dresden leute friedlich leute menschen liebe medien merkel menschen politik polizei stadt ungarn wahrheit Heatmap and cluster dendrogram of 10 topics across 100 users (random sample, top 5% by number of posts >=150 characters) 26 6 7 anfang europa flüchtlinge gutmenschen islam kultur länder merkel politik regierung spd asylanten flüchtlinge grenzen gute heimat länder menschen merkel politiker raus recht regierung richtig sachsen 3 4 5 berlin bürger europa medien merkel tag europa flüchtlinge flüchtlingen islam kultur mädchen menschen muslime religion syrien terroristen frauen geld kinder leute mann männer menschen merkel pack regierung tag 8 9 10 afd deutscher ändern euro gute frauen gott afd kinder hand kopf asylanten cdu kosten krieg gewalt linke lügen nazi grünen parteien politik islam presse politiker inke linken recht polizei merkel regierung problem muslime sicherheit spd regierung recht spd wählen schuld staat wahrheit verloren zukunft verstehen Weekly topics as hierarchical clusters Hierarchical cluster dendrogram using Ward's method showing the degree of similarity among topics. Basis is Euclidean distance, calculated from the log likelihood scores of terms (the beta statistic) within topics. 27 1 2 3 4 5 flüchtlinge merkel pack politiker afd europa islam merkel dresden islam medien muslime politik politiker dresden flüchtlinge merkel dresden merkel 6 7 8 9 10 europa flüchtlinge islam merkel paris regierung terroristen dresden islam asylanten flüchtlinge geld politiker afd europa flüchtlinge merkel europa islam merkel 11 12 13 14 15 islam muslime politiker dresden flüchtlinge merkel dresden leute menschen frauen köln merkel polizei flüchtlinge merkel 16 17 18 19 20 kinder merkel politiker dresden flüchtlinge menschen merkel ungarn flüchtlinge islam kinder leute politik politiker raus recht regierung dresden europa flüchtlinge menschen merkel regierung islam menschen politik politiker Terms associated with twenty topics in the corpus (log likelihood >= 0.005). Text mining workflow read tokenize remove punctuation/numbers/whitespace remove stopwords (stem) Build DTM/TDM 28 Latent Dirichlet Allocation (Blei et al, 2003/Blei, 2012) • topics as feature bundles with distributions across texts • variable number of k topics • identifies latent topical differences • correlated topic model algorithm (CTM) allows for systematically correlated topics 29