ACTA SCIENTIARUM MATHEMATICARUM
Transcription
ACTA SCIENTIARUM MATHEMATICARUM
ACTA UNIVERSITATIS SZEGEDIENSIS ACTA SCIENTIARUM MATHEMATICARUM ADIUVANTIBUS B. CSÁKÁNY S. CSÖRGŐ E. DURSZT F. GÉCSEG L. HATVANI A. HUHN L. KÉRCHY L. MEGYESI F. MÓRICZ P. T. NAGY J. NÉMETH L. PINTÉR G. POLLÁK L. SZABÓ I. SZALAY Á. SZENDREI B. SZ.-NAGY K. TANDORI V. TOTIK REDIGIT L. L E I N D L E R TOMUS 50 FASC. 3—4 S Z E G E D , 1986 INSTITUTUM BOLYAIANUM UNIVERSITATIS SZEGEDIENSIS A JÓZSEF ATTILA TUDOMÁNYEGYETEM KÖZLEMÉNYEI ACTA SCIENTIARUM MATHEMATICARUM CSÁKÁNY BÉLA CSÖRGŐ SÁNDOR DURSZT ENDRE GÉCSEG FERENC HATVANI LÁSZLÓ HUHN ANDRAS KÉR.CHY LÁSZLÓ MEGYESI LÁSZLÓ MÓRICZ FERENC NAGY PÉTER NÉMETH JÓZSEF PINTÉR LAJOS POLLÁK GYÖRGY SZABÓ LÁSZLÓ SZALAY ISTVÁN SZENDREI ÁGNES SZŐKEFALVI-NAGY BÉLA TANDORI KÁROLY TOTIK VILMOS KÖZREMŰKÖDÉSÉVEL SZERKESZTI LEINDLER LÁSZLÓ 50. KÖTET FASC. 3—4 S Z E G E D , 1986 J Ó Z S E F A T T I L A T U D O M Á N Y E G Y E T E M BOLYAI I N T É Z E T E Acta Sei. Math., 50 (1986), 253—286 Abstract Galois theory and endotheory. I MARC KRASNER Introduction Let us consider the situation in the classical Galois theory. Then we have a field extension K/k which is either normal and algebraic or algebraically closed. A permutation a: K—K is called an automorphism of K/k if, for each a,b£K and agfc, we have (1) o-(a-\-b) = o-a+a-b, (2) and (3) a • ab = (<7 • a)(<7 • b), a • a = a. Observe that the assumption "bijective" can be replaced by the weaker one "surjective", i.e., the automorphisms of K/k are just the surjective mappings a: K-+K satisfying (1), (2) and (3). This observation follows readily from the fact that fields have no non-trivial ideals. The automorphisms of K/k are known to form a group under the composition of mappings. This group, denoted by G(K/k), is called the Galois group of K/k. Let A be a subset of ^ a n d let G(K/k; A) denote {o£G(K/k); (\/a£A)(<r • a=a)}, which is a subgroup of G{K/k). Then Ak={a£K; (y<r£G(K/k; A))(<r-a=a)}, the set of all elements in .fiT preserved by each a£G(K/k\ A), is called the Galois closure of A. The classical Galois theory asks and answers the following two questions: (a) How to characterize Ak in terms of A and the field extension structure (K; x+y, xy, k) of K/kl Answer: Ak is the closure of A\Jk with respect to the operations x+y, xy (defined on KxK), JC-1 (defined on AT\{0}) and, if the characteristic p of k is not zero, \x (defined on K"= {ap; a£K}). Received January 6, 1982- The original version of the paper was revised by the referee. The author could not be asked to agree to the.modifications as he passed away in 1985. l M. Krasner 254 (b) Which subgroups of G(K/k) are "Galoisian", i.e. of the form G(K/k; A) for some AQK? When the degree [K:k] is finite then the answer is: all subgroups. Conditions (1), (2) and (3) in defining automorphisms seem heterogeneous at the first sight since (1) and (2) concern the preservation of some binary operations while (3) concerns the preservation of some elements. Yet, these conditions turn out to be of the same nature when formulated in terms of relations. There are two manners of defining the automorphisms of K/k in this way: I. An automorphism of K/k is a permutation a of K such that (a) a + b = c oa (fi) ab = co{a- • a + a • b = a • c, a)((x -b) = a-c, and (y) for each a£fc, a = a o a • a = a. We can formulate Conditions (a), (fi) and (y) by saying that a preserves the relations x+y=z, xy—z and, for each a£k, x=a, where a is said to preserve a, say ternary, relation Q if for any triple ( a , b , c ) £ K 3 we have (a, b, C)£QO «=>(<7 • a, a • b, a • c)6 g. II. An automorphism of K/k is a self-surjection n of K such that (a') a + b = c => (i- a + fi-b = /i-c, (f}') ab = c =>({i-a)(ji-b) = ¡i- c, and (y') for each a£fc, a — a=>n-a — a. If we drop the condition that ¡i is surjective and consider self-mappings of K satisfying (a')> (/O and (y') then we obtain the notion of endomorphisms of K/k. It is not hard to show that all the endomorphisms of K/k are automorphisms, provided K/k is normal and algebraic. But in the general case the endomorphisms of K/k form only a monoid, i.e. a unitary semigroup, D(K/k) with respect to the composition of mappings. This monoid always contains 1 K , the identical mapping of K. As previously, D{K/k, A) will denote the set {5£D(K/k); (\/a£A)(8-a=a)}, which is a submonoid of D(K/k). Further, it can be proved that {a£K; (\/8£D(K/k)) ( < 5 i s the closure of AUk with respect to the operations x +y, xy, x~x p and, if p9±0, Yx, as before. We can formulate Conditions (a'), (/O and (y') by saying that 5 stabilizes the relations x+y—z, xy=z and, for each a(Lk, x—a, i.e. 5 transforms every system of values satisfying any of these relations into a system of values satisfying the same relation, but nothing is required for systems of values not satisfying these relations. In both of these manners we have a particular case of the following general situation: given a relational system, i.e. a base set A (here A=K) and some rela- M.Krasner:Abstract Galois theory and endotheory. I tions on it (here x+y=z, xy=z and x=a for a£k). (In the sequel relational systems will be referred to as structures though the term "structure" has a more general meaning in the literature.) We consider the group G of all permutations of the base set preserving the given relations and the monoid D of self-mappings of this set stabilizing these relations. Then in Question (a) we asked what was the set of relations of a certain form (in our case x=a for a^K) preserved by all <r£G and stabilized by all SdDl The answer was that it is the set of relations x=a where a belongs to the closure of A(Jk with respect to some operations arising from the relations x+y=z and xy=z. The above considerations naturally raise the idea of considering any first order structure E/R where J? is a set of (not necessarily finitary) relations on a base set E, the automorphism group alias Galois group G of E/R (consisting of all permutations of E that preserve each r £-/?), and the endomorphism monoid alias stability monoid of E/R (consisting of all self-mappings of E stabilizing each r£R). Then the question analogous to (a) is how to characterize the relations on E that are preserved by all a£G or that are stabilized by each <5£D, respectively. Of course, we want the answer be somewhat similar to that 'in the classical Galois theory. Therefore the answer should be (and, in fact, will be) that they are the relations belonging to the closure of R with respect to some appropriate operations. But, first of all, all such relations do not form a set because any set occurs among their argument sets. So, at least in the first study, we have to limit the argument sets of the considered relations so that we fix a set X° (of sufficiently large cardinality) and consider the relations whose argument sets are subsets of X°. On the other hand, we cannot hope in this general situation that the sets R(X°) = {r; rQ Ex for some XQX° and each <r£G preserves r} and R(X°) = {r; rQ Ex for some X Q X° and each S£D stabilizes r} are the closures of R with respect to some operations on the base set E arising from the relations r£R. A priori, it may be hoped only that R(X°) and R(X°) are closures of R with respect to some set theoretical operations on relations and these operations do not depend on the particular choice of R. Such is the case, indeed: there exists a family of such operations, called fundamental operations, so that R(X°) is the closure (within the set of relations with argument sets included in X°) of R with respect to these operations while R(X°) is the closure of R with respect to a part of this family, called the family of direct fundamental operations. The theory concerning the preservation of relations by permutations of the base set and the Galois group is called abstract Galois theory while that dealing with the stability of relations by arbitrary self-mappings of E and with the stability monoid is called abstract Galois endotheory. Although Question (a) has the same answer for both 256 M. Krasner theories in the classical Galois theory, it has quite different answers in the general case. Question (b) in the general case asks: which permutation groups on E are the Galois groups of appropriate structures E/R and which monoids of self-mappings of E are endomorphism monoids of some structures E/R1 The answer is that any group and any monoid on E are such. Once this study with a fixed X° has been done we can introduce the classes R and R of all relations preserved by each o£G and stabilized by each d£D, respectively, and we can study them in a non-axiomatic way. In the present paper we will do it roughly within the frame of Bernays—Godel axiomatic set theory albeit this is not the only possibility. On the deep analogy of the terminology of classical Galois theory, the classes R and R will be called abstract fields and abstract endofields, respectively. With some precaution, it is possible to consider and to study certain mappings between them. In particular, a bijection of an abstract field or endofield onto another one (with a different base set in general) which commutes with all funda-: mental operations is called an isomorphism. It will be proved that any isomorphism between abstract fields or, under certain conditions, between abstract endofields is of a special form called transportation of structures. After these so-called isomorphism theorems the notion of abstract endofield homomorphisms is also intror duced and a much more difficult homomorphism theorem is proved in order to characterize these homomorphisms. Let k be an abstract endofield (which may be, in particular, an abstract field), and let A be a subset of the corresponding base set E. Denote by k(A) the endoextension of k by the set of relations {x=a; a£A}, i.e., the abstract endofield generated by k\J{x—a; a£A}. Then k(A) does not depend on the particular choice of x. Such extensions k{A) of k are called its set extensions, and their study is called abstract Galois set theory. A theorem is proved, which describes the relations in k(A) in terms of A and the relations in k. As a consequence of this theorem, a family of partial operations on E is defined from k such that Ak={e~, (x=e)£k(A)}, the so-called rationality domain of k(A), is just the closure of A with respect to these partial operations. This result can be considered as the first step of deducing the answer to (a) in the classical Galois theory from that given in the general Galois theory. The second step is the theory of "eliminating structures'-, which will not be exposed in this paper. The third step starts from the main result of the second one and allows us to understand and to foreseee the deep reasons why Ak is the closure of AUk with respect to x+y, xy, x~x and \x in the classical Galois theory. While dealing with the theory concerning R(X°) and R(X°) then X° is of sufficiently large cardinality means that card X° ^card E. In particular, when the base set E is finite, we can-take a finite X°. Then the fundamental operations become the realisations of operations in the (first order) predicate calculus with equality for M.Krasner:Abstract Galois theory and endotheory. I O X as the set of object variables on the model E/R. Similarly, the direct fundamental operations are just the realizations of a "strongly positive" part of this calculus, which is generated by \J, &, 3x for x£X°, adjunctions of variables belonging to Xo, equalities x¡=xj (x,, XjZX0, x^x/), and the identity. So in the general case the fundaméntal operations can be considered as infinitary generalizations of the previous finitary operations. Except for certain points our approach is independent from the axiom of choice, but this is not the cáse for the afore-mentioned theory of "eliminating structures". In Section 1 we give the precise notions of points, relations, structures^ etc., define the action of mappings of the base set on them, and introduce the Galois group, the stability monoid and their "invariants". The fundamental operations are defined and studied in Section 2. In Section 3 we study the interaction between mappings (and, in particular, self-mappings) of base sets and fundamental operations. In Section 4 we prove the main theorems, i.e. the equivalence and existence theorems, of the abstract Galois theory and endotheory, but considering only relations whose argument sets are included in some fixed set Xo such that card Xo ^ Scard E. In Section 5 we introduce the abstract fields and endofields, study their mappings and, in particular, prove isomorphism and homomorphism theorems. Finally, Section 6 is devoted to the abstract Galois set theory. Historical remarks. I found the abstract Galois theory during the summer vacation of 1935, submitted it to the jubelee volume of Journal des mathématiques purés at appliquées dedicated to J. Hadamard in 1936, and this first exposition [1] of the theory appeared in 1938. It is the following question that was the intuitive origin of this research: Let zlt..., z„ be the roots of a polynomial f ( X ) of degree n over some base field k, and let G be the Galois group o f f ( X ) \ how can the system of equations satisfied by the «-tuples (cr - z ^ ...,A-Z„) (<t6G), and only by these «-tuples, be obtained from the rational relations among the roots zlt ..., z„? (This situation is somewhat obscured in the usual treatments of the classical Galois theory because of the use of the so-called "Galois resolvent", i.e. the replacement of the «-tuple (z l5 ..., z„) by a convenient linear combination of z„ and, in more modern treatments, because of the emphasis put on the field structure and the normal case.) This question led me to the fundamental operations and gave me the key idea to the proof of the equivalence theorem, i.e., the idea of considering the relation r * (cf. Section 4, later). This theory, as elaborated in a set theoretical frame, had certainly no precursors. Yet, it might be connected with some vague ideas or projects expressed before in much narrower contexts. A rather enigmatic phrase in the last letter by Galois to his friend Auguste Chevalier ("Tu sais, mon cher Auguste que ces sujets ne sont pas les seuls que j'aie explores. Mes principales méditations depuis quelque temps 258 M. Krasner étaient dirigées sur l'application à l'analyse transcendante de la théorie de l'ambiguïté. Il s'agissait de voir à priori dans une relation entre les quantités ou fonctions transcendantes quelles échanges on pouvait faire, quelles quantités on pouvait substituer aux quantités données sans que la relation pût cesser d'avoir lieu. Cela fait reconnaître tout de suite l'impossibilité de beaucoup d'expressions que l'on pourrait chercher. Mais je n'ai pais le temps et mes idées ne sont pas bien développées sur ce terrain, qui est immense") suggests that he had a vague feeling that his theory for roots of polynomial equations is, maybe, only a particular case of a much wider theory, where the polynomial relations among roots are replaced by some more or less arbitrary relations on convenient domains. Clearly, these domains and relations could be only as general as conceivable for him and his contemporaries. However, the mathematics of that time was not set theory but a science of magnitudes, i.e., of real and complex numbers and sufficiently smooth functions (in the quoted phrase Galois speaks, among others, of the "quantités ou fonctions transcendantes"), and the relations used in this mathematics were differential, functional, etc. equations and systems of equations. Some people see, in this phrase, an allusion to what he knew about abelian functions. But if it had been so, he would not have spoken of his "méditations" and he certainly would not have written "cela fait reconnaître tout de suite l'impossibilité de beaucoup d'expressions ..."; in fact, he would have spoken rather of the results known by him. Cayley and Silvester's theory of invariants may be considered as a vague precursor of the abstract Galois theory in some very particular case. Indeed, if A is an invariant of some "generic" form (i.e., its coefficients are independent variables), a is a value of A, and the set of all points (in some field) of all projective varieties for which a is the value of A is assigned to a, then this set of points is preserved by all elements of the projective group or some of its subgroups. So, an invariant A can be interpreted by the set {rAta} consisting of relations of the form rA a which are invariant with respect to some (very particular) groups. Remarkably enough, Cayley raised the problem of determining all the invariants. Yet, he could not consider the definition of these groups as that of Galois groups with respect to a system of invariants. The "Galois type theories" which appeared for differential equations at the end of the nineteenth century (S. Lie, Picard—Vessiot, etc.) can hardly be considered as the beginning of the abstract Galois theory because they were developed, like the classical Galois theory, by using quite particular methods, specific for each case and without any more general spirit. Nevertheless they created a vague feeling that Galois' ideas were, in some unknown manner, applicable in a wider framework. In some very faint sense the abstract Galois theory for arbitrary (first order) structures can be considered analogous to F. Klein's "Erlangener Programm" for M.Krasner:Abstract Galois theory and endotheory. I geometries (1872), though the former goes far beyond this program. Klein's main idea is that a geometry is a system of "all invariants" of an "arbitrary" permutation group of a "Mannigfaltigkeit" ("variety"). As no set theory existed that time (the first results on abstract sets were obtained by Cantor in 1873), Klein could not express his ideas in a precise manner. In particular, he did not give any precise meaning of "all invariants" of "Mannigfaltigkeit" (which seems to be a riemannian variety or something stronger), and his "arbitrary" groups are far from being arbitrary as their elements must be automorphisms of the structure of "Mannigfaltigkeit". Anyhow, though the abstract Galois theory deals with the duality between permutation groups and classes of their invariant relations, it is much more than a simple idea of this duality. In my first paper [1] on abstract Galois theory the fundamental operations are defined almost in the same way as in this paper, but in a rather misleading manner: instead of arbitrary argument sets canonical argument sets, indexed by ordinals, are used, whence the axiom of choice is widely used without real necessity. In later publications ([2] and other papers, which I do note quote) I only formulated the results of the theory in a clearer form by using canonical identifications (cf. Section 3 later), but without giving new proofs because of those in [1] being easily adaptable to the new manner. There the essential part of the theory is developed for relations with a fixed, sufficiently large (i.e., of cardinality not smaller than card E) argument set X. The defect of this approach is that certain rather complicated and not very intuitive fundamental operations (called "mutations") have to be considered as well. That is why I return to the first manner, but without its past imperfections. I found the abstract Galois endotheory, if my memory is good, in 1964, and formulated it in printed form first in the paper [3] of the International Congress of Mathematicians, Moscow, 1966. I found the first but not-completely true version of the homomorphism theorem of this theory in 1966, before the above-mentioned congress. The gap in its proof was remarked by some my 3rd year students in 1973, After having tried to fill this gap unsuccessfully I found the necessary modification which made the theorem correct, i.e., I replaced norms by regular pseudo-norms, and published it in [5]. Yet, until the present paper, the abstract Galois endotheory (even without its homomorphism theorem) has never been published with complete proofs. Only some rough ideas of certain proofs were indicated in [4]. The idea of abstract Galois set theory (in relation with eliminative structures and the passage from the abstract Galois theory to the classical one) goes back as early as to the end of thirties. However, the proof of its main theorem was put in a clear form only in the first years after the second world was (1946? 1947?). This theorem and the characterization of rationality domains (in case of abstract fields) were formulated in several papers, but never with proofs. I exposed the abstract M. Krasner 260 Galois theory and, after it had come to existence, the abstract Galois endotheory in my Seminar (1953—1959) and in my courses for 3rd year students (Clermont-F d , 1960—1965, and Paris, 1965—1980). Terminology and notations. We shall use the ordinary notations of set theory and mathematical logic. The set difference {x£A; x$B} will be denoted (in Russian manner) by A\B, though personally I prefer the notations A- -B or A~\B to A\B as they cannot interfere with algebraic notations. When a£A, AQA and <p: A—B is a mapping, the <p-image of a and A will be denoted by <p • a and <p • A, respectively. This will be the only mathematical use of the dot " •". The product of two objects, say x and y, will be denoted by xy. Similarly, the composition of mappings [// and (p will be denoted by cpij/ or sometimes, following Bourbaki's notation, by cpoij/. The mappings i/r C— D and cp: A—B are considered composable iff q>-A<^C; in this case \p(p (or \J/oq>) is the mapping A—D such that \j/(p-a= =[j/ -(q> -a) for every a£A. If <p\ A—B is a mapping, a£A and b=q>-a, then we write <p: a—b if a is an arbitrary element of A while cp: a<-*b is reserved for the case of fixed a. The equivalence relation {(x,y); cp-x=(p-y} on A, referred to as the kernel of <p in the literature, will be called the type of cp and will be denoted by T((p). If (p: A —B is a mapping and C is an equivalence relation oh A then cp is said to be compatible with C iff T(<p) is thicker than C, i.e., iff x=y (mod C ) always implies x=y (mod T(<p)). Similarly, a mapping y: A—C is called compatible with a mapping /?: A—B iff it is compatible with i.e., if for every a£A the image y • a depends only on /? • a. Let F and G be two families of subsets of A and B, respectively, and suppose F and G are complete semilattices with respect to the union U • Consider a mapping F—G. This mapping is said to be additive if <P- (J X— IJ <P-X holds for every subfamily F of F, i.e., if commutes with the operation U. If F—G is additive and, in addition, F is the family of all subsets of some subset A of A, then 4> is called A-hyperpunctual. Then we have <P • X= IJ <P • {*} for XQ A, and we shall write 4>-x instead of If F—G is an /4-hyperpunctual mapping and the image 0 • {*} of any singleton in F is a singleton (denoted by {<p • x}) in G, then <P is called punctual and the mapping A—B, x—cp • x is called the point-, mapping of <P. If q> is injective, 4> is called an injectively punctual mapping. Then <p induces a bijection (p° of A onto <p •A'ZB, and if is the mapping of the family P(A) of all subsets of A onto P{<p • A) which prolongs (p° (i.e., induced by <P), then clearly commutes with all boolean operations. So, if P is a subfamily of P{A), we have (J X= IJ X= U U * X€P X€P XZP XIP XIP 0 . N X = $°XTP XIP N XIP 0--3T M.Krasner:Abstract Galois theory and endotheory. I and, for XQA, <P-(A\X) = <P° • (A\X) = <p-A\q>-X = <P-A\<P-X. Sometimes, in order to define certain notions or to formulate certain results with elegance and well, we shall have to deal not only with sets but with classes as well. This will be done only for the sake of convenience and better understanding, but not for raising any question of Foundations. In fact, all we do could be done in the language of sets, though in a longer and more complicated way. In principle, the word "class" will be understood in Bernays' sense*) but in a freer and more naive manner of speaking. However, as it can be shown, this manner of speaking is only an "abuse of the language" from the point of view of Bernays' theory, since the existence of classes and their mappings occurring in this paper can be proved based on Bernaiys—Godel axioms. 1. Relations, structures and mappings Let E and Xbe two sets called base set and argument set, respectively. Generally, for the sake of some of the proofs, we assume that E consists of at least two elements, though our results are trivially valid for a one-element base set E, too. The elements of Ex are called X-points while subsets of Ex are called X-relations. I.e., Appoints are mappings of X into E (denoted by, e.g., P: X-+E or XZ-+E) and .Y-relations are sets of such points. When there is no danger of ambiguity, we often do not indicate the argument set X. An (ordered) pair S=(E, R) is called a (first order) structure on E (or with base set E) provided R is a non-empty set of relations on E. (The argument set Xr of r£R may depend on r.) In particular, when all the relations in R have the same argument set, say X, then S—(E, R) is called an X-structure. By the arity of an Z-point, X-relation or .^-structure we mean the cardinal card X of X. We say that a structure S=(E, R) is under a set X° if XrQX° for all r£R. Let d: E-*E' be a mapping between the sets E and E'. This mapping can be extended to points, relations, sets of relations and structures on E in the following evident way: put d-P=doP (Bourbaki's notation!), d-r={d-P; P£r}, d-R= = {d-r\ /•£/?}, d-(E, R)=(E',d-R). In particular, when 8 is a self-mapping of E (i.e. E'=E), we say that S stabilizes a relation r on E (or, in other words, r is stable by 5) iff S-r^r. We say that a permutation a of E preserves r (in other *) But this does not mean that I consider the foundation of mathematics based on the Bernays—Godel axioms (and, generally, based on any predicative calculus formalism) as an adequate one. M. Krasner 262 words, r is preserved by a or invariant by a) iff<r-r=r. More generally, a self-mapping 5 of E is said to preserve r iff it stabilizes both r and its complement Ex-\r. We say that 5 is stabilizing or preserving on a set R of relations if it stabilizes or preserves •each r£R, respectively. For a structure S=(E, R) the set of all self-mappings of E that are stabilizing on R constitutes a monoid with respect to the composition of mappings. This monoid is called the stability monoid or endomorphism monoid of E/S (or S), and it is denoted by D(E/S) or, sometimes, by D(E/R). The endomorphism monoid is never empty for it always contains the identical mapping of E. The set of all permutations of E that are preserving on R is called the Galois group o r automorphism group of E/S (or S) and is denoted by G(E/S) or G(E/R). R e m a r k 1. G(E/S) is the largest permutation group contained in Indeed, a permutation a belongs to G(E/S) iff a and <r -1 belong to whence the assertion follows. D(E/S). D(E/S), R e m a r k 2. Suppose R is a set of relations on E such that r£R implies 1 r = =Ex-\r£R. Then G(E/S) consists of the permutations that belong to D(E/S). This remark is a straightforward consequence of the definitions. Particular relations. Firstly, we mention the empty relation 0, which is the only relation without a unique argument set and base set. I.e., 0 can be considered an Z-relation on E for any X and E. The X-identity on E is Ex and is also denoted by I(X, E). Let C be an equivalence relation on X. Then IC{E) = {P£EX; (Vx£X)(\/x'£X)(x = x' (mod C)^Px = P-*')} is called the C-multidiagonal on E. It consists of all Appoints that are compatible with C. In particular, if XQX is a C-class and all C-classes but X are singletons then DX(E) — IC(E) = {P• Ex; ( V x x ' d X ) ( . P • x = P• xty is called the Z-diagonal of E. When X={x,y), DXti{E) = D{x,y){E) = {P£EX- P x = P y} is called the {x, ^-diagonal on E, and such diagonals are called simple. The relation 1»C{E) = {Pac{E)\ T(P) = C} is called the strict C-multidiagonal on E, while EX\IC(E) is referred to as the C-antidiagonal on E. A relation r will be called semi-regular iff there exists an equivalence relation C on its argument set X such that rQIc(E) and C=T(P) for some P£r. When r is semi-regular then this C is unique, is denoted by T(r), and is called the type of r. Further, t(r)={P£r; T(P)=T(r)} is called the head of the semi-regular rela- M.Krasner:Abstract Galois theory and endotheory. I tion r. If for some C, i.e. r is semi-regular and r=t(r), then r is said to be regular. An A'-point P: X—E is said to be surjective, injective and bijective if it is such as a mapping, while a relation r is said to be such if every P g r is such. In particular, r is injective iff it is regular and T(r) is the discrete equivalence relation on X. Incase X=0 there is only one 0-point Pa(E): &—E (indeed, no two mappings can differ at any argument belonging to 0). Hence there are only two 0-relations: 0 and /(0, E)={Pe(E)}. Let D(E) denote the monoid consisting of all self-mapping of E, called the symmetric monoid of E, and let S(E) stand for the (full) symmetric group of E, consisting of all permutations of E. For a subset A of D(E) the class of all relations on E that are stabilized resp. preserved by each A will be denoted by s-Inv A resp. p-Inv A, and will be called the stability invariant resp. preservation invariant of A. (Note that these classes are never sets.) When the context shows clearly what kind(s) of invariants is considered, the letters s or p before Inv may be omitted. Clearly, the mappings 4i-»-s-Inv .d and A*-*-p-ln\ A are decreasing. Further, if © is a family of subsets of D(E) and Inv stands for any of our two invariants, we have Inv( U D Inv^l. For a set X" let R(E; X°) denote the set of all ¿ee ¿e.0 relations on E under X°. Now the sets s-Inv(*°> A = s-Inv A D R ( E ; X°) and p-Inv(*°> A = p-Inv AC\R(E; X°) are called the stability and preservation invariants of A under X°, respectively. If R is a set of relations on E then R=s-lnv D(E/R) and p-Inv G(E/R) are called the stability and preservation closures of R, respectively, while j?(*°> = s-Imtx°) D(E/R) and = p-Inv^°> G(E/R) are called the stability and preservation closures of R under X", respectively. The main problem of the next two paragraphs is to characterize these closures in terms of R but without any intervention of self-mappings of E. 2. Fundamental operations In order to characterize the above-mentioned closures of R in terms of relations we have to introduce certain operations acting on relations. Some of these operations act on sets of relations while others on single relations, but any of these operations results in single relations. Some of these operations are only partial, i.e. they are defined for (sets of) relations satisfying some prescribed conditions. 264 M. Krasner While defining our fundamental operations in the sequel, all relations are assumed to have a fixed base set E. I. Infinitary boolean operations: la. Infinitary union, lb. Infinitary intersection. Both of these operations act on non-empty sets R of relations, and are defined iff all r£R have the same argument set, say X. These operations are denoted by U • R= U r and fl • R= f ) r> and r£R r£R their results are relations with the same argument set X. Ic. Negation. This fundamental operation acts on any single relation r, and is denoted by 1 . If X denotes the argument set of r then • r=Ex\r, the complex ment of r in E , has the same argument set X. R e m a r k 1. The above three fundamental operations are not independent. Indeed, if "1 R denotes {"1 -r; r£R}, we have U R= "1(0 • 1/?) and fl R= = ~|(U • 1-R)- However, U and fl are independent. R e m a r k 2. Two well-known properties of these operations, namieiy /•fl("l • r ) = 0 and rU(~l -r)=Ex, where X is the argument set of r, will be of relevance later. R e m a r k 3. When E and X are finite then there are only a finite number of X-relations, whence the infinitary boolean operations are in fact the ordinary (Unitary) ones. R e m a r k 4. We define the following preorder for sets R and R' of relations. Put RsR' iff there exists a surjective mapping <p: R'—R such that for every r'ZR' we have r'^cp-r'. A (possibly partial) operation <o, acting on sets of relations, will be said increasing if for arbitrary sets R and R' of relations RsR' implies co(R)Q03(/?')> provided that to is defined for R and R'. Further, an operation a> (possibly partial) that acts on relations is said to be increasing if for any two relations r and r' belonging to the domain of ft), rQr' implies co-rQm-r'. It is easy to see that the infinitary union and intersection are increasing, while the negation is not. II. Projective operations, which act on relations: Ha. Projections (or restrictions) p r x . This operation is defined for a relation r iff the argument set X of r contains J a s a subset. For an Appoint P: X-*E let (P|Af) denote the restriction of P onto X^X, and define p r x - r as {(P|X); P£r). This relation will also be denoted by pr£ • r, r% and, abusing the scripture, even by (r|Z). This fundamental operation transforms a relation with argument set X ^ X into a relation with argument set X. lib. Antiprojections (or extensions) ext x .. This operation is defined for relations r with argument set XQX', and ext x .-r is the cartesian product rXEx s<x. M.Krasner:Abstract Galois theory and endotheory. I With the usual identification in cartesian products, ext x . • r is the set of all points (P, P') such that P(ir and P' is an arbitrary (Z'\A r )-point. This relation will also be denoted by e x t a n d R e m a r k 5. We can extend the operations prx and extx- to any relation r with an arbitrary argument set X via defining p r x - r as p r ^ n x - r and ext x . -r as ext* u x ,-r. Then we have pr x p r x , = p r x n x , and ext x . ext x .=ext x , u x .. R e m a r k 6. We have p r 0 - r = { P 0 } for and p r o - r = 0 for r = 0 . R e m a r k 7. Both projections and extensions are increasing. R e m a r k 8. When relations are considered as sets of points, extensions are hyperpunctual mappings and projections are even punctual, if relations with a fixed argument set are considered. Therefore, the projections commute with U, and it is easy to see that the extensions commute with all boolean operations. R e m a r k 9. While p r J ext*,-r=r is always true, r is only a subset of ext* pr£ • r. If ext^prjf •/•=/• then r is said to be identical on X\X or outside X, and the arguments belonging to X\X are called fictitious. The operation cx= =ext* pr^, which preserves the argument set, is called the X-cylindrification. For XQX' we have Ex'=extx.-Ex and, in particular, I(X, E)=Ex=extx Ea= =ext x -{/>„}. Canonical identification. Let r and r' be relations on E with argument sets X and X'. Let r ~ r ' mean that there exists a set X"^XUX' such that ext^- • r= =extx„ • r'. If this equality holds for some set X"^XUX' then it holds for every X"^XUX'. Consider ~ as a relation on the class of all relations on E; then ~ is easily seen to be an equivalence relations, i.e., ~ is reflexive, symmetric and transitive. As infinitary boolean operations commute with extensions, they are compatible with this equivalence. For we have pr£=pr|(pr£*ext*.)= =(pix p r f ) ext£.=pr*' ext*., whence pr y • r=pr x (ext x - • r). Hence it is easy to conclude that if an JT-relation r and an Z'-relation r' are equivalent modulo ~ and X ^ X D X ' then pr x • r=prx • r'. So projections are also compatible with this equivalence. Further, we have e x t - r ~ r . It is also obvious that if r and r ' have the same argument set X and r ~ r ' then r and r' must coincide. Therefore, for any X-relation r and X', there is at most one ¿"-relation equivalent to r, and there is certainly such an ¿"-relation if X' X. Relations on E can be considered modulo i.e., we may identify relations that are equivalent. This means that if a relation can be obtained from another one via omitting and adding some fictitious arguments then these two relations are considered the same. This identification will be called canonical. Since infinitary boolean operations and projections are compatible with they are meaningful M. Krasner 266 after canonical identification. It is trivial that ext x . becomes the identical operation when relations are canonically identified. Further, the infinite union and intersection become defined for every set R of relations in this case. Indeed, take a sufficiently large set X that includes the argument set of any r£R. Then for each r£R there is exactly one ¿"-relation r' such that r ~ r ' , so we can and must define U • R and fl • R as (J r' and H r', respectively. III. Contractive operations. Ilia. Contraction {cp). Given a surjection (p: X-* Y and an X-point P: X-»E which is compatible with <p, we can define a Y-point Q: Y-*E by the condition Q-y=P-x where xdtp-1 • y. The mapping that sends P to Q and maps the multidiagonal IT(<,)(E) onto EY=I(Y, E) will be denoted by (cp). It is easy to check that (cp) is injective. An .^-relation r is said to be compatible with q> iff every P£r (as a mapping of X into E) is compatible with <p. In this case ((p) • r= {(q>) • P; P(Lr) is a Y-relation. This mapping (<p), which maps the set of ^-relations compatible with <p into the set of Y-relations, is called the contraction (<p). This mapping is punctual and injective, so it commutes with the infinitary union and intersection, and we have (<?>)• (/ r ( „)(£) 0(1/-))=(<?) • {ITM(E)\r)= l((cp) • r). Clearly, cp is increasing. If cp: X— Y and cp': Y->-Z are surjections then (cp') • ((<p) • P) is defined iff P is compatible with (p'cp, and in this case ((p'<p) • P=(q>') • ((<p) • P). The same formula holds for relations. Illb. Dilatations [up]. Let ip: Y-*X be a surjection. Then for any X-point P: X-+E the mapping [ip]-P=P'\p: y^-P-ty -y) is a Y-point compatible with ip. The mapping P—lip] • P is injective and maps Ex onto the multidiagonal ITm(E). For an ^-relation r let [ip] • r stand for {[ip] -P; P£r}. Then [ip], called the dilatation [\p], is a mapping of P(EX), the set of all ^-relations, onto P{ITm(E)). Further, this mapping is punctual and injective. Hence it commutes with the infinitary intersection and union, and we have [ip]-(~\r)=ITm(E)\Jip]-r. If ip: Y-*X and ip'\ Z—Y are surjections then • P=[i/>'] • (OA] • P ) and bp'>p]-r=[ip']-([ip]-r). Obviously, (ip)[ip] • r = r for every ^-relation r, and [\p](ip)-r=r for every ^-relation r compatible with \p. R e m a r k 10. Every multidiagonal can be obtained by an appropriate dilatation from some identity. Note that any multidiagonal can also be obtained as an intersection of (extensions of) simple diagonals. Indeed, IC{E)= f ) e x t x • Dx JE) or, up to canonical identification, IC(E)= H x=J>(C) x = S'(C) Ac v(-£)- The strict multidiagonal lr{E) can be obtained by an intersection of simple diagonals and antidiagonals. Contractive operations and canonical identification. Let cp: X-+ Y be a surjection and let r be an ^-relation compatible with (p. For x£X the 7X<p)-class of x M.Krasner:Abstract Galois theory and endotheory. I is a singleton, provided JC is a fictitious argument of r. If y=(p • x, F = y\{j>} and <p=((p\X), then <p maps X onto F, ( r \ X ) is compatible with (p, and ((p)-r=(qj)-(r\X)XEiy\ Thus y is also a fictitious argument of (<p)-r. More generally, if r is identical outside XQX, then q> is injective on X\X, (p=(<p\X} maps X onto F = Y\cp -(X\X), ( r | Z ) is compatible with cp, (^)-(r|Z)=(((p)-/-|F} and (q>)-r is identical on Y\Y. So, (<p)-(r\X)~((p)-r. Two relations, say r and r' with respective argument sets X and X', are equivalent if and only if ( i r \ x f ] x ' ) = ( r ' \ x n x ' ) and both are identical outside XilX'. Indeed, r ~ r ' iff ext x u x , - r = e x t x u x , - r ' , and we can use the equalities {r\XC\X')= = ( e x t x u x , • r \XC\X') and {r'\XC\X')={extxux,-r'\XC\X:'). Furthermore, if r and r' are equivalent, r=ext x -(r|XflA"). Let r and r' be relations with respective argument sets X and X', and let <p: X—Y and <p': X' — Y be mappings. The pairs (r, cp) and (r',<p') will be said equivalent iff r ~ r ' and, furthermore, there exists a subset X of XC\X' such that (<p\X)=((p'\X) and r is identical on X\X. (Note that in this case ( r | Z ) = = ( r ' | X ) and r' is identical on X'\X.) Let (ir,(p)~(r',q>') denote that (r, cp) and (/•', <p') are equivalent. It is easy to see that this binary relation is in fact an equivalence. Similarly, let r be an ¿'-relation, r' be an ¿"-relation, further let \ji: Y—X and : Y—X' be surjections. Then the pairs (r, \jj) and (r', ij/') are said to be equivalent iff r ~ r ' and there exists a subset X of XC\X' such that (a) -X= (this set will be denoted by F) and (^|F)=(iA'|F), (fi) (¡l/\Y\Y): Y \ F — -X\X and (ij/'\Y'\Y): Y'\Y-X'\X are bijections, and (y) r and r' are identical outside X. Note that if (r, \j/) and (r\ \j/') are equivalent then [ij/]-r~ Floatage. Floating equivalences. Free and semi-free intersections. For a bijection cp: X-+ Y, every ¿f-relation r is compatible with (p. Then the contraction (<p), which coincides with the dilatation [<p-1], is called a flotage (of arguments). A subset X of ¿"such that (<p\X) is the identity mapping is called an anchor set of the floatage {(p), while the maximal anchor set of (cp) will be called its anchor and is denoted by A(q>)= {x£X; <p • x=x}. The elements of A(<p) are referred to as anchor arguments. When considering a floatage with an anchor set X, we say that we let the arguments outside X float. Two relations, say r and r' with respective argument sets X and X', are called floatingly equivalent (in notation ryr') if there exists a bijection q>: X-+Y such that (cp) • r ~ r ' . It is easy to verify that this binary relation is really an equivalence, called floating equivalence. The existence of a floatage (cp) such that (cp)-r=r' is called restricted floating equivalence and is denoted by When we allow floatages with a fixed anchor set X only then we obtain the analogous notions of semi- 268 M. Krasner floating and restricted sermfioating equivalences of anchor X (in notation r~fr' and resp.). Let r be an ¿"-relation and let X Q X . It is clear that the X-projection of r does not change when we let the "dumb" arguments x(LX\X float. We have also seen that (r\X) is invariant under canonical equivalence. Therefore p r x • r = = p r x - r ' , provided r'. In particular, it is without changing p r y • r that we can let the "dumb" arguments float so that their images avoid some prescribed set If it is so then the image of г by this floatage is said to be regularized for X. Let R be a set of relations on E, and let Xr denote the argument set of r£R. For each r£R take a floatage (<pr) so that the sets Yr=q>r-Xr (r^R) be pairwise disjoint. If У is a set including U Yr then П ext y (<p,) • r does not depend, r£R r£R modulo floating equivalence, on the choice of floatages (<pr) and of Y. Hence n exty ((pr) • r can be called the free intersection of r£R; it is determined up to гея floating equivalence. When we take Y= U Yr then П exty (q>r) • r is clearly the cartesian product r€R JJ (<pr) • r, which is equivalent to ]J r. So the free intersec- r(R r€R tion is, up to floating equivalence, the (complete) cartesian product. The free intersection of all r£R will be denoted by П f-R. Given a set X and a set R of relations r on E and with argument sets Xr, the semi-free intersection of anchor X of R is defined as follows. Put Xr=XC)Xr and choose floatages (<pr) with anchor sets Xr so that XC\(pr=0 and the sets (pr • {Xr\Xr), r£R, be pairwise disjoint. Further, take a set У including all <pr- Xr. Then f | e x t r (<Pr) • r> called the semi-free intersection of anchor X of R and denoted r?R _ by i l ® . R, does not depend, up to semi-floating equivalence of anchor X, on the choice of У and that of (pr (г£Л). L e m m a 1. Let R be a set of relations r with argument sets X„ let and put X= (J Xr. Then '€Я XrQXr, П e x t x p r x r . r = p r x . ( n Jf ) - i ? ) . r€R P r o o f . Put Q= П e x t z p r x .f and д*=ртх-(Г\{/)• R). Let П(/> be re- presented by П e x t x u r (<pr) r where <pr: Xr-»X,U Yr are bijections subject reR to the previous conditions. I.e., the Yr are pairwise disjoint and Y'= (J Yr is _ _ _ _ r£R disjoint from X. An AT-point P: X—E is in Q iff for every r£R (P|A"r) is a point such that there exists an (A,\J r )-point P'r with ((P\Xr), P r ') belonging to r. But this is equivalent to (<pr) • ((P\Xr), P't)£{<pr) • r and, as (<pr\Xr) is the identity map, also M.Krasner:Abstract Galois theory and endotheory. I to the existence of a y r -point P"-((pr\Xr\IR )-P^ such that (P,P r ")eext X u r p (<?,)• r. Since the sets Y are pairwise disjoint, for any set {P": Y — E ; r£R} of points there exists exactly one point P": Y'-E such that (P"\Y )=P* holds for each r£R. Clearly, (P, P " ) e e x t x u r ( q > r ) - r is equivalent to R R R (P, P'0€ext X U y ext x u r£<Pr) •r = ext Z ur(?r) * r. Thus the simultaneous existence of all P"\ Y -*E with (P, P") belonging to e x t X u r (cpr)• r is equivalent to the existence of a single P": Y'—E such that (P, P ^ e e x t f y j r , (<p,)-r for every r£R, i.e., ( F , P " ) belongs to f ) e x t x u r , (<pr)-r— T = H ext r (q>r) • r, which is equivalent to P€Q*. I.e., P£Q rgR is equivalent to P^Q*, which completes the proof. The operations la, lb, Ic (U, fl, ~|), Ha, lib (pr x ,ext x ,)> Etta and Illb ((<p), [i/r]) are called fundamental operations. The increasing fundamental operations, i.e. all but the negation 1 , are called direct fundamental operations. Two miliary operations, namely IVa: (adding to any set of relation) the empty relation 0 and IVb: (adding) the 0-identity 7(0, E ) = { P } , are also considered as direct fundamental operations. These two miliary operations are combinations of the rest of the fundamental operations when we start from a nonempty set R of relations. Indeed, take an r£R, then 0 = r n ( l r ) and 7(0, £')=pr 0 -(rU("lr)). Yet, they are not combinations of direct fundamental operations in general. If r ~ r ' or ryr' (or, in particular, r ~ r ' , rx~fr' or r~fr') then each of r and r' can be obtained from the other by a suitable combination of direct fundamental operations. On the other hand if we identify the canonically equivalent relations, we can drop all extensions from (direct) fundamental operations. When passing from relations to floatingly (and even restricted floatingly) equivalent ones is permitted, we may fix a representative set X(c) of cardinality c for each cardinal c, e.g., we may put X(c)= {a; a, is an ordinal and a<<»(c)} where ©(c) denotes the smallest ordinal with cardinality c. (I follow Cantor's point of view rather than that of von Neumann. In fact, the second point of view has been adopted in my first paper [1] on abstract Galois theory, while the first one in all of my other papers.) When the axiom of choice is admitted, contractions become combinations of projections and floatages, while dilatations become combinations of extensions, floatages and intersections with simple diagonals. Indeed, if q>: X—Y is a surjection, for each y£Y we can choose an x(y)£X such that cp-x(y)=y. Put X= {*(;>); y£Y}. As {(p\%)'. X—Y is a bijection, ((<p|Z)) is a floatage, and (<jj). r=(cp\X) pr x • r, provided r is compatible with (p. Similarly, if ^ : y—Xis a surjection, ^-«-^(x) is a mapping of X into 7 such that ij/-y(x)=x, and F={j>(x); x£X) then ¡¡?=(t/r|F): j(;t)—* is a bijection of F onto X. Hence [ i i s a floatage, E M. Krasner 270 and for any ^-relation r we have W-r = extY&]-rn(n fl D-y,y). , ye T ysXTM) When the image of <p or is finite, the axiom of choice is not necessary for the above results. -° We say that fundamental or direct fundamental operations are used below X°, if these operations are used only for" relations with argument sets included in X° and only when these operations result in relations whose argument sets are also included in J f 0 . I.e., in case of p r x , ext x ., (cp: X-~ Y) and [ip: Y-*X] the inclusions X'QX0 and YQX° are-also required. In particular, if .E is finite and these operations are used below some finite X° then they are equivalent to the realizations of operations of the predicate calculus with equality on the finite model E, the set of object variables being X°. Indeed, any A'-relation r on E (where XQ X°) can be considered as the realization of some predicate Pr=Pr(X) on E. Further, P,ur.=P,\/Pr., Prnr.=Pr&Pr., Plr=~\Pr, Ppr y .r=(Bx 1 )...(Bx s )P r where fo,..., Pextx,.r=Pr(X') where Pr(X') is the predicate obtained from Pr=Pr{X) by adding the set A " \ Z o f fictitious variables, if <p: X-~ 7is a bijection and X={xl7 ...,x„} then Piq>yr=Pr9) is a predicate such that P^\(p-xlt..., (p-xn)= = P r ( x 1 , ..., x„), and we have PBx ^={x=y). The direct fundamental operations are equivalent to the part of predicate calculus generated by \J, &, existential quantifiers, addition of fictitious variables, substitutions of object variables, the inequality xt7^x{ and equalities x—Xj (in particular, x—xj). In the general case we may consider the fundamental operations as realizations on models of an (unlimited) infinitary generalization of predicate calculus, and direct fundamental operations as that of certain "positive" part of it. L e m m a 2. For any relation r there exists a set Rr of relations with the same argument set such that (1) every relation in Rr can be obtained from r by a combination of direct fundamental operations; (2) all the relations in Rr are semi-regular, and for each point P of an arbitrary relation s£Rr there exists a relation s£Rr such that sQs and Pgi(s); and (3) r = U -R r . P r o o f . Firstly, every multidiagonal is obtained by a successive use of direct fundamental operations (starting from the empty set!). Indeed, it is obtained by dilatation from some identity I(X, E)=extx • 1(9, E). Let P be a point of r with type T(P) and let rP=rC\IT{P)(E). Put jR r ={r P ; P€r}. Then (1) is clearly satisfied. It is easy to see that rP is semiregular and of type T(P), and P€t(rp). For PZsZR, we have s=raQr where Q is a point of r such that P is compatible with 271 Abstract Galois theory and endotheory. I T(Q). Then T(P) is thicker than T(Q), so ITlP)(E)QInQ)(E) s=rP, and (2) is clearly satisfied. Finally, P£rPQr implies r={P; P€r}= U ^ i U Pír and rPQra=s. Put rPQr, Pír U rt—r-, i-e- (3) holds. Pír The set Rr constructed in the previous proof is called the semi-regular decomposition of r. which yields U Formalism of fundamental operations. If we apply a (generally infinite) combination of fundamental operations to relations, we obtain an operation, which can be represented, by a (generally infinite) formula of the "fundamental operation calculus". The best way of denoting these formulas is to use (generally infinite) trees with finite branches. By a tree we mean an unoriented, connected graph without loops, without circles (i.e. closed paths), and with a distinguished vertex, called its root. Let T be a tree with root r. Then for any vertex v in T (in notation, v£ T) there is exactly one path in T that connects v and r, provided v^r. Let w be the vertex next to v onthis path. Now w is called the father o f f , while v is called the son of w. A vertex v^r has one and only one father, while the set S(v) of sons of v can be of arbitrary cardinality. Vertices without sons are called extremities of T. We shall write if v^v' and v is on the path connecting r and «/• For a vertex v the set {v'; v^v'} of vertices spans a subgraph, called the subtree of T of root v. The number of edges in the path connecting v and r is denoted by h(v) and is called the height of v. In particular, h(r)=0. Let h(T)—sup h(v) be called the height viT of T, which is a non-negative integer or T is called of finite or infinite height according to h(T)7± <» or h(T)= «>. A branch of T is a maximal linearly ordered set of vertices together with the edges connecting them. We shall deal only with trees without infinite branches. I.e., we always assume that our trees have no infinite, linearly ordered sequence of vertices v ^ v ^ v ^ . . . . For such trees there is another invariant, the so-called depth, which is more important than the height. Given a tree T, a mapping v from its vertex set into the class of ordinals is called a depth function of T if for any vertex v£T we have v(v)= sup (v(«)+l) (in particular, v(v)=0 for any extremity «€S(B) of T). If a tree has a depth function then it cannot have infinite branches. Indeed, if r = V 0 < V 1 C V 2 < c , < . . . were an infinite branch then v(Ü0)>V(«J>V(w2)>V(V3 )>... would be an infinite decreasing sequence of ordinals, which is impossible. As to the converse, admitting the denumerable axiom of choice, we can prove the following . L e m m a 3. Any tree without infinite branches has one and only one depth function. 2• 272 M. Krasner P r o o f . Assume that a vertex v £ T is irregular in the sense that the lemma is not true for the subtree TB. I.e., T0 has no depth function or lias more than one depth functions. Then v must have at least one irregular son u. Really, if for all S(v) the subtree T„ has a unique depth function v„, then the mapping v„ defined by V0(H>)=VU(W) if w£Tu and « € S ( v ) and, further, vB(v)= sup (*.(«)+ 1) is a depth function of Tv. As the restiction of this v„ to any Tu, u£S(v), "is unique by the assumption^ v„ is the only depth, function of Tv, which is a contradiction. Thus we have seen that any irregular vertex has an irregular son. Now, if the lemma is not true for a tree T, then its root r is irregular as T=Tr. Hence an irregular son of r, then an irregular son r 2 of rlt etc. cán be chosen. I.e., the dénumerable axiom of choice yields the existence of a denumerable sequence r=r 0 , r x , r 2 , . . . of irregular vertices such that each r¡, / >0, is a son of r t - v But then r 0 < r i < r 2 < . . . contradicts the fact that T has no infinite branch. When T is a tree without infinite branches and v is its unique depth function, d(T)=v(r) is called the depth of T. Any ordinal can be the depth of some tree: The depth of T is finite iff h(T) is finite; in this case d(T)=h(T). A formula is a mapping -Ffrom the vertex set of a tree T without infinite branches such that (1) F(v) is a fundamental operation provided v is not an extremity, and F(v) is either U or fl if S(v) is not a singleton; (2) for any extremity v with father w, F(v) is a relation set variable denoted by X(v) (with capital X) provided {w} and F(w) is U or D , a n d F(v) is a relation variable x(v) in all other cases. Note that F(u) and F(v) may coincide even for distinct extremities u and v. Let E be a base set. A map F' from T is called an E-formula if it is obtained from some formula F via replacing certain relation set variables X(v) and certain relation variables x(v) at all of their occurrences by some relation sets R(v) and some relations r(v), resp., on E. Clearly, X(u)=X(v) or x(u)=x(v) must imply R(u)— = R(v) or r(u)=r(v), respectively. Given a base set E and a formula F, let <P(F)= {F(v); v\ is an extremity of T}. A mapping Q of 4>(F) is called the system of values of variables of F if Q • F(v) is a set of relations on is with the same argument set when F(v)=X(v) is a relation set variable while Q • F(v) is a single relation on E when F{V)=x{v) is a relation variable." A mapping t(g) from the vertex set of T, í(Q): v-»t(Q; v), will be called á coherent valuation of F for Q if: (1) t(g\ V)=Q • F(v) for every extremity v of T; (2) if v is not an extremity then t(g;v) is a relation on E; (3) if F(v) is U or D, v' is an extremity, and F(v')=X(v') then e.F(v)=F(v).(e.F(v')); M.Krasner:Abstract Galois theory and endotheory. I (4) in any other case when F(v) is U or D, all the Q • F(v'), v'd S(v), have the same argument set and Q • F(v)— U (Q • F(v')) or Q-F(V)= f ) (Q • F(V')\ O'€S(R) »-ESI») respectively; (5) if F(v) is "1, p r | , ext*., (cp: X—Y) or [\j/: Y—X] then S(v) is a singleton {u} and Q • F(u) is an ¿"-relation such that, in case F(v)=(cp), Q • F(u) is compatible with cp, and, in all cases, Q • F(v)=F(v) • (Q • F(u)). Given Q, an easy induction on v(v), T, shows that there is at most one such coherent valuation t(e). It is possible to define the fundamental operations for formulas. Let U be a set of formulas (or ^-formulas), and let rF denote the root of the formula F£ U. We construct a new formula F ° = U U or F°= D U, resp., via taking a new root r°, adding a new edge (r°,rF) to every F€ U, and putting F°(r°)= U or i r 0 ( r ° ) = n , respectively. Note that S(r°)={rF; F£U} and each F becomes F^. If J7 is a formula or ^-formula and co is one of the operations "1, p r f , ext*., (<p: X—Y), and [\Jf: Y—X] then the formula (or ^-formula) a> • F is constructed so that we join a new root r° with the root r of F by a new edge (then r becomes the only son of r°) and we put (co • F)r=F and (co • F)(r°)=co. It is easy to verify that if QF is the value of $(F), FZ U, and Q is the value of <P(U £/) or 0(0 U), respectively, such that we have (el^(F))=e J ? for every F£U, then (UC/)(e) resp. (DC/)(e) is defined iff all the F(Qf), F £ U , are defined and U resp. D is applicable to {F(Q )I F ^ U } . If this is so then we have ( U i / ) ( e ) = U ( 6 F ) and (fli/)(e)= FIU = H F(6F)- If co is one of the operations ~l, p r i , ext x -, (<p), and and Q is a value F€l7 of 0(F) then (co • F)(Q) is defined iff F(Q) is defined and co is applicable to it. In this case we have (co • F)(Q)=CO • F(Q). The formalism can be defined modulo canonical identification, too. Then ext disappears and the results of the rest of fundamental operations are always defined for arbitrary relations and, for U and D, for arbitrary sets of relations. Indeed, we only have to consider relations and operations modulo canonical identification and then to replace (cp) • r, where cp: X—Y is a surjection, by (<p)(prx ext*r • rf)IT(^(E)) where X, is the argument set of r and X' includes XrUX. F F 3. Fundamental operations and mappings £ a a d Let eo(...) be one of the considered fundamental operations. We denote by an arbitrary value of its argument, which may be a set of relations (for la, lb) or relation (for 13, Ila, lib, Ilia, Illb) or nothing (for IVa, IVb). Let d: E-E' be mapping from the base set E into another set E'. We say that co commutes with if for any £ (with base set E) to is defined for d-£ provided it is defined for <?, M. Krasner 274 and d• (ü(£)=(ü(d• £). We say that co sefrd-commutes with d if m(d- £) is defined jvhen tű((J) is,; and d• co(^)^(o(d• £). P r o p o s i t i o n 1. (1) Every fundamental operation commutes with any bijection. (2) Every direct fundamental operation semi-commutes with any mapping. (3) More precisely, the infinitary union, projections, contractionsdilatations, and the addition of 0 and Ia(E) commute with all mappings, the infinitary intersection commutes only with injections, and extensions commute only with surjections. • P r o o f . As every mapping d of the base set preserves the argument sets of relations, it is clear that if any of the operations la, lb, Ic, Ila, lib, M b , IVa, and IVb is defined for some value £ of its argument then it is also defined for d • If cp: X^~Y is a surjection and P: X—E is compatible with q> then d • P is also compatible with <p, where d: E-+E' is an arbitrary mapping from E. Indeed, for x£X, (d- P) • x=d • (P • x) depends only on P • x, which depends only on cp • x. Therefore, if an ^-relation r is compatible with (p then so is d • r, i.e., (cp) • r being defined implies that ((p)-(d-r) is also defined. So the preliminary condition on commutation and semi-commutation is always fulfilled. , Let us compute: d-(UR) = d-{P-,{3r£R)(Per)} = {d-P; (3r = {Q; (3sed-R)(Q£s)} For XQX ; =0 £*)(>€/•)}= (d-R). and an ¿"-relation r we have d-(r\X) = d-{(P\X); Per}= = {(Q\Xy,Qed.r} { d - № ) ; P€r} = {(d-P\Xy, = (d-r\X), i.e., P£r} = d-prx r = pix(d • r). If P: X-+E is an Appoint compatible with the surjection q>: X-*-Y then (q>)-P is the mapping Y^E, y-»P-x where (p-x—y. So, d• ((<p) • P) is the mapping y-~d-((((p)-P)-y)=d-(P-x)=(d-P)-x, where (p-x=y. Thus d-((<p) P ) = <=(<p)-(d- P), and, if r is an ¿"-relation compatible with cp, we have d • ((<?) • r) = d • {(<p) • P ; P£r} = {(<p) • (d • P); P€r} = = № Q; Q£d r} = (cp).(d-r). When \Jt: Y—X is a surjection and r is an ¿'-relation, d • № - r ) = d . W - P - , P £ r ) = {do(PoiP); P g r } = {(doP)óiJ/; P g r } = ={Q°<l>-,Q€d.r} = [<l,].(d.r]. It is clear that 0 and /(0, E) depend on no argument, d • 0=0, and d • /(0, E)= =7(0, E). M.Krasner:Abstract Galois theory and endotheory. I If jR is a set of AT-relations, we have d-(r\R) = d-{P-, (VreÄ)(Per)} = { d . P ; (Vr€Ä)(P6r)}. Since P g r implies d-P£d-r, Q£d-(C\R) implies Q£d-r, for each r£R, i.e., -(d-R). The converse implication d-P£d-r^>P£r holds for all rQEx iff d is injective. Therefore the equality d • (C\R)= - (d • R) holds for any set R of Z-relations only if d is injective. Let r be an ^-relation and let I ' d I , i.e., Then d-extx.r= =d-(rXEx'^x)=(d-r)X(d-E)x^xQ(d-r)X(E')x,^x=extx. (d-r) and we have the equality d-extx. r=extx. (d-r) (even for only one arbitrary r ^ 0 ) iff d is surjective. This proves (3). Now (1) and (2), except the case of are consequences of (3). But if s: E—E' is a bijection then it commutes with all the Boolean operations, so, in particular, with the negation : r—Ex\r. The proof of Proposition 1 is complete. Applying Proposition 1 to the particular case E=E' we obtain C o r o l l a r y 1. (1) Every fundamental operation commutes.with any permutation of the base set. (2) Every direct fundamental operation semi-commutes with any self-mapping of E. (3) The infinitary union, projections, contractions, dilatations, and the addition of 0 and Ie(E) commute with all self-mappings of E, the infinitary intersection commutes only with its self-injections, while the extensions commute only with its selfsurjections. P r o p o s i t i o n 2. Let a be a permutation of E, let R be a set of relations on E, and assume that a fundamental operation co is applied to a subset or element I; of R. (It is a subset when co= U or co= D, and it is an element otherwise.) If a is preserving on R then a preserves co(£). P r o o f . As <T =a>(£), indeed. and co commutes with a, we have a• co(^)=co(a • £)= P r o p o s i t i o n 3. If 5 is a self-mapping of E stabilizing on a set R of relations and if 03 is an increasing fundamental operation semi-commuting with 8 which is applicable to a subset or element £ of R then 8 stabilizes co (<!;). P r o o f . Indeed, we have 8 • a>(£,)Qco(8 • £). Further, if £ is a set of relations, <p: r—S-r (r£%) is a surjection of £ onto <5 • £ such that cp • r=8-r^r for all rg£. Hence When £ is a single relation, S-£QTherefore, as co is increasing, we have co(8 • £ ) Q a ( £ ) and 8 • co(£)Qco(S • £), whence <5 • co(£)Qco(£). 276 M. Krasner C o r o l l a r y 2. Let m be a fundamental operation which is applicable to a subset or element £ of a set R of relations on E. If a self-mapping 5 of E is stabilizing on R then it stabilizes co(0It follows from the preceding results that for any set AQD(E) of self-mappings of E, s-Inv A is closed with respect to all direct fundamental operations. I.e., if a direct fundamental operation a> is applied to an element or a subset £ of s-Inv A then a>(£) belongs to s-Inv A. Similarly, s-Inv(XO) A is closed with respect to these operations below X°. In particular, the same closedness is true for R and Rm, where J? is a set of relations on E. If AQ S(E) is a set of permutations of E then p-Inv A is closed with respect to all fundamental operations, and so is the preservation closure R of a set R of relations on E. Similarly, p-Inv(*0) A and are closed with respect to all fundamental operations below X°. 4. Equivalence and existence theorems of abstract Galois theory and endotheory Let X° be a set and let J? be a set of relations under X°. I.e., the argument sets of relations in R are subsets of X°. The set R is said to be logically resp. directly closed below X° if it is closed with respect to all fundamental resp. all direct fundamental operations below X°. If F is a logically or directly closed family of sets of relations on E then the intersection p| R of this family is also logically or directly closed, respectively. If R is a non-empty set of relations on E then the family of all relation sets that include R, are under X° and are logically resp. directly closed is not empty as it contains Rm, the set of all relations on E under X°. The intersection Rf0) resp. R f f i of this family is called the logical resp. direct logical closure of R below X°. Rf0) and RfP are the smallest relation sets (on E) under X° that are logically and directly closed, respectively. Let S=(E, R) and S'=(E, R') be two structures on E so that both R and R' be under X°. (In this case S and S" are said to be structures under X°.) We say that S and S" are equivalent resp. directly equivalent below X° if Rf0)=R'fm resp. Rffi=R'Jf\ Generally, these equivalences depend on X°. Yet, as it will be shown, they do not depend on X° when card Z ° ^ c a r d E is assumed. Indeed, our main purpose in this paragraph is to prove the following four theorems, in which card Z°Scard E is always supposed. E q u i v a l e n c e t h e o r e m of a b s t r a c t G a l o i s e n d o t h e o r y . Let S and S' be structures under X° and assume that card X° s c a r d E, where E is the common base set of these structures. Then S and S' are directly equivalent i f f DE/S=DE/S.. E q u i v a l e n c e t h e o r e m of a b s t r a c t G a l o i s t h e o r y . Lets and S' be two structures unde:r X0 on E where card Jf 0 Scard E. Then S and S' are equivalent i f f Gejs—GEJS'- M.Krasner:Abstract Galois theory and endotheory. I E x i s t e n c e t h e o r e m of a b s t r a c t G a l o i s e n d o t h e o r y . For any semigroup D of self-mappings of E, if D contains the identical mapping \B and X° is a set with card Af'Scard E then there exists a structure S under X° on E such that D=Dm. E x i s t e n c e t h e o r y of a b s t r a c t G a l o i s t h e o r y . Let G be an arbitrary permutation group on E and let X° be a set with card Af°^card E. Then there exists a structure S under X° on E such that =GS/B. P r o o f of equivalence and existence theorems of abstract Galois endotheory. M (a) Consider R =s-Inv(*0) DE/S . This set is directly closed below X°, so it contains Hence D ¡ 2 D where Q stands for RFFI. As Q ^ R , we also have D e i s = D e / r ^ D e / q , i.e. D = D . Therefore if S and S' are directly equivalent below X°, i.e. R?P=R'}p, then D =D .. (b) Let D be a submonoid of D(E). For an X-point P on E the set D P= = {8-P; 5£D) is called the D-orbit of P. Every Z>-orbit is stabilized by all 8eD, as S-(D-P)=SD-PQD-P. It is also clear that any d£D stabilizes every union of £>-orbits. Conversely, assume that each ő£D stabilizes a relation r. Then, f o r any P £ r , we have E / Q E / S E / Q E / S E / S E / S {P} = {l £ .P}i£>.P={<5.P; <5€i>}= (J {á-PjE U S-rQ U r = r, SÍD i.e., {P}^D-PQr. SÍD SÍD By forming unions we infer that r= U W i U í - í i U r = r, Pír Pír Pír i.e., r= (J D-P. Hence every relation stabilized by D is a union of certain Z)-orbits. Pír The set of all relations under X0 that are stabilized by D will be denoted by 0 •RjJ *. It is clear that the endomorphism monoid of E/Rfg0* includes D. If P : X-*E is a surjective point then the mapping D ( E ) — D ( E ) , <5—(5 • P is injective. If card X°^card E then there exist surjective Appoints P with If 8 stabilizes the D-orbit of such a point P then 8 must belong to D. Indeed, 8 - ( D ' P ) = 8 D - P , 8-P=S-(1 -P)£S-(D-P), SO S$D would imply D-P§D-P, i.e., 5 would not stabilize D - P . This means that, denoting R ^ by Q , Ő $ D , i.e. D / Q = D , which proves the existence theorem of abstract Galois endotheory. (c) As card X° ^ c a r d E, there is a bijective point P: %—E under X°, i.e. Let us fix such a point P arbitrarily. Let P : X—E be another arbitrary point under X°, and put EP=PX and ÍP=P~1-EP. Then P^P: X-+1 is a mapping, which induces a surjection ePt p: X-~%P. Since P is bijective, the type T(sPip) of this mapping is equal to that of P. Hence P is compatible with eP P . For any x£X and x=sPiP-x£%P we have E E / Q E ((e P ,].)-P).jc = P . * = (PP~v)Px = P(P~lPx) = P{ePtP-x) = Px. 278 M. Krasner Note that (sP,p)-P denotes the image of P by the contraction (sP P ) induced by the surjection sPtp: X—£P, not the composite eP PoP, which even does not exist in general. So, we have (ePP) • P=(P\2P) and, conversely, P=[e P j p] • (P\%P). As every self-mapping 5 of E commutes with projections, contractions and dilatations, we also have 5-(P\XP)=(ePiP)-(S-P) and 5-P=[EPiP]-(S-P\2p). Further, if P is compatible with some surjection q>: X— Y then, clearly, so is 5 • P. Finally, if D is a semigroup of self-mappings of E, we have D -(P\%P)=(ePtp) (D-P) and D • P=[eP P] (D • P\%P). If, in particular, D is a monoid containing 1 E , then the £>-orbit D-P of an arbitrary point P : X-+E can be obtained from the D-orbit of the fixed bijective point P by a combination of direct fundamental operations. If P is under X° then these operations are below X°. Therefore R(jpQ {D - P f j p : Indeed, every r d R ^ , which is a-union of D-orbits by (b), is obtainable from D-P by means of direct fundamental operations (more precisely, by infinitary union, projections, and dilatations) below X". Suppose D=DE/S. Then, if S=(E, R), we have RQR^p, whence R f f > g ( R ^ p = O n the other hand, {D • Pyjp Q QR^ is trivial and {D • P f f p ^ R ^ has already been proved, whence {D • Py*p=R(g°\ Therefore if we prove D-pQRfp then we also have R(P= = { D - P f j p Q R V p and R ^ J p ^ R ^ , from which the equivalence theorem follows. Indeed, if S=(E, R) and S'=(E, R') are two structures under X° with the same stability monoid D=DE/S=DE/S. then RiJp=R^0)=R'dfa) would mean the equivalence of S and S' below X°. (d) Now we prove D-PzR^jp via obtaining this orbit explicitly from R by direct fundamental operations. Firstly, we replace every r^R by the set Rr of semiregular relations having the same argument sets as r, which has been defined in Lemma 2, Section 2. Then R is replaced by the set of relations k= (J Rr, which is under X° provided so is R, and which has the following properties implied by the quoted lemma: (1) every can be derived from some r£R by direct fundamental operations; (2) for any P £ f £ k there exists an r ' ^ k such that r ' Q r and P g i ( r ' ) ; and (3) every r£R is the union U • k' of some subset k' of k. These three properties show that kQRfp and RQk$p, whence R<ff>= ( =k?p and it is sufficient to prove D • P£k Jp. Therefore it suffices to prove D-p£R$p only for sets R of semi-regular relations under X° that have property (2). v Let R be such a set of semi-regular relations and consider the relation r* = n f l ext*(e P ,p)-r. r£8f{l(r) M.Krasner:Abstract Galois theory and endotheory. I Clearly, r* is obtained from R by direct fundamental operations, whence it belongs to Rjp- We shall, prove that r* is precisely D • P where D=DE/S. First, as P£/(r), (e P t P )-r is defined and (P\JtP)=(ePtP) -P£(ep,p) -r. Thus p£extg-((ePiP)-r)=extx(ePip)-r and P(Lr*. But, as r* is obtained from R by a combination of direct fundamental operations and all 8£D are stabilizing on R, every 8£D stabilizes r* and D-PQr*. For an arbitrary i'-point Q we have Q = Q O 1\ = Q O ( P - 1 O P ) = { Q O P ~ 1 ) O P , for P is injective. Hence Q=8 -P where 8 — QOP~ is a self-mapping of E. Therefore every J?-point of E is the transform of P by some self-mapping <5 of E. Now assume that 5$D, and let*us prove that <5• P$r*. Since 8$D=DE/R, there exists some r£R not stabilized by 8, i.e. 5-r%r. Therefore there is a point P£r such that 8-P$r. Since (2) holds for R, there exists an r'^R such that P£t(r') and r'Qr. Then <5 -P^r'. As the contraction (sPP), which is defined also for 6 • P, is injective (for points), we have X (,§ •P\XP) = 5- {P\XP) = 8 • ((ep.p) • P) = (sP,p) • (8 • PMsP,P) • r' and that {<5-.P|J?p}X.E'iNA' is disjoint from ( ( e P , P ) - r ' ) x E * \ S P = e x t s (e P _ P )-r'. Thus 5 • P£(8 • P \ X P ) X E * \ x p does not belong to ext* ( e P t P ) - r ' ^ r * and 8-P$r*. Therefore, 5 • Pdr* iff 8£D. Thus the equivalence theorem of of abstract Galois endotheory is proved. P r o o f of the equivalence and existence theorems of abstract Galois theory. Since Rix0) is closed with respect to all fundamental operations below X°, an argument analogous to (a) shows that if S=(E,R) and S'=(E,R') are equivalent below X° then GE/S=GE/S,. We have already seen (cf. Remark 1 in Section 1) that if a is a permutation and both a and a~x stabilize a relation r then a preserves r. Consequently, if a monoid G consisting of some self-mappings of E happens to be a group, i.e., a permutation group on E, then every er£G even preserves and not only stabilizes all reR^°\ Therefore R(ax0)=j-Inv^ G=p-lnvm G and, if card A^Scard E, G is the stability monoid and also the preservation monoid of E/R Hence for any permutation group G on E there exists a structure S—(E, R) such that G=GB/S, which proves the existence theorem of abstract Galois theory. Considering the particular case D=G and keeping the notations of (c) of the preceding proof we have G • (P\%p)=(ep p) • (G • P) and G • P=[ep p]-(G • P\% ). If G=GB/S then RQR^0* and, as Rix0) is closed with respect to all fundamental operations, R f ^ ^ R ^ . Since G • P and R^ are equivalent (and even directly (x<f) ) equivalent), to prove R =R^° it is sufficient to show G • PZ R(x°\ Let S=(E, R) be a structure under X° with card A b o a r d E and let G=GE/S. Consider S*=(E,RD~[R)=(E,R*) where r€.R}. Then S and S*. are equivalent below X° (really, RQR* and R*<^Rf)) and GE/S* = GE/S. Thus it suffices P M. Krasner 280 X 0 ) to prove G - P £ K F , i.e., to prove G-P€RF°> under the hypothesis R = ~ \ R . In this case, by Remark 2 of Section 1, we have G — D C ] S ( E ) . AS P is bijective, S-8-P is injective, implying G - P = D P F ) S ( E ) - P , where D = D . If 8 is an injective, surjective or bijective self-mapping of E t h e n 8-Pis injective, surjective or bijective as well, respectively. I. e., S (E)>P is the set of all bijective ^-points while G'P is the set of all bijective points of D - P . On the other hand, R * = D - P ^ R J P Q QR1*0* has already been proved. Hence it is sufficient to show that the set of all bijective points of r*=D- P can be obtained from this relation via a combination of fundamental operations. First, an v?-point Q is not injective iff there exist x, x^y, such that Q,'X=Q-y, i.e., iff ggextjf • jD^J,. Therefore the set of injective points of r is E / S E / S B / S L r** = r*n(-|. u Dx„) = r + n( n (l-Ac.,))x.yit x^y x.yiX x*y As we do not want to use the axiom of choice, two cases have to be handled even if E is infinite. (1) There exists no bijection from E(and also of T) onto any of its proper subsets. Then every injective ^-point of E is surjective and r** is the set of all bijective points of r*. Now r ** is obtained from r* and from simple diagonals via infinitary boolean operations, whence (cf. Remark 10 of Section 2 and the discussion of operations IV. 1-2 in the same section) r** can be obtained from r* via a combination of fundamental operations; which was to be proved.1* (2) There exist bijections from E onto some of its proper subsets. Then a set $ Z°) and a mapping P can be chosen so that Jt^X0. Let y be an element of X°\% and put X^-i'LIf}'}. Let Q: %—E be an injective point and consider an arbitrary {Q} XEM. Now, if Q is bijective (i.e., surjective) then Q' -y belongs to E=Q- Z=(Q'\X)- X. Hence there exists an x^X such that Q'-x=Q'-y. I.e., Q' cannot be injective. Conversely, if Q is not surjective then there are an e£E and a Q' such that e$QQ' -y—e and Q' is injective. So when Q' ranges over the set of all injective points of ext x , • r** then (Q' ]%) ranges over the set of all non-bijective points of r **. The set of injective points of ext x . • r** is, visibly, est*- • r**fl(~l • (J ext x . Dx,y). *) Originally I proved the equivalence theorem of abstract Galois theory without using the axiom of choice under the assumption card X 0 Scard E+1. It was B. Poizat who found the present proof with card E instead of card E+1 for the case (1). P. June proved that card E can be replaced even by card E—L when E is finite. M.Krasner:Abstract Galois theory and endotheory. I Therefore the set of bijective points of r** is G. P = r*** = r**n(~| • p r , • (extjf- • r* + n(~l • U e x t X - D x , y ) ) \ xtX which is obtained from r** and also from r*=D • P via a combination of fundamental operations. This completes the proof. R e m a r k 1. If card Z°Scard E then we have Rm=Rp and Km=R?f\ Indeed, we have seen that D El ^x ! >)=D E/R and GEiR(x")=GE/R. Thus the equivalence theorems together with the fact that R (x0) resp. RixV) is closed with respect to direct resp. to all fundamental operations yield = ( i F ^ f = jp°> and R(p = (R«yp = R«\ This means that a relation under X° belongs to R f f i iff it is stabilized by all selfmappings of is that stabilize every r£R, and, analogously, it is in Rp iff it is preserved by all permutations of E that preserve every rdR. R e m a r k 2. Let S and S' be structures under X°, where card X°^card E. It follows from the equivalence theorems that it does not depend on the particular choice of X° whether S and S" are (directly) equivalent below X° or not. Therefore the notion of equivalence and that of direct equivalence can be defined without any reference to a particular X° in the following way: Two structures, S and S', are said to be equivalent resp. directly equivalent (in notation S~S' resp. S~S') if there exists a set A-0 such that card Z°Scard E, S and S' are under X°, and S and S' are equivalent resp. directly equivalent below X°. In particular, if R and R' are under X° and X0' 5 X° then we have R<,pnR<Ex0)=Xtf0), RT} = R^HR?0) and = R<X°\ Rjxo-> = (R}x°>)tf°->. Thus a set of relations under X0', which is closed with respect to direct resp. all fundamental operations and its part below X°, which is also closed with respect the same operations below X°, mutually determine each other. More generally, if card X° s == card E and card X0' =?card Eand R is under x ° n x 0 ' then R(xp and R f p mutually determine each other (because any of them is characterized by and so do R<p and R f ' \ R e m a r k 3. We are going to define two preorders, the thin (alias direct) Galois preorder ^ and the thick Galois preorder 3 . For structures S=(E, R) and S"= <J =(E, R') we write S^S' resp. S^S' if there is a set X° such that c a r d Z ° S Q is card E, S and S' are under X and RpQR'Jf^ resp. RpQR'}x\ Note that f and ~ are the equivalence hulls of and S , respectively. For a structure S under M. Krasner 282 X° let C S f ^ S ) and C< x0) (S) denote the ~-class and ~-class of 5, respectively. Then, by the equivalence theorems, the mappings C < £ 0) (S)—D E/s and C ^ i S ) — - * G e / s are injective, are decreasing with respect to thé orders ^ and and do not depend on the choice of X°. (Here the orders are induced by the similarly denoted preorders.) These mappings map and R^which do not depend on X°, onto the set of semigroups of self-mappings of E that contain 1 B and onto the set of permutation groups on E, respectively. (This is an easy consequence of the existence theorems.) R e m a r k 4. Let S—(E, R) be a structure under X°, where card A^&card E, put D=Dm, let J? be a subset of X° with card card E, and let P: X—E be a bijective point. We have seen that any relation in R!ff)=R<g°)= R^ can be obtained from D • P via a combination of direct fundamental operations. (More precisely, first projections, then dilatations and finally an infinitary union have to be applied.) Case of finite base set. In case E has only a finite number of elements, say m elements, it suffices to take a finite set X°={x1, ..., xn} with « ë m in the equivalence and existence theorems. If S=(E, R) is a structure under this X" then R is a finite set of relations. Further, the infinitary boolean operations are, in fact, the ordinary ones. So every structure can be considered as a model (with base set E ) of some finite system Pi(Xj), ..., PS(XS) of predicates (with no axioms). (Here each P^Xi) depends on a set XtQX° of object variables.) By a model (with base set E) of the previous system of predicates we mean a mapping r: Pi(X^)—r(Pi) ( / = 1 , ..., j ) where r(P¡) is an ^-relation on E. This mapping will be extended, in the following way, to a mapping F-*r(F) from the set of all formulas F=F(P1, ..., Ps) obtained from Plt..., P, via the operations of the predicate calculus with equality, used below X°, in to the set of relations under X°. Firstly, these operations are generated by the following ones via superposition: (1) disjunction, i.e., (P,Q)-P\jQ\ (2) conjunction, i.e., (P, (3) negation, i.e., Q)-*PbQ\ P—~\P; (4) existential quantification, i.e., ? ( I ) - ( 3 x ) / > ( I ) where (5) adjunction of a set of fictitious variables, i.e., P(X)—Px\X') QX'QX0 and X^X is the set of fictitious variables; xeXQX0; where X<^ (6) floatages, i.e., P(X)—Pl(X-X) where A is a bijection of X—{x,(l), xl(S), ...,xi(l)} ( l s / ( l ) < / ( 2 ) < . . . < / ( r ) ^ n ) onto a subset X-X and of X° M.Krasner:Abstract Galois theory and endotheory. I (7) adjunction of equality predicates x=y (JC, y£X°), which may be proper equality predicates if x and y are distinct or the x-identity predicates x=x. It is not hard to see that any fundamental operation is a superposition of some of these seven kinds of operations. Really, U and D are iterations of disjunctions and conjunctions, pr y is a suitable iteration of (4), contractions can be composed from projections and (6), and any dilatation [t/r] is a superposition of a floatage, of an extension, and of an intersection with some simple diagonals (see the discussion on the axiom of choice after the definition of direct fundamental operations). The above considerations allow us to extend r to all formulas F(PX,..., Ps) below X° in the following obvious way, via induction: put (1) r(PV0 = r(P)Ur(0, (2) r(P&Q) = (3) r (IP) (4) r((3Z)P(Z)) = p r x X w r ( P ( X ) ) , (5) r(Px') = ext x , r(P), (6) r(Px) = (7) r(P)C\r(Q), =lr(P), (X)-r(P), r(x = j>) = DXty if x and y are distinct while r(x — x) = 7({JC}; E) = Now it is clear that the set of all r(F(P1(X1), ..., PS(XS))), where F= = F(Tl(X1), ..., T,(XS)) ranges over all formulas of the predicate calculus with equality sign that depend on.the predicate variables Tx(A^), ..., TS(X^, coincides with the logical closure R(p of R={r(Pj),..., r(Ps)} below X°. On the other hand, it is easy to see that the realizations (i.e., r-images) of the operations TV T', Tb T', (3x)r(A-) for x£X, T(X)-*Tx'(X') for XQX', the adjunction of x=y and also of "1 (x=x) are direct fundamental operations. Conversely, every direct fundamental operation is the realization of an appropriate superposition of these operations. Let us call the part of predicate calculus (below X°) generated by these operations strictly positive predicate calculus (below X°). Then BSjfp is the set of r(F(Pl, P 2 , ..., PJ) where F(Tlt ...,T,) ranges over the formulas of strictly positive predicate calculus (below X°) that depend on the predicate variables T^T^XD (i— 1,2, ..., j). So we have • E q u i v a l e n c e t h e o r e m s f o r a f i n i t e b a s e set E. Let M=(E\ Pt(X{)-* — riQExi (i=l, ..., J)) be a model of a system of predicates {P£X,); i = l , 2, ..., j}. Then a relation r on E is of the form r(F(P1, ..., P,)) for some formula M. Krasner 284 F(7'1(A'1), ..., Ta(Xs)) of the predicative resp. strictly predicative calculus below X° if «and only if r is preserved resp. stabilized by all erg S(E) resp. d£D(E) that preserve resp. stabilize all rt (/=1, ...,s). (The set X° is supposed to contain all Xt and to have at least as many elements as E.) Examples of some classical structures 1. The structure of the classical Galois theory. Let E/k be a commutative field •extension which is normal algebraic or algebraically closed. Consider two {x, y, z}relations on E, +(x,y,z) and X(x,y, z) such that P£ +(x,y, z) iff P-x+P-y= =P-z and P£X(x,y,z) iff (P-x)(P-y)=P-z. For e£E let (x; e) denote the {x}-relation on E with the property P g ( x ; e ) i f f P x=e. Put RX)={+(x,y, z), X(x, y, z)}U{(x; a); a£k}, and let A be a subset of E. We can consider the struct u r e S=S0(A)=(E, a); a£A}). Then GE/S coincides with the ordinary •Galois group of the field extension E/k(A) while DE/S is the monoid of all isomorphisms of E/k (A) into E. Note that GE/S and DE/S are the same when E/k (A) is .algebraic. For f ( x l t ...,xn)€k[xlt ...,*„] let ( / = 0 ) denote the { x j , . . . , ^ - r e l a t i o n on Esuch that an {xi, . xj-point P belongs to ( / = 0) iff f(P-xx, ...,P-xn)=0. Then +(x,y,z) = (x+y-z = 0), X(x, y, z) = (xy-z = 0) and (x;e) = (x-e = 0). Let R¿ = { ( / = 0); / ( № , x2,...] = k[{xn; n€N*}]} •(here N* stands for the set of positive natural numbers). We claim that R0 and R'0 are deducible from one another by means of direct fundamental operations. Really, a standard argument shows that the same self-mappings of E stabilize RQ as R'0, whence the equivalence theorem of abstract Galois endotheory yields this assertion. The aim of the classical Galois theory, as we have seen it in the introduction, is to •determine the set A of all a £ E that are preserved by each a £ G E / k W . (Note that A coincides with the set A of all elements in E that are preserved by each 5gD £ / t ( i 4 ) .) It is clear that <7-5=5 is equivalent to <r-(x; 5) = (JC; 5). The abstract Galois theory answers this problem by describing A as follows: a€A iff (*;a)€(^,U{(*;a); a € ¿ } ) / = W { ( x ; a ) ; a<LA})f. On the other hand, the classical Galois theory says that A is the closure of k U A with respect to addition x+j>, multiplication xy (both defined on EXE), inversion j c - 1 (defined on £*=JET\{0}) and, when the characteristic p of k is not 0, forming of Abstract Galois theory and endotheory. I 285 p pth roots f x (defined on Ep={xp; The second result can be deduced from the first by means of "abstract Galois set theory", to be exposed in Section 6, and of the theory of "eliminative structures", to be exposed elsewhere. Although this deduction is quite complicated, it reveals deep reasons why the operations x+y, xy, JC-1 p and \ x , and only these operations, occur in the above-mentioned result of the classical Galois theory. Moreover, it can be shown that {GE/k(A); AQE) is the set of all subgroups of G m that are closed with respect to the finite topology ("Krull topology") on D(E), provided Ejk is algebraic. 2. A slightly different structure is obtained if we replace (x; e)=(x—e=0) by (x,y; e)=(y—ex=0). I.e., R0 is replaced by and R0(A) by -RJ = {+ (*» * z)> X(*. y>z))u R*(A) = {(x,y;a); Let S*(A) stand for (£,1%(A)). ~S0(A). Indeed, and (y-ex (x-e y;a);aek} adA)\JB$. Then we have = 0) = pr{Xir} •((y-zx = 0) = pr {x} • ((x-ey •((yz-t {(*> = 0)D l(y+z-t = 0)f)(z-e i.e., S*(A)~ = 0)) = 0)flpr {;CiJ ,j ext{x,„,Zft} • = 0)DD { y , z , t } (E))). Similarly, DEisZ(A)=DEjSo(A) U {0}, where 0 denotes 2?—{0}, the zero homomorphism of E. 3. Linear Galois theory. Let fc be a not necessarily commutative field, and let E/k be a field extension. We consider and K L ) = {+(*,;>, z)}U {(*,;>; a); a€fc} SlL>(A) = (E, U {(x, y, a); a£A}). The stability monoid DBIS^-\A) of E/S(0L)(A) is the semigroup AE/k(A) of all linear transformations k: E—E of the left vector space E over the field k(A) (the field generated by kUA), while the Galois group GE/S^HA) of E/S^L)(A) is the group of bijective linear transformations of the same vector space, i.e., it is the general linear group GLk(A)(E) of E over k(A). The two main questions of this theory in classical algebra are the following: how to determine the set A of all a£E such that every S^DE/S^^A) stabilizes (x,y;a); and which submonoids of DEIS^=AB/k are of the form DEISU-\A) for some AQE. It can be shown, in an elementary, way, that 2,—k(A). As regards the second question, Jacobson's density theorem yields the following 3 M. Krasner: Abstract Galois theory and endotheory. I answer. For a given e£E let (e) denote the linear transformation x—xe of the left vector space E/k, and put (E)={(e); e£E). Then (E) is a field with respect to the addition and multiplication in Am, and (E) is anti-isomorphic to E. Now, a submonoid A of AB/k is of the form DE/S^ for some AQE if and only if A is a subring of AB/k containing (E) and closed with respect to the finite topology on D(E), the set of self-mappings of E. 4. Homogeneous Galois theory. Let E/k be the same as in the first example; we put Kh) = {+(*, y, z), n(x, y, z, t) = (xy-zt and R&h)(A) — jR£h)U{(x;a); = 0)}U{(x; a); ccÇk} a£A}. It is easy to show that Gew»\a) and DmRw(A) are the group generated by the ordinary Galois group G ( together with the group E / K A ) (£*) = {(e): * - xe; e(LE* = £ \ { 0 } } of multiplications by the non-zero elements of E, and the semigroup generated by the ordinary stability monoid DElkiA) together with (E*). In order to describe the set A of all elements 5Ç.E that are preserved by every oÇ.GEiRu>\a), which is the same as the set of elements preserved by all let k(B) denote the perfect closure (in E) of the field k{B) generated by B (where BQE). Then A=ak(a~1A)= A}) for some (moreover, for any) non-zero element a in A, and {0} = = {0}. Finally, note that R^ can be replaced, up to direct equivalence, by the set { ( / = 0 ) ; f€k[x!,x2,...] and / is homogeneous}. References [1] M. KRASNER, Une generalisation de la notion de corps, J. Math. Pures Appt., 17 (1938), 367— 385. Generalisation abstraite de la théorie de Galois, in : Algebra and Number Theory (24th International Colloquium of CNRS, Paris, 1949), 1950; pp. 163—168. [3] M . KRASNER, Endothéorie de Galois abstraite, in: Proceedings of the International Math. Congress (Moscow, 1966), Abstracts 2 (Algebra), p. 61. [4] M . KRASNER, Endothéorie de Galois abstraite, P. Dubreil Seminar (Algebra and Number Theory), 22/1 (1968—1969), no. 6. [5] M. KRASNER, Endothéorie de Galois abstraite et son théoreme d'homomorphie; C- R. Acad. Sci. Paris, 232 (1976), 683—686. [61 B. POIZAT, Third cycle thesis, 1967. [7] P . LECOMTE, Doctoral thesis. [2] M . KRASNER, Acta Sei. Math., 50 (1986), 287—298 Rédei-Fnnküonen und ihre Anwendung in der Kryptographie RUPERT NÖBAUER 1 ) ' 1. Einleitung. In [8] hat L. RÉDEI eine Klasse von rationalen Funktionen über einem endlichen Körper K ungerader Ordnung untersucht, die Permutationen von K induzieren. In der vorliegenden Arbeit erfolgt nun u.a. eine Übertragung der von L. Rédei gefundenen Ergebnisse von endlichen Körpern K auf Restklassenringe Z/(m) des Rings der ganzen rationalen Zahlen modulo ungerader natürlicher Zahlen m. In Abschnitt 2 werden rationale Funktionen über Z/(m) definiert, die den von L. Rédei untersuchten Funktionen entsprechen und die daher als Rédei-Funktionen bezeichnet werden. Es wird gezeigt, daß bestimmte Mengen von Permutationen von Z/(m), die durch solche Rédei-Funktionen induziert werden, bezüglich der Komposition Gruppen bilden. In Abschnitt 3 wird die Anzahl der Fixpunkte der durch Rédei-Funktionen induzierten Permutationen von Z/(m) berechnet. In Abschnitt 4 wird die Struktur von durch Rédei-Funktionen induzierten Permutationsgruppen von Z/(/w) ermittelt, und es werden alle ungeraden m bestimmt, für die diese Gruppen zyklisch sind. In Abschnitt 5 wird u.a. gezeigt, daß es für jedes ungerade wiS3 Permutationen von Z/(m) gibt, die durch Rédei-Funktionen induziert werden und die nur einen Fixpunkt aufweisen, und es wird eine Aussage über die Anzahl derartiger Permutationen hergeleitet. In Abschnitt 6 erfolgt die Beschreibung eines Public-Key Kryptosystems — also eines Verschlüsselungssystems mit öffentlich bekanntem Schlüssel (vgl. [1]) — auf der, Basis von Rédei-Funktionen. Das Verfahren kann als Variante des RSA-Schemas (siehe etwa [9]) angesehen werden: Beim RSA-Schema erfolgt die Verschlüsselung der Nachrichten mit Hilfe solcher Permutationeri von Z/(m), die durch Potenzen yp induziert werden, beim vorliegenden System erfolgt sie mit Hilfe von durch Received March 21,1984 and in revised form July 17,1984. l ) Der Autor dankt dem Institut für Mathematik der Universität Klagenfurt für die Ermöglichung dieser Arbeit. Weiters dankt der Autor dem Referenten für wertvolle Verbesserungsyorschläge. 3* R. Nöbauer 288 Redei-Funktionen induzierten Permutationen. Das vorliegende System ist eine Verallgemeinerung des von R. LIDL und W. B. MÜLLER in [3] vorgeschlagenen Systems, und zwar von Z/(m), m quadratfrei, auf Zl(m), m beliebig. 2. Einige grundlegende Tatsachen. Wir wollen zunächst einige allgemeine Bemerkungen über rationale Funktionen machen, die Permutationen von Z/(m) induzieren. Sei m eine beliebige natürliche Zahl und sei f(x)=g(x)/h(x) Quotient von ganzzahligen Polynomen, welche teilerfremd in Z[x] sind. Man nennt / ( * ) Permutationsfunktion von Z/(m), wenn h(u) für jedes ganze u eine prime Restklasse mod m ist und wenn die Abbildung n: mod m von Z/(m) in sich eine Permutation ist (vgl. [6]). Ist speziell h(x)—l und f(x)=g(x)/l eine Permutationsfunktion von Z/(m), so nennt mao/(x) Permutationspolynom von Z/(m). Ist m=ab mit 2) (a, b)—l, so ist f ( x ) genau dann Permutationsfunktion von Zfcab), wenn es Permutationsfunktion von Z/(o) und von Z/(b) ist. Weiters ist f ( x ) genau dann Permutationsfunktion von Z/(p e ), e > l , wenn gilt: f ( x ) ist Permutationsfunktion von Z/(j>), und / ' ( m ) ^ 0 mod p für jedes ganze u (vgl. [6]). Man nennt zwei Permutationsfunktionen /!(*), f2(x) von Z/(m) äquivalent, wenn es ein lineares Polynom p(x)=cx+d, (c, m)= 1, gibt, sodaß gilt ft(x) = p-1(x)of1(x)op(x), wobeip~*(x) das bezüglich der Komposition o zu p(x) inverse Polynom c~xx—c~xd bezeichnet. Sei n eine ungerade natürliche Zahl, und sei a eine ganze Zähl mit a Nichtquadratelement in Z, also mit a Nichtquadratelement in Q, dem Körper der rationalen Zahlen. Seien gn(x), k„(x)€Z[x] definiert durch (x+Y*)a (2.1) = gn(x) + hn(x))fc. Eine explizite Darstellung von g„(x) und hn{x) ist gegeben durch®) &(*) = 2 ("i) *.(*) = 2 (2i + lj«'X"-2-1. Es gilt hn(x)9i0 in Q(fa)(x), dem rationalen Funktionenkörper über Q{fä), und somit h„(x)y^0 in Z[x], Denn wäre h„(x)=0, so würde folgen ( x + y a ) " = =g„(x), also (^ct)"€Z, und dies ergäbe einen Widerspruch. Die Polynome g„(x), h„(x) sind teilerfremd in Z[x], denn für d„=(gn(x), h„(x)) erhält man aus (2.1) durch Herausheben von d„(x) unter Beachtung der Tatsache, ') (fli,..., a„) bezeichne den größten gemeinsamen Teiler, [ a l t . . . , a j das kleinste gemeinsame Vielfache der Zahlen a x a^. a ) [a] bezeichne die nächstkleinere ganze Zahl von a. Rldei-Funktionen 289 daß Q{fä)[*J ein ZPE-Ring ist: i i n ( x ) = ( x + / ä ) s mit O^s-zn. s=0, also d„(x)= 1. Daraus ergibt sich Wir setzen nun f„(x)=g„(x)jh„(x). Nach den obigen beiden Bemerkungen ist der Nenner h„(x) der rationalen Funktion/, (x) von 0 verschieden, und die Darstellung g„(x)/h„(x) ist bereits gekürzt. In Q(fä)(x) gilt (22) fx+^T /„(*) + /« U-j/aJ /.(*)-/«' Daraus folgt ÄJx)+Vä A(/„(x))+A = / * „ ( * ) A ( L ( x ) ) - y ä ' und man erhält (2.3) Mx)ofn(x) =fkn(x) für beliebige natürliche Zahlen k und n. Für eine ungerade Zahl m—pe^...pe/ soll die Menge aller Permutationen von Z/(m) untersucht werden, die durch bestimmte Permutationsfunktionen f„(x) induziert werden. Daher wird als erstes nach Bedingungen gefragt, under denen fn(x) Permutationsfunktion von Z/(m) ist. Es sei m=pe (p ungerade Primzahl, ein quadratischer Nichtrest m o d p und n eine natürliche Zahl mit {n,pe~1(p+\))=\, dann ist fn(x) Permutationsfunktion von Z/(pe). Für e—1 folgt dies aus der Arbeit von L. R I D E I [8]. Für e=>l erhält man aus (2.2) durch beiderseitiges Differenzieren J x + f t ) " ' 1 —2 ~\fä. ix-fc) {x-fcy also f'M -2<f;jx)YZ (fn(x)-l/^y ' _ \(x)-j*y _ (x-yäy^ - J n W = n(xl-a)n-1(fn(x)-f^)2 (x-i^r = = «(x2-«)"-1^^)-^")2 (gn(x)-K(x)Väf = «(x2-«)"-1 K(xY ' und daraus folgt f ' n ( m o d p für alle ganzen u. Wir nennen derartige Permutationsfunktionen Redei-Funktionen. Es sei Pp„ die Menge aller jener Permutationen von Z/(pe), die durch Redei-Funktionen mit einem festen a induziert werden. Wegen (2.3) bildet Pp„ bezüglich der Komposition eine Halbgruppe, die als Unterhalbgruppe der vollen Permutationsgruppe von Z/(pe) regulär und endlich, also sogar eine Gruppe ist. (Im Spezialfall e=l folgt dies ebenfalls aus [8]). 290 R. Nöbauer Betrachtet man den allgemeinen Fall m=p\i...pe/, so folgt aus dem Vorherigen, daß /„(x) eine Permutationsfunktion von Z/(m) ist, wenn (n, pf'~1(pi+l))=l gilt und a ein quadratischer Nichtrest mod pt, / = 1 , ..., r, ist. Ist Pm die Menge aller durch Redei-Funktionen mit gegebenem a induzierten Permutationen von Z/(m), dann bildet — wiederum wegen (2.3) — Pm eine kommutative Halbgruppe, die regulär und endlich, also sogar eine Gruppe ist. . Die Struktur dieser Gruppe ist unabhängig von der speziellen Wahl von a : Ersetzt man a durch aß2, ß^O m o d p t , i= 1, ..., r, so gehen die Permutationsfunktionen /„(x) über in die äquivalenten Permutationsfunktionen ßf„(x/ß), wie man mit Hilfe von Gleichung (2.1) leicht erkennt. Bezeichnet x die durch ßx induzierte Permutation von Z/(m), so geht also Pm über in die isomorphe Gruppe zPmx~\ Die Klärung der Struktur der Gruppe Pm wird in Abschnitt 4 vorgenommen; dabei wird als wesentliches Hilfsresultat die in Abschnitt 3 berechnete Anzahl der Fixpunkte von Permutationen n„£Pm herangezogen. 3. Fixpunkte. Zur Berechnung der Fixpunktanzahl von Permutationen n„€P m werden Kenntnisse über einen speziellen Erweiterungsring von Z/(/>e) benötigt. Sei p eine ungerade Primzahl, sei a eine ganze Zahl mit a quadratischer Nichtrest mod p, und sei e s l . Man bilde den Faktorring Z[x]/(x2—oc,pe) des Polynomrings Z[x]. Da u(x)(x2—a)-\-v(x)pe = a mit a£Z dann und nur dann gilt, wenn <2=0 mod pe, ist durch rj(a mod pe) = a mod (x2—a,pe) ein Monomorphismus von Z/(pc) in Z[x]/(x2—a,pe) definiert, also kann man Z/(p°) in Z[x]/(x2—a,pe) einbetten. Bezeichnet man die Restklasse von x mit ]fä, dann gilt ( / a ) 2 = a . Somit läßt sich jedes Element von Z[x]/(x2—<x,pe) darstellen in der Form a 1 f ü + b mit a, b£Z/(pe). Da aus ax+b = u(x)(xz—a) + v(x)pe folgt a = 6 = 0 mod/?®, ist diese Darstellung eindeutig. Wir setzen im folgenden Z ( p e , a)=Z[x]/(x 2 —a, pe). Es gilt: Ist ^ der kanonische Epimorphismus von Z/(pe) auf Z/(p), so ist durch ö(a]fa +b)=(£a)fix +£b ein Epimorphismus von Z(pe, a) auf Z(p, a) definiert, der ebenfalls als der kanonische Epimorphismus bezeichnet werden soll. Wir zeigen nun Lemma 1. Die invertierbaren Elemente von Z(pe,a) sind genau die Elemente a~fü+b, für die nicht gleichzeitig a=0 m o d p und 6 = 0 mod p gilt. Beweis. Ist ߣZ(pe, a) invertierbar, dann ist auch öߣZ(p, a) invertierbar, also gilt nicht gleichzeitig a = 0 mod p und 6 = 0 mod p. Gilt umgekehrt nicht 291 Rldei-Funktionen gleichzeitig a=0 mod p und b = 0 mod p, dann gilt wegen der Wahl von a \b a = b2—aa2 ^ Omod/7, laa b über Z/(pe) invertierbar, also ist das lineare Gleichungs- . also ist die Matrix ^ system bu+av = 0 m o d p e , txau+bv = 1 mod^e lösbar, und für die Lösung des Systems gilt (a ]fü+b){u fä+v)=\. invertierbar. Somit ist a fä+b Es werde im folgenden mit G p . die Gruppe der invertierbaren Elemente von Z(p , a) bezeichnet. Wegen Lemma 1 gilt | Gp„ | = ( p e f - (p*-1)2=(pe~ T O 2 - 1 )• In Gp. bilden die invertierbaren Elemente von Z/(pe) eine Untergruppe Z p „ der Ordnung pe~\p-\). Somit gilt \Gp*/Zp.\ =pe~1(p +1). Klarerweise ist 5 ein Epimorphismus von Gp„ auf Gp. Grundlegend für das folgende ist e L e m m a 2. Die Gruppe Gp„!Zpe ist zyklisch. Beweis. Da Z(p, a) ein Körper ist, ist (^zyklisch. Daher ist auch GJZp zyklisch. Sei gZp erzeugendes Element von Gp/Zp und sei ß ein Urbild von g bei 8. Sei o die Ordnung von ßZp., dann gilt ß°£Zp.. Es folgt g°iZp, also o=(p+\)r. Die r r Ordnung des Elements (ßZp„) =ß Zp. beträgt somit p +1, und wir haben gezeigt: In Gp„/Zp. gibt es ein Element der Ordnung p +1. Wir betrachten nun das Element y = ( l +p]fc)eZ(pe,a). Es gilt / ° = 1 + 1 2 e +p fä +p r0 mit r 0 €Z(p , a). Es sei für ein/'mit 0^i<e—l schon gezeigt, daß yp* = l + p-'+i]/«" + pt+2rt mit r£Z(pe, x). Dann gilt yp'*' = (yp')p = (l+p'+i = l+pi+2 Daraus folgt, daß die Ordnung von yZp. den Wert pe~1 hat, und damit haben wir gezeigt: In Gp„/Zp„ gibt es ein Element der Ordnung pe~x. In abelschen Gruppen gilt: Haben zwei Elemente xlt x2 die teilerfremden Ordnungen o1 und o 2 , dann hat das Element x1x2 die Ordnung o1o2. Somit hat in Gp./Zpa das Element yßrZp0 die Ordnung pe~1(p+1), und Lemma 2 ist bewiesen. L e m m a 3. In der Gruppe Gp./Zp. bilden die Elemente (r/a-f-s)Z p . mit r = 0 mod p eine zyklische Untergruppe der Ordnung pe_1. 292 R. Nöbauer Beweis. Die Menge der r/ä+s£Gp. mit r = 0 m o d p ist die Urbildmenge von Z p bei <5, also selbst eine Untergruppe Up.czGp. mit Zp.<zUp.. Somit ist Up.IZp. Untergruppe von G p ./Z p „, die als Untergruppe einer zyklischen Gruppe zyklisch ist. Wegen \Up.\=pe~1(p—\)pe~1 folgt |t/ p „/Z p .|=p e - 1 , womit Lemma 3 bewiesen ist. Es soll nun die Anzahl der Fixpunkte der durch f„(x), (n,pe~1(p +1))=1, induzierten Permutationen n„ von Z/(^ e ) bestimmt werden. Dazu zunächst eine Vorbemerkung:In Q (/a)[x] bildet Z [ / ö ] [x]einen Unterring; es sei q der kanonische Epimorphismus von Z []/<*] [x] auf Z(pe, a)[jc]. Dann erkennt man durch Anwendung von Q auf (2.1), daß (x + lfcY = gn(x)+h„(x)fc auch in Z(pe, a ) M gilt- Zum Abzählen der Fixpunkte von n„ benötigen wir folgendes L e m m a 4. Die Anzahl der Fixpunkte von n„ ist gleich der Anzahl der Elemente u£Z/(pe), für welche gilt. Beweis. Sei u Fixpunkt von n„. Dann gilt /„(«) = « m o d p e , also g„(u)=u • h„(ü) mod pe, und somit gilt in Z(pe, a) (M + }^)" = Daw+Va" regulär ist, folgt (u+Y^f^^K h„(u)(u+fc). (u)£Zp,, und daher gilt ((w+/cT)Z p<I ) n - 1 = Sei umgekehrt ((u+iföi)Zp.y-1=Zp., also (u+fä.)n~1=yZZpc. Dann gilt n (u+fü) —yu+yia =gn(u)+h„(u)fä, und es folgt gn(u) = uh„(w) modp e , d.h. e f„(u) = u m o d p . Damit ist Lemma 4 bewiesen. Da die Elemente von UpC/Zp. kein Element der Gestalt ^öT+w, die übrigen Elemente von G p „/Z p . aber genau ein Element dieser Gestalt enthalten, ist die Anzahl der Fixpunkte von n„ gleich der Anzahl der Lösungen der Gleichung £ n - 1 = 1 in der Gruppe Gp,/Zp. minus der Anzahl der Lösungen in der Gruppe l/ p ,/Z p „. Da \Gp./Zp.\=pe-\p+l), gilt in Gp./Zp. genau dann, wenn ^-I.P-'CP+I)) = I. Die Anzahl der Lösungen dieser Gleichung in der zyklischen Gruppe Gp./Zp. beträgt (n — l,pe~1(p + l)). Ferner gilt wegen \Up4Zp.\=pe~x in Up./Zp. genau dann wenn ¿; ( "~ 1 ' P °" I) =1; die Anzahl der Lösungen dieser Gleichung in der zyklischen Gruppe t/ p ./Z p . beträgt (n — l,pe~1). Wegen (n—l,pe~1(p + l))= =(n — l,pe~1)(n — l,p + l) gilt also folgendes L e m m a 5. Sei (n, pe~1(p + l))=l. Dann ist fix (pe,n), die Anzahl der Fixpunkte der durch f„(x) dargestellten Permutation von Zj(j>e), gegeben durch 43 Rldei-Funktionen S a t z 1. Sei m eine ungerade natürliche Zahl mit der Primfaktorzerlegung m= e =Pil-P% i— 1» und sei ol eine ganze Zahl mit a. quadratischer Nichtrest m o d p l y / = 1, ..., r. Sei v=[pe^~1(j>1+\), .•.,pe/~1(j>r+1)], sei n eine natürliche Zahl mit (n,v)—l und sei d=(n—l, v). Dann ist fix (m,ri), die Anzahl der Fixpunkte der durch f„(x) dargestellten Permutation von Z/(m), gegeben durch fix (m, n)= n (d, Pp-1)^, Pi+l)~ i=i 1). r Beweis. Aus dem Chinesischen Restsatz ergibt sich ßx(m, n ) = ] / ß x (pf', n)~ ¡=i Gemäß Lemma 5 gilt fix (pf>, n ) = ( n — l , p f ' ~ l ) ( ( n — l , p , + l ) — l ) . Aus pf'~ 1 lv folgt (rt-l,p?-1)=(n-l,v,tf-1)=((n-l,v),rt-l)=(d,tf-1), und aus (p,+l)|t> folgt ( n — l , p t + l ) — ( n — l , v , p f + l ) = ( ( n — l, v ) , p t + l ) = ( d , p { + l ) . Somit erhält man fix (Pf', n ) = ( d , p f ' ~ 1 ) ( ( d , p i + l ) — l), und daraus ergibt sich die Behauptung. 4. Die Gruppenstruktur. Es seien m, a, v, n und d wie in Satz l,und es bezeichne 7in die d u r c h i n d u z i e r t e Permutation von Z/(m). L e m m a 6. Genau dann induziert f„(x) die Einheitspermutation e von Zl(m), wenn gilt « = 1 m o d v . Beweis. Genau dann gilt n„=e, wenn jedes Element von Z/(/w) Fixpunkt bezüglich 7in ist, und dies ist gleichbedeutend mit fix (m, n)=m. Nach Satz 1 gilt Gx{]Jpp,n)= ¿Pf' i=i i=i genau dann, wenn gilt (d,peil~1)=peii~1 und {d,pl+\)=pi+\ für / ' = 1 , . . . , ry also dann und nur dann, wenn \ d und (/»¡+1)1«/, / = 1 , ..., r, und dies ist gleichbedeutend mit v\d. Da nach Definition von d stest gilt d\v, ist somit 7i„=e äquivalent zu v=d, und damit ist die Behauptung bewiesen. L e m m a 7. Genau dann induzieren f i x ) und f„{x) dieselbe Permutation Z!(m), wenn gilt k = n mod v. Beweis. Sei nk=n„. von Man wähle /=>0, so, daß In = 1 mod v. Gemäß Lemma 6 gilt 8 = n ln = = = nlk. Aus s—nlk folgt — wiederum aus Lemma 6 — lk= 1 mod v, also Ik = In mod v,. und daraus erhält man k = n mod v. Sei nun andererseits k=n mod v. Wieder wähle man / > 0 so, daß /« = 1 mod vy es gilt dann auch lk= 1 mod v. Mit Hilfe von Lemma 6 erhält man 7lk = UkO 7t,„ = 7ik0 7tl0 7in = TtklOn„ = 71„. R . Nöbauer 294 S a t z 2. Die Gruppe Pm aller jener Permutationen von Z/(m), die durch eine Funktion fn(x) mit gegebenem a und («, v)= 1 induziert werden, ist isomorph zu Zv, der primen Restklassengruppe von Z/(v). Beweis. Nach Lemma 7 ist durch i{/(rtn)=n mod v eine wohldefinierte und bijektive Abbildung von Pm nach Z„ gegeben. Diese ist wegen (2.3) mit o verträglich, also sogar ein Isomorphismus. Es sollen nun alle ungeraden m ermittelt werden, für die Pm zyklisch ist. Entsprechende Resultate für andere durch Permutationsfunktionen dargestellte Permutationsgruppen findet man z.B. in [2], [5] und in [7]. S a t z 3. Die Gruppe Pm ist genau dann zyklisch, wenn einer der beiden folgenden Fälle vorliegt: (a) m=3, (b) m >3, m quadratfrei, und es gibt eine ungerade Primzahl q, sodaß sämtliche Primteiler pt von m darstellbar sind in der Gestalt pt = 2qki-l, k ^ l . Beweis. Nach bekannten Sätzen der Zahlentheorie ist Zw genau dann zyklisch, wenn w gleich einem der folgenden Werte ist: (3.1) 1,2,4, qe, 2qe (q ungerade Primzahl, e s 1). Nach Satz 2 ist Pm isomorph zu Z 0(m) . Wir haben also alle ungeraden natürlichen Zahlen m^3 zu bestimmen, für die v(m) einen der Werte (3.1) annimmt. (Da es keine quadratischen Nichtreste modulo 1 gibt, existiert P1 nicht.) Es gilt für alle ungeraden m mit m s 3 , daß v(m)^4, also nimmt v(m) für kein in Frage kommendes m die Werte 1 oder 2 an. Weiters gilt v(m)=4 genau dann, wenn m—3. Sei im folgenden q eine feste ungerade Primzahl, und sei e S l . Angenommen, es gibt ein ungerades wiS3 mit v(m)=qe. Sei pt ein Primteiler von m, dann gilt ( / J j + l j H w ) , also (Pi+l)\qe. Daraus folgt 2\qe, und dies ergibt einen Widerspruch. Es gibt also keine ungeraden Zahlen m mit v(m)—qe. Sei mm m^3 eine ungerade Zahl mit v(m)=2qe. Sei pt ein Primteiler von m, und sei v (m) die Vielfachheit, mit der pt in der Faktorzerlegung von m vorkommt. Wäre V P ( (/M)>1, dann gälte Pi(pt+l)\v(m), also pi(j>i+\)\2qe, und dies ergäbe einen Widerspruch zu pt ungerade. Also gilt vp (m)=l. Wegen (/> f +l)|«(m) gilt (j?i + \)\2qe, und daraus folgt pi+\=2qs mit l W s S e , also p =2qs-\. DieZahl m ist also von der Gestalt (b). Sei andererseits m von der Gestalt (b), und sei r die Anzahl der Primfaktoren von m. Dann gilt v(m) = [2qki, ..., 2qkr] = 2qmax^v -K), Rldei-Funktionen 295 d.h. v(m) ist von der Gestalt 2q e , und Pm ist zyklisch. Damit ist Satz 3 vollständig bewiesen. Als unmittelbare Folgerung erhält man: Mit Ausnahme von 3 gibt es keine natürlichen Zahlen m mit m= 3 mod 4, für die Pm zyklisch ist. 5. Eigenschaften der Fixpunktanzahl. Es sollen nun einige mit der Fixpunktanzahl fix (m, n) in Zusammenhang stehende Fragen erörtert werden. Wie Satz 1 zeigt, ist fix (m, n) bei gegebenem m durch d eindeutig bestimmt. Bezeichnet man für einen festen Teiler d von v die Anzahl der Permutationen n„£Pm, für die gilt (n—l,v)=d, mit o(d, v), dann gilt s a Satz 4. Sind v= JJ q f , £/— 1, und d= JJqV, j=i j=i legungen der Zahlen v und d, so gilt a(d, v) = (vld) #(1 -Ej/qj) mit Ej = Oshj^gj, die Primfdktorzer- ' 2 für h j = 0, 1 für 0 <= hj < gj, 0 für hj = gj. Beweis. (Vgl. [4], wo ein analoges Resultat für die Gruppe der durch die Potenzen yf induzierten Permutationen von Z/(m) hergeleitet wird.) Klarerweise ist a(d, v) die Anzahl der Restklassen a mod v mit (a,v)=d und ( a + l , w ) = l . Nach dem Chinesischen Restsatz kann man die Restklassen a mod v bijektiv zuordnen den j-Tupeln (at, ..., a,), in denen Oj jeweils alle Restklassen modulo qf' durchläuft. Mit Hilfe der Gleichungen a=aj+kjqgji, j=\, ..., s, erkennt man (a, v) = ]J(a, q f j ) = ¿(aj+kjqfj, j=i i qf>) = ¿(üj, J=i qfj). Da der Restklasse fl + 1 das i-Tupel ( ^ - f 1, ..., a s +1) entspricht, ist (a+1, v)= 1 gleichbedeutend mit (a ; + l, qp)=l für alle j und dies wiederum ist gleichbedeutend mit a^ — 1 mod q}, j=\, ...,s. Ferner ist (ßj,qp)=qp gleichbedeutend damit, daß aj=bqmit {b, qj)—1. Die Anzahl der verschiedenen Restklassen ay- mod qp, die diese und die vorhergehende Bedingung erfüllen, ist also gegeben durch q?J-hJ-HqjSj) = qfj-hj(l~£jlqj), woraus die Behauptung folgt. L e m m a 8. Sei dein Teiler von v. Es gilt a(d, v)=0 genau dann, wenn d ungerade ist. Beweis. Da m ungerade ist, hat m einen ungeraden Primteiler pt, und es folgt (,Pi+l)K also 2|v. Sei o.B.d.A. q1=2. Aufgrund von Satz 4 gilt o(d,v)=0 genau dann, wenn für ein ./€{1, gilt l - e y / ^ = 0 , d.h. wenn für ein j gilt e j = q j . 296 R. Nöbauer Wegen gilt dies höchstens für q}=2, also für 7 = 1 . Es gilt £ 1 =q r i, also e 1 = 2 genau dann, wenn ^ = 0 , also wenn ¿/ungerade ist. Damit ist das Lemma bewiesen. Für kryptographische Anwendungen sind speziell die beiden folgenden Problemstellungen von Interesse: (i) Welches ist die kleinste Zahl u>min, die als Fixpunktanzahl einer Permutation nn£Pm auftreten kann? (ü) Wieviele Permutationen nndPm gibt es, die genau wmin Fixpunkte aufweisen? Aufgrund von Satz 1 und Lemma 8 treten als Fixpunktanzahlen von Permutationen n n ^P m genau die Zahlen r i(d, m) = 77 (d, Pi+l)~ 1), d gerader Teiler von v auf. Setzt man d= 2, so erhält man t(2, m ) = l . Es gibt also Permutationen nn£Pm mit nur einem Fixpunkt. Um die Anzahl aller n„£Pm mit nur einem Fixpunkt bestimmen zu können, benötigt man Satz 5. Die Funktion x(d, m) ist streng monoton auf dem Verband der geraden Teiler von v. Beweis. Es ist zu zeigen, daß T(C, m)<t(d, m), wenn c ein echter Teiler von d ist. Da dann (c, und (c, 1)1(^,^+1) für alle /, also ( c , / ^ - 1 ) ^ , / ? ? ' - 1 ) und ( 0 , ^ + 1 ) ^ ( ^ , ^ + 1 ) , folgt jedenfalls t ( c , v ) ^ x { d , v ) . Sei qj eine Primzahl, die in c mit der Vielfachheit vqj(c) und in d mit der Vielfachheit vq (d)>vq (c) vorkommt. Wegen d\v gilt vq (d)Svq (v) = max {vq (pf , - 1 (i?i + l))}. J 1 j J l^i^r J Also gibt es ein / mit q ^ ^ l p ^ i p t + l ) - Ist qj=Pi, dann gilt (c, pei'~1)^(d, p^'1). Ist aber q j ^ P i , dann gilt (c, + />¡ + 1). Daher gilt jedenfalls (c,PF'~ 1 )((C,/' i +l)-l)<(i/,/'F'- 1 )((i/,A+l)-l)> und daraus folgt T ( C , m ) ^ z ( d , m ) . F o l g e r u n g 1. Die Anzahl der Permutationen nn£Pm mit nur einem beträgt 1 für v ^ 0 mod 4 («,/25)77(1-2/?;) mit ö = 2 für v = 0 mod 4. Fixpunkt Beweis. Sei d ein gerader, von 2 verschiedener Teiler von v. Dann ist 2 echter Teiler von d, und aus Satz 5 folgt 1—t(2, m)-<-x(d, m). Somit ist die Anzahl der Permutationen n„ von Z/(w) mit nur einem Fixpunkt gleich <r(2, v). Aufgrund von Satz 4 folgt daraus unmittelbar die Behauptung. 6. Kryptographische Anwendung. Es soll nun die Beschreibung eines Pubüc-Key Kryptosystems auf der Basis der Redei-Funktionen erfolgen. 297 Rldei-Funktionen Jeder potentielle Kommunikationsteilnehmer C wählt eine Faktorenanzahl r und r große Primfaktoren plt...,pr mit zugehörigen Vielfachheiten ex,..., er, bildet r das Produkt m=JJ p\l und berechnet die gemäß Satz 1 definierte Größe v. Weiters wählt C eine ganze Zahl a mit a Nichtrest mod pt, i= 1, ..., r — etwa durch sukzessives Testen zufällig gewählter Testzahlen a mit Hilfe des Eulerschen Kriteriums-. Schließlich wählt C einen Chiffrierschlüssel « > 0 mit (6.1) und (n,v)= 1 (6.2) (« —1, p) = 2 und berechnet zu diesem n durch Lösen der linearen Kongruenz (6.3) nk = 1 mod v einen zugehörigen Dechiffrierschlüssel 0. Im öffentlich zugänglichen Schlüsselverzeichnis veröffentlicht C die Größen mc=m, a c = a und nc=n, hält jedoch die Faktorzerlegung von m sowie kc=k und vc=v geheim. Angenommen, A möchte an B die Nachricht <p übersenden. A sucht aus dem öffentlich zugänglichen Schlüsselverzeichnis die Schlüsselparameter von B, also m B , a B und nB, stellt die Nachricht cp als Folge von Blöcken xt, xfcZUjn^, dar, chiffriert die Xi mittels (6.4) xt •* yt = f„B(.xd mod mB und übersendet die yt an B. Der Empfänger berechnet mit Hilfe des nur ihm bekannten Dechiffrierexponenten kB aus den yt die Nachrichtenblöcke xt: fkB(yd =fkB°fnB(xi) =fkBnB(.xt) =fi+tVB(Xi) = Xi mod mB. Dabei steht t für eine geeignete natürliche Zahl, und die letzte Gleichung gilt aufgrund von Lemma 6. Da zur Berechnung von vB die Faktorzerlegung von mB benötigt wird, jedoch bis heute keine schnellen Algorithmen zur Faktorisierung großer Zahlen bekannt sind, ist es nicht möglich, aufgrund der öffentlich bekannten Informationen mB, aB und nB das zur Berechnung des Dechiffrierschlüssels kB benötigte vB zu ermitteln. Forderimg (6.2) garantiert, daß die durch f„(x) induzierte Chiffrierfunktion nur einen Fixpunkt aufweist. R. Nöbauer: R6dei-Funktionen 298 Literatur und M . HELLMAN, New directions in cryptography, IEEE Trans. Information Theory. IT—22 (1976), 644—654. H . HULE und W . B . MÜLLER, Grupos ciclicos de permutaciones inducidas por polinomios sobre campos de Galois, An. Acad. Brasil- Cienc., 45 (1973), 63—67. R. LIDL und W. B. MÜLLER, Permutation polynomials in RSA-cryptosystems, in: Proceedings Crypto 83, University California, Santa Barbara, 1983. W . B . MÜLLER und W . NÖBAUER, Über die Fixpunkte der Potenzpermutationen, Österr. Akad. Wiss. Math. Naturwiss. Kl. Sitzungsber., II (1983), 93—97. W. NÖBAUER, Über eine Gruppe der Zahlentheorie, Monatsh. Math., 58 (1954), 181—192W . NÖBAUER, Über Permutationspolynome und Permutationsfunktionen für Primzahlpotenzen, Monatsh. Math., 69 (1965), 230—238. W . NÖBAUER, Über Gruppen von Dickson-Polynomfunktionen und einige damit zusammenhängende zahlentheoretische Fragen, Monatsh. Math., 77 (1973), 330—344. L . R£DEI, Über eindeutig umkehrbare Polynome in endlichen. Körpern, Acta Sei. Math-, 1 1 (1946), 85—92. R . RIVEST, A . SHAMIR und L. ADLEMAN, A method for obtaining digital signatures and publickey cryptosystems, Comm. ACM, 21 (1978), 120—126. [1] W . DIFFIE [2] [3] [4] [5] [6] [7] [8] [9] UBW KLAGENFURT UNIVERSITÄTSSTRASSE 67 9010 KLAGENFURT, AUSTRIA Acta Sci. Math., SO (1986), 299—330 Some sufficient conditions for hereditarily finitely based varieties of semigroups G. POLLÂK Introduction The proofs of most theorems saying that one or another variety is hereditarily finitely based are very similar to each other (in so far as syntactic proofs are concerned). The general scheme of such proofs has been described in [6] (see also Theorem 2.5 of the present paper); however, this description does not help much more in future proofs as finger-posts do in alpinism. The essential difficulty usually lies in proving that the objects and relations in the scheme are what they ought to be (sometimes it is not even easy to construct.them). We think therefore that every unification which renders possible to claim that a more or less broad class of varieties is h.f.b. is of interest. In the present paper we give sufficient conditions of the following two types: a) if J is a fully invariant ideal of the countably generated free semigroup F, and a certain quasi-ordered set (connected with F\J) is well-quasi-ordered then the variety SG (J) defined by all identities u=v, u, v£J is h.f.b.; b) if V is a variety, MczF is a standard form for elements of J (i.e. every w £ / equals to some w* iM), and M itself, as well as the "process of standardization" are subject to certain conditions, then every variety in the lattice interval [V, V(~)SG(J)] is finitely based over V. Furthermore, we show that certain concrete subsets of F satisfy these conditions. As an application, we find all h.f.b. identities in one of the four classes of "candidates" to such identities (see [3]; class (d)). This result accomplishes, in a certain sense, the investigations concerning such identities; namely, classes (c) and (d), as well as balanced h.f.b. equations are completely described now (see [1], [4], [6]), homotypical and some other equations of class (b) are settled in [5], and it looks likely that presently known syntactic methods cannot help us much further. Received October 3, 1983. 300 G. Pollik Part L General sufficient conditions 1. Preliminary. We need rather a lot of not generally known concepts and of notations running through this paper; so we have collected most of them here. By the free semigroup F we always mean the countably generated free semigroup F(X) on the set of generators X— {jq, x2, ...}• As we need also the free monoid F°, we shall call the elements of F terms, the elements of F° words (i.e. a word can be empty, a term cannot). The coincidence of words will be denoted by u=v; the formula u=v is an identity which holds in some subvariety V of the variety of all semigroups SG. The empty word, as well as the empty set, we denote by 0; this will not lead to confusion. The set of all variables (letters) which occur in u will be denoted by X(u). Furthermore, \u] denotes the length of u, and \u\t the number of occurrences of xt in u. The words w(i), t/° are the prefix and the suffix of length / of the word u (of length S / ) , resp.: (1.1) |«(I)| = |«(,)| = /. u = ua)u' = u"u"\ A third kind of denoting equality is defined by def —r^ (1.2) u =! utu2 o u = uxu2 and X(u{) Pi X(u^ = 0. Notethat u=! uxu% implies \X(u)\ = ^(MJ)! + ^(u^. I f a word has no decomposition of the form (1.2), it is said to be irreducible. Every word has a unique irreducible decomposition: r drf u =!! JJ utou=l 1=1 (1.3) r JJ u,, t=I u{ irreducible for i = 1,..., r. We call the components w, the irreducible factors of u. The word u is said to be semiirreducible if |«,| > 1 for every / (in particular, 0 is semiirreducible). The decomposition s u = ! w0 i7*c(i) w i> ]=i (1.4) Wj semiirreducible will be called the semiirreducible factorization of u, and w>„,..., M>s its semiirreducible factors. A word is said to be simple if its semiirreducible factors are empty (i.e. if no letter occurs in it more than once). Besides (1.4), we shall also make use of the reduced semiirreducible factorization (1.5) * w = ! w 0 IJaiWi> i=1 semiirreducible, a, simple, wt, a{ £ 0 for i = 1, ...,s— 1 . Clearly, both (1.4) and (1.5) are unique. Hereditarily finitely based varieties of semigroups 301. By F (n) we denote the set of all words having only semiirreducible factors of length In particular, F ( 0 ) =F ( 1 ) consists of all simple words. Obviously, F (N) C.F (n+1) for every n £ l , and F°\F(n)=J(n) is a fully invariant ideal in F. Let Mc.F°. Set (1.6) = {u: u = a0 ]J «¡a,, |a0...a,| S m, fi =! ¡=i M ( m ) = {«; u£Mlm\ (1.7) X(a0...a,)nX(G) G^.M^M}, = 0}. It is easy to see that L e m m a 1.1. F$QF$n+1» if n^ 1. Indeed, if «€ F j f f , then at most m factors of the factorization (1.4) of u can contain some element of X(a0...at) (as \X(a0...a^\=in), and every such factor is of length ^ n . Put f ¡=i where every a\ is equal to a factor of (1.4) which contains a letter of a0...a,. \a'0...a't-\ ^ ( n + l ) m , and x(a'0...a't.)nx(u[...t4.) Clearly, = 0. Two words u, u' are said to be of the same type if there is an automorphism agAut F° which maps u into u': ua=u'. The set of all words of the same type (an orbit of Aut F°) is called a type. E.g. X and 0 = {0} are types. The type of u will be denoted by T(u). If u is irreducible, simple etc., the same is said about T(u). An endomorphism <p€End F" is said to be disjoint if X(xt <p) fl X(xj <p)=0 provided 1V7. The endomorphism <p is finite if <p| > 1 for at most finitely many Xi's. The number y(<p)= 2(1*^1-1) i=1 is called the growth of <p. The set of all disjoint endomorphisms will be denoted by Dend F°, that of all finite disjoint endomorphisms by Fde F°. The proof of the following facts is straightforward (see also [4]). L e m m a 1.2. If u^X is (semi)irreducible and <p£Dend F°, then uq> is (semi)irreducible. m L e m m a 1.3. If M=! JJwiand i=l Let r(u) ( = r ) , s(u)(—s) tively. m <p£Dend F0 then uq> = \ IJwt<p. 1=1 be the number of factors in (1.3) and (1.4), respec- L e m m a 1.4. If <p£Fde F° then r(u)Sr(u(p)Sr(u)+y((p), s(u)^s(u<p)S ^s(u)+y(q>), and the image of an irreducible factor X of u is an irreducible factor of u<p. 302 G. Pollik We have to deal with several order and quasi-order relations. The most important order relation will be the lexicographical order of words defined by def u < I e x vov = uv, v £F or u = wx.u , v = wXjV , . . . i<;. The lexicographical order is not a well-order on F°, however, it is a well-order on F°\Fn (the set of words of length <«). Let F b e a variety of semigroups, and F(V) the free semigroup in F on the infinite set of generators {^v, x 2 v, ...}, where v: F—F(V) is the canonical homomorphism. A fully invariant ideal J is said to be a V-ideal i f / i s the full inverse image of Jv. In particular, /(V)={u£F: there is a v£F such that v^u, F t = « = » } is a F-ideal. Let a be a set of identities. By F(CT) we denote the subvariety of F consisting of those algebras which satisfy a. If / is a fully invariant ideal then V(J) = V(T) where x ={u = v:u,v£J} (i.e. V(J) is generated by the algebra' F(V)/J). Following Petrich, we term an identity u=v homotypical if X(u)=X(v) and heterotypical else. The ideal J0(V)={u£F: there is a v£F such that X(u)^X(v), Vt=u=v} is a F-ideal, too. Obviously, J0(V)QJ(V), and J0(V)v is the kernel of F(V). Two systems of identities cr2 are said to be V-equivalent if V N <=> as. Similarly, a system a is V-finite, V-independent etc., if it is F-equivalent to a finite system, not F-equivalent to any proper subsystem of itself etc. Furthermore, V'( Q V) is said to be finitely based over V if V = V(a), a finite (or, equivalently, F-finite). The interval [V, V) of the lattice of varieties is finitely based if every element of [V, V) is finitely based over V. If F i s finitely based, too, then we say that [V, F] is finitely based. We say that the system of identities a (or, also, the identity u=v in the case a— {u=v}) is hereditarily finitely based (h.f.b. for short) if the variety SG(o) is, where SG is the variety of all semigroups (which, by definition, means that every subvariety of SG(o) is finitely based). Let J be a fully invariant ideal in F. A subset M<ZF is termed a standard form for Vin J (or, for short, M is standard for V in J) if for every u£J there is a u*£M such that Ft= u—u* (neither uniqueness nor the existence of an algorithm for finding it* is demanded). Clearly, if M is a standard form, then so is every M' M. Moreover, if / is a F-ideal, u£J and u=u* imply u*iJ. Thus, JC\M is also a Hereditarily finitely-based varieties of semigroups 303 standard form for V in J. However, sometimes it is more convenient to work with larger standard forms. If J=F we simply say that M is a standard form for V. Usually we state oiir theorems for standard forms in an arbitrary J because the more elegant special case of standard forms for V does not suffice in the applications. Finally, if o={us=vs} then by c we denote the system c U {ws=«s}. 2. Well-qnasi^orders and h.f.b. varieties. A quasi-order relation «< is said to be a well-quasi-order (wqo for short) if there are neither infinite (strictly) descending -<-chains nor infinite <-antichains or, equivalently, if every infinite sequence contains an infinite (not necessarily strictly) ascending subsequence ([2]). The following quasiorderings on subsets MQF° will occur: wok' u<iyu' iff = uq>- w2 for some iff V N u' = iff u' = uip for some u iff u l 3 u2£F°, 0 • u(p • w2 for some u<ihu' u' (¡»^End-F0, cpdEndF , wl9 M2€F°, <p£End F°, u' = ucp for some (p£FdeF°. Note that in the last case it is sufficient to find a <p'£Dend F° such that u'=ucp': this can be always modified so as to obtain a <p€Fde F°. Let, furthermore, P denote the set of positive integers and I the symmetric group on P. For every. k£P we define two quasi-orders, one on Mxl and one on M2XZ as follows: (u, JI) <Kk («', 7zr) iff 3<p£Fde F°(I«p = u\ xin<p = xin, for 1 s j g k), (w, v; n) <4. ("'> v';n) iff 3<p€Fde F° (u<p = u', xincp = xin, for 1 ^ i S k, v<p£M). The remark made above about <p is valid here, too. Also, it is worth noting that in the definition of <sc2 the word v' does not play any role, and that « is a wqo if <sck is. In proving varieties to be h.f.b., often it is crucial to know that one or the other of these quasi-orders is a wqo for some standard form M. As for the second one, this is even indispensable: L e m m a 2.1. If Vis h.fb., then visa wqo on F°. ^ P r o o f . Obviously, no infinite descending -chain can exist. If «i,« 2 , ... were an infinite <aK-antichain, then consider the system o r ={«2t-i :=: "2t : k = l , 2, ...}. We are going to show that V(a) is not finitely based, moreover, if ak=o\{u2k_1—u2k} then V(<rk)¥=u2k-1=u2k. Indeed, suppose there exist (u2k-i = )vi^ •••ivi( = u2k) such that vt=v\ • Wi<Pi -v", • w'^i-v" for / = 1,...,/— 1, where <?>,•€ End F, v\, v"€F° and either FNw—w- or w—w'^^. If it is always the first instance that prevails then F N u2k =u 2 k , which is not the case. Let i be the minimal index such 4* 304 G. Pollik that V&v~vi+1, and, say, w^u^^, w\ = u2r, r^k. Then Vt=u2t_1=vi= =*>' • u2r_lq>i • v", contrary to the assumption. Clearly, if <sct is a wqo (for some fixed M) then <sz, for 0 is a wqo, too. However, already the condition that « 1 is a wqo on some MXE is rather restrictive as the following lemma shows. L e m m a 2.2. If <scL is a wqo on MX Z then there is a natural number p such that \u\^p for every u£M and /6P. P r o o f . Put p(u)=max \u\h and suppose p(u1)~zp(u2)<..., \Uj\kU)=p(uj). Then we obtain an infinite «vantichain ( U j , n j ) , j= 1 , 2 , . . . by putting itj= =(1 k(J)): if cp is disjoint and xk(J)<p=xm, j^i, then whence UjCp^Ui. Let G n>fc ={(a 1 ,..., iJr)£(F°)r: \av..ar\^.n, \X(ai...ar)\^k}. The following proposition enables a more flexible handling of P r o p o s i t i o n 2.3. (MXE, <zk) is wqo i f f MxGn (2.1) (u; ...,«,)-<(«'; ai, ...,a'r.) 3(p£Fde F°(u<p = «', k is wqo for every n under i f f r = r' and = a't for i = 1, ..., r). P r o o f . The sufficiency is obvious because (u, n)<s:k(u', n') is equivalent to (u; xu, ...,***)-<(«'; xw, ...,x kx .). Now let <ck be a wqo, and let x ^ , ...,xs(q) be the variables of av..ar (in the order of their first occurrence). Set and put (u;ax, . . . , a r X 0 ( « ' ; a i , ...,0^) iff r=r', T(al...ar)=*T(£T(a,)= = T(a'i) for i = l , ...,r, (u, it)<s:q(u', n'). Now -<0 is a wqo because q^k and r, T(ax...ar), T(as) can take only a finite number of different "values". Furthermore, (u; alt ..., ar)<0(u'; a[, ..., a',) implies (u; ax,..., a r )-<(«'; a[, ...,ar) because the very endomorphism <p which satisfies u<p=u\ xsu)(p=xs'u) maps a, on a\. Hence -< is a wqo. The following proposition shows that the conditions that <sck is a wqo for different numbers k are not very far from each other. P r o p o s i t i o n 2.4. If M<zF°, and there is a natural number q such that uv£M implies \X(u)C\X(v)\ =q, furthermore, <s:29+1 is a wqo on M, then <sct is a wqo on Mfor every k. P r o o f . For k^2q+\ (in particular, for k= 1) the assertion is obvious. So suppose it holds for some k. For (u, n)£MXZ consider the decomposition r " = "o nxun"i, f=i h k, X(ut)N{*!«,..., = 0, Hereditarily finitely based varieties of semigroups 305. and put r « = 77*/,=» 1=1 « = «o-"r> "i = «0—«i-i. ^(«) = (z(iii)nz(«i))\{x№+1)lt}, J(«)= u *,(u), i=1 «i = X(ud =x(u)nx(ui). It is easy to see that r^kp where p is the bound from Lemma 2.2, |X(u)|^rg, and X(«¡)^Xj(u)iJXl+1 (u), whence qi=\X(u^)\^2q. Choose permutations n0,...,nr such that ljr,=(Ar+l)jr, x 2 ) t j ,..., * (9(+1)it| are the different elements of X(u t ) (e.g. in the order of their first occurrence in «,), and define («, it) -< («', n") iff («, n) (u\ n'), (2.2) («¡,«29+!(",',0 for i = i,...,r, and r ®,+l r «i+l T(77 77 x №( ) = T(N 77 *<*;)• i=0 t=l i=o r=i As (w, n)<ak(u', 7t') implies T(u)=T(u'), r is the same for («, 7t) and for (u\ n'), and the definition makes sense. Furthermore, (2.2) implies that qi=q'i for 0 ^ / S r , because l7t ( =(fc+l)jr, IN'I=(K+1)TC' for every /; in particular, x ( i + 1 ) „ a n d jc(fc+1)n. are the first letters of the corresponding products, and this fixes the length of the inner products. From the assumptions it follows that -< is a wqo on M X I , so it is sufficient to show that -< is weaker than < £ t + 1 , i.e. if (2.2) holds then there is a q> €Fde F° such that u<p=u', x,„(p=x,„. for t^k+l. By (2.2), there are disjoint endomorphisms <p0, ...,<pr such that mj/ = u', u,(Pi = Put xtv\p = xtK, x,„t(pi = x,n\ v m = for for 1 s t s k, I S i S qt+1, \x*Vt i= 1, ..., r . xs£X(Ui), if x£X(u). Then <p is well-defined: if xseX(ui)DX(uj), i<j, then s=ini=t'itj for some i ^ q t + 1 , t ' ^ q j + l, however, then, the third condition in (2.2) guarantees that tn\=t'n'j, i.e. xs(pi = x8(pj. Also, it is not difficult to see that <p is disjoint. Furthermore, uij/=u' whence u'=nxt{g, (in general, the sequence ..., tT depends on («, 7i)). Thus, u(p = u', xtK<p=x,n. for t=l,..., k+l. In [6], the generally used syntactic method of proving varieties to be h.f.b. is formulated in Proposition 2.1. Here we give a slightly different version. Let MczF0, V a variety, and J a fully invariant ideal of F. We say that M is a good standard form for V in J (or a good standard form for V if J— F) if there exist a linear order relation G. Pollik 306 < on M and a quasi-order relation -< on M*={(u,v): following conditions are fulfilled: w > » } c M 2 such that the C) For every u£J there is a u*£M such that Vt=u=u*; O) (M, < ) is a well-ordered set; Q) (M*, < ) is a wqo set; A) If.(«, v), («', v')£M*, (u, v)-<(u', v') then there is a wÇA/ such that w-=u' and Vt=(ii=v=>u'=w). If one replaces Fr by / in the first part of the proof of Proposition 2.1 in [6], .oneobtains • P r o p o s i t i o n 2.5. If there is a good standard form for V in J then the interval [V(J), V) is finitely based. It is easy to see that if M is a good standard form for Via J then it is a good standard form in the minimal F-ideal JY which contains J. Thus, JVC\ M is a standard form for F in / (even in Jv). In order to obtain a sufficient condition for F to be h.f.b., we need the following P r o p o s i t i o n 2.6. Let V be a variety and J a V-ideal. If the interval [V(J), V) is finitely based and V(J) is h.f. b. over V then every subvariety of V is finitely based over V. The proof is based on L e m m a 2.7. Let V be a variety, J a fully invariant ideal in F, and F ' = V(J). Let, furthermore, a be a system of identities and u£F such that V(a)Y=u=v for any v£J. Then V'(a)\=u=u' implies (u'$J and) V(a)(=«=«'. P r o o f . Let ( « = ) v1,v2,...,vl ( = « ' ) be a sequence of terms such that Vj= =vj-wj(pj-vj,.vj+1=v'j-wj(pj-wj for 7 = 1 , / - 1 , where v), v'JeF0, q>j£End F, and either Wj, w'j£J or V\= Wj=Wj or (Wj=Wj)Ç.â. Suppose/ 0 is the least index for which wlo, w'i^J- Then V(o)t= u=v,jcJ, contrary to the assumption. Hence vfiJ ( y = l , . . . , / ) and v1, ...,vl yields a proof of u=u' in F(cr). P r o o f of P r o p o s i t i o n 2.6. A system of identities a can be supposed, without loss of generality, to consist of three parts o}={{u=u')£a: u, u'ÇJ}, a'j= = {(u—u')da: u, u'^J) and <r0={(u=u')£a: u€ J, u'$J}. Using Lemma 2.1, we can replace all but finitely many members of <r0 by identities of type o f . if («=«'), (V=V')£G and u'<I V' then V(J)T=V'=u1 • u'<p • u2 . (uu u2£F°, <p£End F); however, v'fyJ whence V\f= v'=ux- u'(p • w2 and therefore {u=u\ v=v'} is F-equiyalent to {«=«', v=u1- u'cp • w2}. Thus, one can assume that <t0 is finite. The same holds for aj because V(J)(a'j) is finitely based by assumption, whence o'j is F ( / ) equivalent to some finite system o*, but then Lemma 2.7 implies also V(o'j)= F(CT+). 0 VW Hereditarily finitely based varieties of semigroups 307. Finally, V(<jj)£[V(J), V] and therefore is finitely based over V. This completes the proof. Putting together Propositions 2.5 and 2.6, we obtain a condition which can be used in proving varieties to be h.f.b. In these applications, the following lemma will be referred to several times. L e m m a 2.8. Let Vbe a variety, J a fully invariant ideal in F, and M a standard form for V in J subject to the condition (i) for every u£j there is a u*£M such that V\=u=u* and |X(H*)|^|X(M)|. If u,v£ J, X{u) ^ X{v) then for every <p£Dend F with \X(u(p)\?£\ there is a w£M such that \X(w)\<\X(uq>)\ and V)=u—v=>u=w. P r o o f . Choose an arbitrary y£X(v(p)C\X(u(p) y = xx else. Define i/^End F by , =fx<P y if if if X(vq>)r\X(u<p)^0 and put x£X(u), *<№). Then wi/ = uq>, and X(v\jj)=X{vcp)C\X(u<p) if X(vq>)C[X(ucp)9i0, X(v\]/)={y} else. Now X(v)C\X(u)c:X(u); hence X(v<p) fl X(uq>) a X(ucp) because q> is disjoint. Thus, \X(v\j/)\<\X(uq>)\, and, in virtue of (i), the term w=(v\p)* meets the requirements. Now we give a sufficient condition, which may seem rather sophisticated at first glance, however, can be applied to reasonable classes of varieties. By (u, v) we denote the greatest common prefix of u and v, i.e. the longest subword w such that u=wu, V = wv. • T h e o r e m 2.9. Let V be a variety of semigroups, J a fully invariant ideal in F, lifiQF0 for i=l, ...,/, and let M = {u = Mj...«;: u^Mi, and u = uu=> X(U)flX(u) < g} be a standardform for V in J with some natural number g. Suppose, moreover, that the following conditions are fulfilled with some natural numbers n and k^n +(l— l)g+2:; conditional)from Lemma2.7, furthermore, (ii) (AfjXl, « J is a wqo set for / = 1 , . . . , / ; (iii) i/" » = v ^ v ^ . - v j ^ v j , Vj=VjVj, (p£Fde F°, and vq> is a prefix of some v'..vx^M such that v'i=vt for /<j, furthermore, (n) \v cp\ =n, then (i) 'is satisfied for vcp with some (vq>)* s. th. either (vq>)* = = vt(pfor i= 1, . . . , j f - l , \(vj(p, (vcp)*)\^\vj(p\-n or, for some h^j, (vcp)* = = Vi(p for /</?, (vq>)l is a proper prefix of vhq> (of Vj(p, if h=j). Then [V(J), V) is finitely based. G. Pollik 308 P r o o f . Fix a factorization u=ux...ui, M by v< u or ufcM^ iff either |A"(c)| = |JT(«)i, for every u£M. Define < on < \X(u)\, v, = u, for i = 1 j-1, Vj<.,tlUj. Furthermore, for (u,v)£M* set ut=v, if /<=/', Uj^vj, and U = WXeU, W = ^...Uj^Vj, Vj = (Uj, Vj>, { Vj or _ (wv or — VjXjVVj, \v\ = n or |£| < tl, Vj = 0, 1 wxdvv. If Vj=Vj, we put d—e, ¿3=0. Let u0 denote the product of all different variables of U i<h n*(«„))= (J -",)nz(wi+1..M,)) (which shows that »=1 |w0|s(/-l)g) in the order of their first occurrence in u, say. Suppose that x c ( 1 ) , . . . , x c ( r ) is the sequence of all different letters of a=xdxe(wxdv)wu0; clearly, r s | a | s ( / — l ) g + +n+2=k. Choose n£Z such that tn=c(t) for t^r, and for (u, v), (u,v) (¿M* put (u,v)<(u',v') iff (u„7t)<£k(u'„ 1ir) for r = r\ \w\e=\w'\e„ j=j\ |AT(m)| = |ir(®)| -o- \X(if)\ = \X(o% T(xdxev) w = vow' i= 1 I, = T(xd.xe.v 0, = v', vj = vj *>v'j = v'} (letters with' denote objects which belong to («', «'))• Lemma 2.2 implies that (M, < ) is a well-ordered set, because \u\^p\X(u)\ with some constant p. Furthermore, as r,j, \w\e and \xdxev\ are bounded, and the equivalences decompose M* in eight -<-independent classes, the qo-set (M*, -<) is wqo in virtue of (ii). Thus, it remains to prove that (A) is satisfied. If («,»)-<(«',»') then there are disjoint endomorphisms (pi, ...,(pl such that «,<¡»1=«^, xelt)q>i=xc.it) for t=\,...,r and / = 1 , . . . , / ; in particular, (pi and cph coincide on Xiu^OXiu,,). Hence the endomorphism <p given by ___ = fxs<pt if x s €X(u/), -\xs(Pl if x£X(u) Xs(p is well-defined and disjoint. We have ut(p=u't, ucp=u'. Hence V$=u'=(v(p)*, and all we have to show is (wp)*<t/'. Clearly, we can suppose |xs<p| = l for xs$X(u); hence, by (i), | j r ( « 0 H * ( ( ^ ) * ) | ^ \X(u<p)\-\X(v<p)\ S |Z(«)|-|Z(t>)| S 0. This proves the assertion for the case \X(v)\< |A^(M)| (in virtue of Lemma 2.8, even for X(v)*X(u) if \X(u')\*\). So let \X{v)\ = \X{u)\, = Then we have also \X(u')\=\X(v')\. Next note that fw| e =jvf'| e . and xecp=xe. (as e=2n, e'=2n') guarantee w<p=w'. If, moreover, Vj=Vj then v'j=v'j, i.e. vt(p=v\ for the first / Hereditarily finitely based varieties of semigroups 309. components of Hence, according to (iii), either (vcp)*=v[, .••,(v<p)^_1=v'h_lr (vcp)% is a proper prefix of v'h for some h^j or (vcp)f=v', for / = 1 , ...,j. In the first case (vcp)*<v'<u', in the second one (vcp)*<u\ too, because u'j. If, on the other hand, vj=vjxdvvj, then vj=v'jxi.v'vj, d<e, d'<e' (because v<u, «'<«')» and T(xd xe v)=T(xd. xe.v) implies, in particular, \v\ — \i>'\. Now either |t3|<«, then we have vj=vjxd,v'=(vjxdv)cp=vjcp, and the same argument as for the case Vj=vj prevails (only V'J<UJ follows now from <f'<e'); or |<5|=n, and, again by (iii), either there is an h^j such that (vq>)*=.vi(p=v,i for I</J, (vcp)l is a proper prefix of v'h (of v'jXfV' if h=j) whence (vcp)*<v\ or (vcp)*=v't for / = 1 , ...,j—l, \{v'jy(vcp)*)\^\vjxd.v'\, i.e. (vcp)*=v'jXd.Wj<lexu'j, which yields the proof for this case, the last one. In the special case / = 1 Condition (iii) reads somewhat simpler: C o r o l l a r y 2.10. Let V be a variety of semigroups, J a fully invariant ideal in F, and Mc. F° standardfor VinJ. Suppose that (M, <sck) is a wqo setfor some k^ 2, (i) holds, and for some n^k—2 we have (iii') if v=vv£ M, <p£Fde F°, vcp is a prefix of some v'dM, and \v{n)cp\=n, then (i) satisfied for some standard form (vcp)* of vcp such that either (vcp)* is a prefix of vcp or \(vcp, (vcp)*) | ^\vcp\ —n. Then [V(J), V) is finitely based. R e m a r k 1. If Vis homotypical (i) is fulfilled. R e m a r k 2. It is not difficult to distil from the proof that (iii) can be weakened in the following manner. Instead of v£M we consider pairs (v, Q ) € M X Z , and we require (iii) only for those <p£Fde F° such that 1x^1 = 1 for 1 ^i^k—n—2. This {n) enables us to dispose not only of the elements of X(xdxe(wxd€) u0) but of some more variables, too, provided k is sufficiently large. It is precisely in this form that Theorem 2.9 will be applied at the end of the paper. The next two theorems are devoted to special cases where the conditions can be weakened. T h e o r e m 2.11. Let I be a fully invariant ideal of F. If ((F\I)XE, wqo set then SG(I) is h.fb. <K2) is a P r o o f . Choose an a£l, and set M = ( F \ / ) U {a}. Define v<u iff either v=a, u£F\I or v,u£F\I and «<,exw. By Lemma 2.2, < is a well-order. For (u,v)£M* put G. Pollik 310 if v ^ w . Define (u, v) -< («', t/) iff either or u <szu\ v = a, (M, it) <c2 («', TIO, or »' ^ a, u <sc u', v = w, W. Clearly, -< is a wqo relation on M*. Note that u, u'^a and if v=w then also v^a. Anyway, there is a <p£Fde F such that u'=uq>. If |Ar(«)|<|A'(«)| then we can suppose that \X(v<p)\<\X(uq>)\ whence vqxucp. Now let \X(v)\=\X(u)\. If u«u', v=a then u'=ucp=(v(p)*=a<u'. If u<zu', v=w, then u'=uq>=wq> • (xeu)(p >w<p=v(p. If v, v'${a, W}, («, 7T)<S:2(M', n'), then u'=u<p, xd.=xd(p, xe.=xe<p, d'< < e ' . Hence u(p=wcp- xe. • ucp, v(p=wcp- xd. • v<p, and either v<p£l, (vcp)*=a<u', or v(p£F\I, v(p<lexu' whence vqxu'. This completes the proof. T h e o r e m 2.12. If V, J, Mare as in Corollary 2.10, (i) holds, and is wqo, then[V(J),V) is finitely based. 2 <M XS, 2 << > P r o o f . Define •< by v •<• u iff either |Z(i;)| < |Z(«)| or |X(t>)| = |JT(«)|, V < l e x u. For (u,v)£M* set w=(u,v), u = wxeu, v=w or v=wxdv, +max {/: x£X(u)\JX(v)}, v=& if v=w. Let d^e, and put d= 1 + and define (u,v)<(u',v') iff (u,v,7i)«l(u', X(v) = X(u) <=> X(v') = X(u'), v';n), \w\e = \w'\e., v = wov' = w'. Obviously, < is a well-order on M and -< is a wqo on M*. If X(v)^X(u) and \X(u')\7i\ then (A) follows from Lemma 2.8. If \X(u')\ = \ then |Z(u)| = l by w « u ' and \X(v')\ = \X(v)\ = \ by / < « ' , «<«. If, besides, X(v)^X(u) then X(v')^ 7±X(u'); hence v=x%, u'=x^, v'=x%,, d<e, d'<e', m\m', and putting xe(p=x£lm, xdcp=xd., we have u'=u<p, vq>=(v<p)*<u'. Finally, let X(v)=X(u). Then X(v')—X(u'), and there is a <p£Fde F° such that uq>=u', xdq>=xd., xe<p=. =xe>, vcpdM. Now \w\e=\w'\e- implies iwpHw', and either vsw, vq> = wq>= = w'=v'cu' or v = wxdv, vq> = w'xd- -vqxu' because d'<e'. This completes the proof. 2 R e m a r k . Of course, (M XL, is wqo if and only if {M*XI, <K2) is. 2 Hence we could have defined in advance and replaced M by M* in the text of the theorem. This will be our way in the next section (Lemma 3.7). Hereditarily finitely based varieties of semigroups 311. 3. Standard forms and h.f.b. varieties. In this section we show some (comparatively large) particular subsets of F° to be good standard forms whenever they are standard and part of the conditions (i)—(iii) (or (iii')) is satisfied. T h e o r e m 3.1. If is standard for V in J and (i), (iii') hold (with some then [V(J), V) is finitely based. n^O), | P r o o f . By Corollary 2.10, it is sufficient to show that ( F $ X E , <szk) is a wqo set for every k. The proof will be accomplished through a succession of lemmas. L e m m a 3.2. F (n) is wqo tinder <sc. P r o o f . Denote by T„ the set of all semiireducible types of length SM, and define the quasi-order relation -< on P x T „ by (k,T)<(k',Tr) iff k < k', T = T'. As Tn is finite, PXT„ is a wqo set under -<, and, according to [2], so is the set V of vectors (<*!,..., a(), a(CPxT„, of arbitrary length under the relation («,, ..., a,) -< ( f t , . . . , /?m) if there is a sequence such that i( 1) «=...< i(i) = m ocj -< f}iU) (the additional condition i(l)=m accepted here obviously does not change the situation). Assign to F (n) the vector a(w)=(a 1? ..., a s ) where a,=(|a,|, T(wt)) (see (1.5)), and put u<u' iff a(u) < a («') and T(>v0) = T(w'0). This relation is a wqo, too, because FXT„ T(iv0))) is a strict homomorphism of (F£n), -<) onto a wqo set. On the other hand, if «-<«' then we can construct a <p€Fde F° such that uq> = u': there exist endomorphisms (pjdFde F°, j=0,...,s, with (tfj-vvj)cpj = a'i(J)w.(J) (where /(0)=0, ao = a'o = 0). Denote the first letter of a j by xrU), and put xtq>j x,cp if xt£X(ajWj), t ^ r(j), >U)-i ( II a'kw'k)-xrU)(pj k=iU-1)+1 xt+N if x,iX(u), if t = r(j), where N= max i. It is easy to see that (p fits for our aim. *i€X(u') L e m m a 3.3. If M is closed for subwords, « is a wqo on M, and the length of the irreducible elements of M is bounded then <sk is a wqo on MxS for every k^O. P r o o f . Let (u,n)£MXZ and suppose that Hf(1), ..., wi(l) (/(1)<...</(/)) are those irreducible factors of u which contain some xm, s^k. Put. un=uuiy.. G. Pollik 312 ...u, (l) and suppose that xm occurs in ux for the first time at the m 4 -th place (i.e. u, = u„x„uB, x„$X(un), | u j = m s - l ) ; if x„$X(u) put /ws==°. d e a r l y , i u=! v0 JJ uiU)Vj. Assign to (u, n) the vector b(u, n) = (mj,..., mk; I; T(u l ( 1 ) ),..., T(ui(l)); v0,..., vt) and set b(K)n)<b(«',70 vj^v'j for iff ms = m's, lSs^k, l = V, T(ui(0) = 1 S r ^ /, T(u'iin), 0 S j ^ Z. Then (u,n)-<(u',n')ob(u,n)-<.b(u',7i') defines a wqo on MXl. Indeed, (u, 7t)i—>-»-b(t/, ;t) is then a strict homomorphism between quasi-ordered sets, and the set of the vectors b is wqo under -< because if N is an upper bound of |«| for irreducible u£M then l^k, msS\u„\^kN, and T(ul(r)) can take also only a finite number o f different values and the assertion follows from Lemma 3.2. Furthermore, if (w, 7r)-< «<(«', n') then we can define <p€Fde F° so that vj(p = v'j, ui(r)<p = u'm, and then \uK\=\i/ms=m's guarantees also xsx(p = xm. for s = l , ..., k, i.e. (u, k)<szk(u', n'). As an immediate consequence of Lemmas 3.2 and 3.3 we get C o r o l l a r y 3.4. F(n)XZ is wqo under <zkfor every ¿ > 0 . Note, however, that Lemma 3.3 is only seemingly more general than Corollary 3.4 because it is not difficult to see that if the conditions of the lemma are fulfilled then M Q F ( n ) for some«. Finally we prove L e m m a 3.5. F$XZ is a wqo set under <nk for every 0. P r o o f . For ( u , n ) £ F $ X Z let s ^ . - . ^ s ^ k be those indices for which x SJt € £X(a0...at) (see (1.6)), and suppose that occurs in a0...at for the first time at t h e mrth place. Assign to (M, n) the vector c{ju,n) = Q(l,f,s1, ntx,..., m,; T(a0), ...,T(at), T(a0...at); ...,Gt) and put c(u, n) -< c(u',nr) if the first 21+t+4 vectors coincide and components of both (Gj, TC) <sct (fij, n') for j = 1 , . . . , t. Define (w, 7I)-<(M', n')oc(u, n)-<c(u', n'). As in the proof of Lemma 3.4, we can see that F $ X Z is a wqo set under -<. Furthermore, if (u, TZ)<(U', 7t') then we can define <p0£Fde F° such that (a0...at)<p0=a'0...a't which guarantees also x^tp0= =xs^, ar<p0=a'r for / = 1 , . . . , / ; r=0,...,t, and <py6Fde F° such that Gj(pj = Gjy x^cpj^x^.. Putting together <p0,..., <pj (which is possible in virtue of (1.6)—(1.7)), 313. Hereditarily finitely based varieties of semigroups we obtain a <p£Fde F° with u<p = u', x„q>=x„. lemma and also the theorem. for s= 1, ..., k. This proves the In some special cases one can omit condition (iii'). We give here one theorem of this kind. T h e o r e m 3.6. If F$ is standard for Vin J and (i) holds then [V(J), V) is finitely based. In virtue of Theorem 2.12, it suffices to prove L e m m a 3.7. Fffi*XE is a wqo set under «j* for every k^l. P r o o f . Let (u, v; n)£F$*XZ, v=b0 TT vfii be the decomposition of v indii=i cated in (1.6). By Lemma 3.5 and Proposition 2.3, F$XG 2 p + k t k is w ( l 0 under -< defined in (2.1). Put / \ / / /\ (m, V; %) < (w , v ; % ) *> def •<=>• (u\ Xin)..., xkn, ao,..., a,, b0,..., t = f, r = r\ br) (u'\ x-w>..., xkn>, a0,..., |a,-| = \a[\, , av, b0,..., br.), \bj\ = \b'j\. Clearly -< is a wqo on F$*XI, and there is a <p€Fde F° such that u<p = u', at<p = =a'n bj(p = b'j. Moreover, we can suppose that xtq> is simple for every xt£X (for xt£X(u) this holds automatically, as ùcp = û', and |x,ç>| = l for .xl€X(a1...ar)). Thus, v(p=b'0 TT vt(p-bj£F$, lemma. i=l T h e o r e m 3.8. Let M={u = because Vi<p€.Fa), I/7A'I—/>• ¿=0 1 for i=l,...,l. u£M„ This proves the If |X(M,.)nZ(Mj)| S q for i * j ) is standard for V in J and (i), (iii) hold (with some n^O), then \V(J), F) is finitely based. P r o o f . It is easy to see that if UÛÇ.M then | A ' ( f i ) P i Z ( H ) | p ) / 2 + P q / 4 . Now the assertion follows from Lemma 3.5 and Theorem 2.9. We mention two more special cases. T h e o r e m 3.9. If F^n) is a standardform for Vand (i) holds then Vis h.fb. P r o o f . The theorem becomes a special case of Theorem 3.1 (with J=F) show that (iii') holds (with « + 1 instead of n). So let v=vv€F(n), v=v0 if we s ]J xcmvt 314 G.Pollák:Hereditarilyfinitelybasedvarietiesofsemigroups its semiirreducible factorization, ¡«¡I S/z, 1-1 a V =! v0 ¡1 xcWvt • xcWV,, v = \v IJ Xc(i)Vi, /=1 V,V, = V, i=l+l and <p£FdeF°, r v(p=\v'0 IIxi0)v'j, .7=1 \v'j\^n (i.e. v(p£Fw), |» { B + 1 Vl=» + L As we have |xc(i)<p| = l. Furthermore, by Lemma 1.3, v(p—\w-xcm(p-w. Hence w • xc(l)cp • since it can be obviously achieved that X(w• xcm<p)f)X(iv*)=0. This proves the assertion, as \v<p\ = \v\^n. P r o p o s i t i o n 3.10. Let J— . The variety SG(J) is h.f.b. P r o o f . Follows from Theorem 2.11 and Lemma 3.5. Part II. Application: a class of h.f.b. identities The aim of this part is to prove the following T h e o r e m A. A non-balanced identity of the form (*) u = x1...xixi+1xixi+i...xn = = v (n€Z, e(j) s 2) is h.f.b. if and only if v is not of the form (* *) v = x1...xi^1x2nx2i+1)nxi+2---X„ (7t=(i i +1) or identical, n > 2). The assertion will be broken up into several propositions. From know on V denotes SG(*). 4. Two special cases. To start with, we settle the negative part of the assertion. Of course, here one cannot utilize the results of Part I. P r o p o s i t i o n 4.1. The identity (T) XiXi+1XiXi+2...xn = x1...xi-ixfx2+1xi+2...x„ is h.f.b. i f f n=2. P r o o f . The fact that xyx=x2y2 is h.f.b. has been proved in [5]. So let n > 2 and, say, i > 1 . Consider the identity (O tyztx\...x\m = tyztx\...x\m^x\mx\m_x Hereditarily finitely based varieties of semigroups 315. and the infinite systems (a) = {am: m = 1, ...}, (<r*)= {<rm: m ^ k ) . We claim that the system <TU {T} is independent. Clearly T does not follow from a, so we have to prove that A * U { T } ( / «"IT• To see this, we show that if <T*U (T}I-tyztx\...x% k =w then W =! (tyzt) • ( t Pj), j=i (4-1) Pi = X2k OI " Pi — X2k-lX2kX2k-ll Pfi T(xyx) U T(x*), i U Pj) = {•*!, • • J=i whence w^tyztx%...x%k_sx%kz%k_1. Indeed, let w9(=tyzt x\...x\^, ..., wr( = w) be a sequence of terms such that, for every s=\,...,r, there exist M/, w'^F0, cps£End F, and ( M S = V S ) € C T * U {T} which satisfy ws_1 = w's-us(ps-w", VVS=H^ • •vscps- w", Suppose, furthermore, that w s _ 1 is of the form (4.1) for some i S r (this certainly is the case for s= 1). First let us=vs£ok; by symmetry, we can assume that us = tyztxl...xlm. Sure enough, m<k because tyztx\...x^,-={a ws_ t for m>k. Moreover, the only subword of w s _ 1 which is an endomorphic image of tyzt is tyzt itself, and the only subwords which are squares are those of the form x j . Hence us<p£T(us) and i i i yfs-!=\us(ps ¡1 Pj = tyztx}n...x}2m)K IJ Pj, ws = ! vs(ps- J[ Pj, j=2m+l y=2m+l /'=2m+l n£X 2m , / s 2 w + 2 , whence also ws is of the form (4.1). If u s — X1...Xi-1XiJ$+iXi+2---X„, Vs = Xi...XiXi+1XiXi + 2...Xn then (x?xf+1)<ps£T(x2y2) by the same reason as above, i.e. (x?x*+1)<Ps=Pj-iPj for some y's/, and ws differs from only in these factors which are replaced by some p'j£T(xyx); thus, ws again is of the form (4.1) because if j=l (which, by the way, can occur only if / + l=w) then x^-i-xL is replaced by x2k-1x2kx2k-1. Finally, if us = x1...xixi+1xixi+2...xn then (XiXi+1Xi)<ps€T(xyx) because the only subwords of w s _ 1 which are endomorphic images of xyx are those of the form xqxrxq ( = p j for some j) and tyzt, but this latter one is out of consideration because if (XiXi+jXj)cps£tyzt then us<p = u'styxtu" with since / > 1 , which is impossible. Therefore this case is similar to the previous one. If / = 1 then n >/'+1 and we can consider the identities (ff'J x\.. .x\m tyzt = xlx\x%.. ,x\m tyzt instead of <rm, and dualize the above reasoning (with the only — unessential — difference that here Pi=x\ or x1x2x1 which is not dual to pt=x2k_ix^x^-i). This completes the proof. Next we deal with a special case. G.Pollák:Hereditarilyfinitelybasedvarietiesofsemigroups 316 L e m m a 4.2. The identity <4.2) Js h.f.b. (u =) xl...xixi+lxi...xB = v) (TI£Z) P r o o f . First suppose that the symmetrical difference X(u)X(v)= { x j . By repeated applications of (4.2), any word w of Fn+1 can be brought to the form w* = = w a-i) x $iy"*e№) w *° , ~' _1) » d(J)—2; besides, the number of variables either does not change or decreases by 1 at every step. Furthermore, applying (4.2) twice, using the endomorphisms xi+J if if j > i+2, f*2i if j = h i _ x2i+J Xa,-...^;-! if ./ = ¿ + 1, + + 2 if J = '+2, respectively, we obtain 2 _— * l " - * 2 i - l * 2 i * 2 i + lit " • * 2 i + (ll-l)!l*2I + ll + l •••*2n + f - l 2 2 x X = XJ ...Xzi-lXzi • V<p •*2/+n + l ••• 2n + i + l ' 1 • • • • * 2 > - l * 2 i — Xx ... X2i-lX2iX2i + l • • • X3i^iX2iX3i + • •*2i+n + l " - * 2 n + i - l ~ lX2iX3i + 2 . . . X2„ + i-l = = XI ...Xi • Ulj/ •X2i+„+i---X2n + i-i — Xx-.-Xi • V\jl • X2;+N+L • • • X^FI+J—I = x1...xiwx2iw'x2iw"x2i+n+1...x2n+i-1, w' £ 0, and a third application of (4.2) relieves us from x 2 i . Hence F|=w*=w** = = ^ i - i ) * / ( i ) " x f(r)w** (2n-,-2) €i^y" 1 " i-31 and Z(w^)CZ(w + )gA-(vv). Thus, 2n+i by Lemma 1.1 and Theorem 3.6 [V(F ~% V) is finitely based, whence the assertion follows obviously. If (4.2) is heterotypical, and X(u) + X(v)?i {x^, we can assume that h > n for some k ^ m (i.e. x ^ X(u)). Indeed, if this is not the case, then there is a y'Sn, j ^ i , such that (i.e. x y does not occur on the right side). First let 1, say 7 > / ' + l , and let j be maximal. Executing in (4.2) the substitution Xji-—XjXn+1 on the one hand, and xJ+1y-*xB+1, xJ+2>—Xj+1, ..., x„>-»x„_1 on the other, we obtain U = XI-..XJX I + 1 XI...X N = X 1 ...X J X; + IX I ...(X;X I I + I)XJ + 1 ...X I I = *I E ...X(,, + X) C where g=n-(n+l n...j+l), •/+1${1, ..., m) then and x n + 1 occurs on the right side. Furthermore, if and by means of the substitution x ^ i - o r ^ x ^ xt>-*xi+3, xi+1»->-x,xj+2, xt+t>— *-*xi+t+2 (2^t^n) we can bring about that x i + 2 did not figure on the right side -which is the previous case. Hereditarily finitely based varieties of semigroups Now if xk„$X(ii), ' 317 kSLm then (4.2) implies Xx • • • Xm = Xi... Xk-i(XfcJCjtO • • - xm and every term is equal to one of length S m in the variety V=SG(u=xlK...xmn) whence V is h.f.b. Now let (4.2) be homotypical. Next we show that (4.2) implies either (4.3) x1...xkxk+1xk... Xi = Xi-.-Xi for some k^i, l^n or the dual of (4.3) — the latter if 7t=(j"/+l). In this case, as well as if n = i (identical), the assertion is obvious. In the opposite case there is an rSn, {/', / + 1}, m^r. Let e.g. r < i and minimal. Then (4.4) x0...x„ = Xq ... xr-1xrK-i... = Xia-iX(i+1)„-iXi„-i... xm-i = X0...Xr-2Xr...(Xr-1Xnt-i)...Xn. Thus, (4.3) implies a permutative identity Xi---X„+2 = x1...xr-1xre...xsexs+1...x„+i, rg r, SQ ^ s, and, according to [7], for sufficiently large / we have XI-.-X/ = X1 ...XR -1 XR<T ...X(S+ I-„-1 )<T XS+L -N ...XI for every permutation a of the symbols r,..., s+l—n — l whence, in particular, (4.3) follows. Using (4.3), an arbitrary word w can be easily transformed to the form w = = w (k - 1) w'w (f ~ k ~ 1> , x y x ^ i w ' , i.e. the irreducible factors of w' are contained in XU T(x2). However, (4.3) implies also X1 ...XK XK+1 XK+2 ...XI = = X1 ...XK XK+1 XK XK+1 ...XT X1 . . . XK XK + 1 X K X K + 2 ...XT = = XX.-.XI whence w=w ( t ) >v'V- f c - 1 ) , w " £ F m . Thus, w* = w ( k ) w"w ( l - k - 1 >eI$ ) -VgF$- 2 \ and (i) holds as (4.4) is homotypical. Hence the assertion of the lemma follows by Theorem 3.6 (here J=F). 5. Some auxiliary identities. From now on we can suppose, in virtue of Lemma 4.2 and the results of [6], that (5.1) e(k) = 2 for some k^m, kn~x ^ i. We proceed by some identities which follow from (*) and (5.1). Note that (5.2) 5 ( * ) I- x"+ a = G.Pollák:Hereditarilyfinitelybasedvarietiesofsemigroups 318 as (*) is supposed to be non-balanced. Hence (x®")v is an idempotent in Moreover, if (*) is homotypical then F(V). ( * ) 1- x" + 2 = x"+ 3 (5.3) and already (x" +2 )v is idempotent. L e m m a 5.1. Suppose that (5.1) holds. If (5.3) holds, too, then (5.4) V z " + 2 = JC"+2J2"+2 for ( * ) b- q fe 1. If(*) is heterotypical (in particular, if (5.3) does not hold) then (5.5) ( * ) 1- jC" + 2_jj24+1z" + 2 = xn+2yzn+z, x"+:2/«zn+2 = JC" + V +2 for 0. P r o o f . If (5.3) holds and (*) is heterotypical then [5], Lemma 2 yields even x"+2yz"+2=x"+2z"+2. So let (*) be homotypical, and first suppose n^i, n^ (ii+1). There is a k${i, / + 1} such that kn^k; let e.g. k<i and choose k to be minimal. Furthermore, there is an Ij^i such that e(l)—2, as (*) is non-balanced. Now put k=sit and x,cp = x"+2 y z"+2 if if if w t^k, . . t = k, />fc; e(s) . lye{s> Xt* = Y 2 if t = ln, else> 2 if i = fc, = \y2 , l x,q> else. We have in virtue of (*) x?+2yzT+2 = X"+2 • uq> • z"+2 = JC"+2 • vip • z"+2 = _ _ j^+2^+2 . ^ . ¿1 + 2 _ _ ^+2^+2 . ^ . ^ +2 _ ^ + 2 ^ +2^(5)^ +2 _ = JC"+2 • vcp' • f+2 which implies (5.4). If, on the other hand, x,X = \y z"+2 = • U(p' • z"+2 = xr+2y2z"+2, then the substitution of if if if /</, ' = />Z, in (*) yields (5.4) immediately. If (*) is heterotypical, we can confine ourselves, by the remark made above, to the case where (5.3) does not hold. According to [5], Lemma 2, it suffices to prove However, in our case there is a k<m with e(k)=2, kn>n. The x2ny2nx2n_x2n Hereditarily finitely based varieties of semigroups 319 substitution - . J / ' l* 2 " ^ ' = else in (*) yields the required identity. Define mi = min {j: jn ¿¿j}, m2 = min { j : e(j) = 2}; if Wj^min (m, n ^ m a x (m, n), we put n=(m+l >max(m,ri), let n = i , m ^ «>. m+2), » i r = m + l , and if mx> L e m m a 5.2. Jf ( * ) | - x " + 2 = x " + 3 and either m1on2 = w 2 = / + l then ( * ) ^ xx...xn-xyn+* (5-6) = xx...xn-2xl-xy»+\ P r o o f . First consider the case w 1 < w 2 . Choose x,9 = if x,' " t' < ^ "ml 1l : if t = mxn, xu. ™U p k p . 2 y+ else; or w2(J {/,/+1} or mx= i^£End F such that f x2mi xtil/ = { W if t = mxn, , else. In virtue of (*) and Lemma 5.1 we have 8 = 2 if m^ = i, \ 0 if m x i i > n , I. 1 else / Hence (5.6) follows. Next let m 2 Smin (i — 1, mx), and put y+ 2 if if Then XX"-Xmsy ,n+ 2 _= )//n +2 t ^ m2, i > m2. _ ij" + 2 _ — nra . v " + 2 — I X 1--- X ">2-1 ^maJ'" *i-*n,2-iJ'n+1*^)}''i+2 if m 2 < m 1 ; if In the second case we define i^gEnd F by , _J*i, lx, 5» if t = m2 else MI = M L = STT. G.PoMk 320 and obtain = x1...xmil-1yn+2x%(s)yn+i *!•• 2 = ^ . y»+ = uty.y«** = = B+t X1...Xm^1^miy . In both cases (5.6) follows. If i+ we get, by obvious substitutions in (*), xi...xi+1yn+2 = x1.'..x,xl+1x,y"+2 Finally, if m1=m2=i+l, = X1...XiXn.1XiXi+1y"+2 = ... put if if i > i + l ; if Applying (*) and Lemma 5.1, we obtain x1...xiyn+2 M+ + = w<p.;y"+2 = x1...xiyn+2xiyn+2 = +a +2 n+2 = x1...x,y '*l *y" = t4-x!l y n+% = JCi... *|_1 • tlx • y = Xi...Xi-iOe?+V+2)2 = +i = X!... = • VX • y" +! 2 = X!... x i _ 1 x ? V " = xt... xi^xf = yn+*. This completes the proof. Lemma 5.3. If (*) is heterotypical and either m^m^ ( * ) 1- xl...xa-lJr+i (5.7) = or m2^i, then x1...xn.1x2nyn+i. Proof. If m 1 S/n 2 then set v t ( p= X if -\ f y ,/, X,w if = /**! * t = - \xtq> else. m n i >- By (*) and Lemma 5.1, we have (taking in account that «(wJ^O as xi...xm.1yn+2 = vcp-yn+2 = U<p-yn+2 = i4 • y^x^l^ = vxlf.y"+!t = > yn+i m^m^Sm) = x1...xmi-1x2miyn+\ which implies (5.7). If iVmgC/Mi then (*)h-x n + 1 =x" + 2 and in consequence of Lemma 5.2 and Lemma 5.1 we have even x1...x„-1yn+1 = x1...xn.2x2-1yn+1 = *1...xn_2*S±i*S+V+1 = x1...x„-2X£\y"+1 = x1...xn.1^n+1y+1 = Clearly, both (5.6) and (5.7) imply (5.8) n xi...xn-iy +2 = x 1 ...x n _ 2 x®_ 1 /'+ 2 . = +1 xi...xaf . Hereditarily finitely based varieties of semigroups 321. Furthermore, it is easy to see that (5.9) = x1...xa.ix2n.1xny''+2 (5.6) H ^...x.y** n+2 (5.10) (5.7) 1- x1...x„y = +t xl...xn-ix%+1xny 3 (5.11) (5.8) y- xl-..:xmjT = xl...x„-t3Ztlxmy'+\ n+z = x 1 ...x n _ 2 x n _ 1 x n j + n+2 (5.12) (5.6)A(5.7) hXl...xHy» * 2 = x^.x^y"* , n+2 = xi...xn_2x^xny = , x1...xn^x„y^. R e m a r k . The only cases when neither the conditions of the Lemmas 5.2, 5.3, nor those of their duals are fulfilled, are given by (**) and (5.13) L e m m a 5.4. v= x1...x^1xUi+i-X„. 2a 2 2n 2n (*)y-(x "y ) =x y . 2 P r o o f . If (*) is heterotypical the assertion follows from Lemma 5.1. So let (*) be homotypical. We indicate the substitutions in (*) which yield the required identity. If n = i , substitute fx 2 " if i s i, X , ~ \ y2» if i > i . If kn^k and set for some {/,/+1} (suppose e.g. k<i), choose A: to be minimal fx 2 " if W - X y 2 » if t ^ k, i>fc. The remaining case n = ( i / + 1 ) is dual to n = i . L e m m a 5.5. If n^i, i + 1 ) then . ( * ) h- Xi+1yzj£+* = P r o o f . If (*) is heterotypical and ( * ) | - x n + 2 = x n + s then xn1+2yzxn2+2=x^+2x^+2= n +2 =x 1 zyxl+2. If ((*) is heterotypical and) (*)\-xn+1=xn+s then, by (5.10), xi+V*3+2 = xn1+2(yz)2n+1xn2+2 = xr1+z^y2"(yz)2n+1^+2 +2 2n 2n+1 = jtr1 z y Put +2 z^ z x,(p = \y2n+1 z2n Then = +2 n 2n+1 2n+1 Xx z* y z +2 xZ . if t = i, if t = i +1, else. xj+ 2 z 2n j 2 " +1 z 2n+1 JcS +2 = xZ+zz2n+1 • uq> • z^x3+2 = = ¿I+228«+1. ^ . 23»^+2 = xn+2z2n+ly2n+lz2nxn+2 and, by symmetry, x?+2z1*+1y*n+1z2"x"2+!1=xl+*zyx"2+!!. = G.Pollák:Hereditarilyfinitelybasedvarietiesofsemigroups 322 If (*) is homotypical then k n ^ k for some xj+2 y x,<p = z *S +2 if / < nix—l, if t = m1—1, if t = m l 5 if t > m x ; {/, /+1}; say,= JCJ+2 if Set t <mi, yxS + s if t = mu x,<l> = z*5 +a if t = piiit, x%+2 else. We obtain (using also (5.4) and Lemma 5.4 if m1n=i) xZ+iV*S+2 = • uq> - x£+a = x!+a • v<p • = JC!+2>'*S+V(s)*a+a = = ; = . = x? + 2 -¡4 • *s+2 = x? +2 • # • xs + 2 = * i + 2 ^ + 2 ) e ( m . ) 0 ' j c S + 2 ) e ( s ) = Jtf +a zx2 +8 j>*s +8 , where sn=m1 By symmetry, and {21 if w^rt = i, else. xni+2zxZ+2yxZ+2=x"i+2zyxn2+*. C o r o l l a r y 5.6. Either (*)<r-xn1+2yzyxn2+2=xn1+!1y2zxn2+2 =xZ zy2x"2+2. or:(*)\-^l+2yzyx"2+2^ +2 P r o o f . If JI^I, n?£(ii+l) then both identities hold by Lemma 4.8. If then xn1+2yzyxn2+2=xn1+2y^zx"2+2=xn1+2y2zxn2+2 by Lemma 5.1. The case = ( / / + 1 ) is dual. n=i n= (5.9), (5.10) and Corollary 5.6 imply C o r o l l a r y 5.7. If either the assumptions of Lemma 5.2 or those of Lemma 5.3 are fulfilled then either (5.14) or ( * ) (— x1...xn-1ztzx„ytt+2 (5.140 ( * ) H xx:..xn-iztzxny^2 = = xi...x„-iz2txny"+t xx...xn_itz2xnyn±2. Furthermore, applying (5.9), (5.10), (5.14), (5.14'), we obtain C o r o l l a r y 5.8. If either the assumptions of Lemma 5.2 or those ofLemma 5.3 are fulfilled then ( * ) h w ^ + a = w (n) x c(1) ...x c(0 y" +a , (5-15) c(j\ 7* c(k), if j * k, for every w£F". {x c ( 1 ) ,..., x c ( 0 } g X(w) Hereditarily finitely based varieties of semigroups 323. 6. Standard forms. Now we are able to construct standard forms for V in the F-ideal J defined by J= {w: there are arbitrarily long terms which equal to w in V}, and for V(J). Although the considerations below could be performed in the same generality as till now, some special cases, in particular .the one where (*) is homotypical and e(k)=2 only if k=(i+l)n~1, would demand a separate consideration. Therefore we continue the investigation of (*) accepting in what follows the further restriction (T) e(k)=2 for at least two different values of k. This suffices for the proof of Theorem A, since the case when e(k)=2 k has been settled in [6]. L e m m a 6.1. If (*) is homotypical, (T) holds, and 1|wj| then w=h^u^h^/. —n for j—1,2, 3 P r o o f . There is a k such that e(k)=2, kn^i. let e.g. kn>i. that if \uj\ S n for j— 1,2,3 then there exist vx, v2, vaZF such that u0 = u1ulus = v14vs~v0, Kls>l"ols for x£X(vJ, u2 = u'2v2, \vj\^\uj\-n+2 for exactly one First we show • ' ' for j = 1,2,3. Indeed, put ux="i.u2=xct,)xc(i+1y..xc(k^ii, w 8 =x c(tat+1 )...x c(ll) w3. Then "o = uixc(l)---xc(i)(xc(i + l)--xc(kii)fi)xc(i)xc(i+l)--- • (*) v • Xc(kn-1) i.xc(kn)ft)Xc(kx+1) • • • Xc(n) u3 = U1U1 (Xc(kx) US u3 with some ux,u^£F°, and v2=xc(k„p v%=un%u's meet all requirements of (6.1). If-w is as stated then (6.1) can be applied n times. The term w=iv1w^iv3 thus obtained contains every variable of w2 at least n + 1 times. Now suppose some w£F B+l contains a letter xs at least « + 1 times. Then w is of the form w=u0 TT xsu, j=I where U £ F ° for j=0, ...,n + l. Put xt(p = Ut—lxs if xs if UiXaUi xsut + 1 if if / < i, t=i, t = i+1, *>i+l. Then w>=w<p, and |f^| s >|vf| s , i.e. we can obtain from u> a longer word of the same form, and therefore w£J. The same holds, then, for H> and hence also for w. . 324 G.Poltek L e m m a 6.2. Suppose (T) holds. If (*) is heterotypical then (6.2) J = {w: u < w or p < w } , If (*) is homotypicaland e(k)=2 for some k^{iK~\ subset L= {w: w = w(ai..n)vw(to'-',), If (*) is homotypical, e(k)=2 contains the subset (/ + l)n-1} then J contains the u -ci w}. i f f kn£ {/, / + 1 } , 6M/ V is not of the form (4.1), then J L' = {w: w = wln*+n)ww<n!+n\ wt$T(xyx)UT(x*)\JX for some irreducible factor w, of w}U U{w: w = w'xexdxew"xrxsxrwm; |w'|, s n 2 +2«, |w"| ^ n-2}. P r o o f . The first assertion is trivial. If (*) is homotypical, e(k)=2, kn${i, / + 1 } , say, kn>i+l, and w£L then w=w (2/l! _ n) w'• ucp• w"w(2n'~"'> with some q>£End F, and we can modify the mapping (p in such a way that xt(p'=x,<p if t^kn, |x 4 „</| = « a , |*,<Z>'| = 1 if t^kn, and w=w(2n,_n)w' • ucp' • wmw^nl~n). However, then w = W(2n»-n)H'' • vcp' • wmwini~"y = ^ - „ y i X l ^ - ^ ) i)Cp' • (Xkn9y = • ( ^ ' . . . ^ V ' ^ lV(»,-»>, and the assumptions of Lemma 6.1 are fulfilled. Now let ¿7t=/, k'n=i+l, e(k)=e(k')=2, e(J)^ 1 if j^k, k'. Suppose first that w is contained in the first component of L'. a) If » ^ ( „ . . „ J W " ' " ' 1 , |H'| c >2 for some c £ P (in particular, if | # | e > 2 ) , then n consecutive applications of (*) with substituting each time <pj:x,t—xc, (pj\ xl+1>—bj, |6,| e >0 gives us a word w* with |w*| c >n + l, and the second part of the proof of Lemma 6.1 verifies the assertion. b) If w=w(nt)K>H'(nt), xyxy<iw (in particular, if xyxyow), then w = ~vj'xcax,aw", and choosing <p8€End F such that x,<p=a, xi+1<p=xc, wcp= =w (n ,_ n) iv• ucp • ww'" 1- ' 0 , we have \w• vq> • w\c>2, and this case can be reduced to a). c) If xyzx«aw, then w=w'xrbxrw", | 6 | s 2 . Putting x,cp=xr, xi+1<p=b, 2 w=w-ucp • iv with |w|, |w|&« , we have (*)(-w-ixp-w, which gives us case b ) as bz is a subword of v<p. It is easy to see that all possibilities are exhausted by a)—c). Finally, let w£L'v By assumption, J t ^ i , iir*(ii+1), whence there is an l^i, / + 1 such that In ¿¿I; let e.g. / > / + 1 and maximal (then, clearly, ln<l). Set w=w x -wj/ -w2- ux < wa> 325. Hereditarily finitely based varieties of semigroups K l , \щ\^пг+п, х,ф=хе, x 9 = ' х1+1ф=хл, x,x=xr, xl+1x=xs, and х,ф if • w2 • (*i-*i+i)x (*i*i+2-*i+ik x,x if t = '» if t = l+l, if i = - / + l . t < /, We have w= - uB • ws = because М ^ и ^ ^ + л , tes the proof. - w3 = axrbxra'€L{, \a'\^\ws\^n2+n, This comple- Lemma 6.2 and Proposition 3.10 immediately yield. P r o p o s i t i o n 6.3. Tf(T) holds and v is not of the form (**) then SG(J) is h.fb P r o o f . Set T="|J 1 T(x\...x?), 1=0 and let J(T) be the set of all w£F° every semiirreducible factor of which is contained in T. Put = {w: w w ww< n \ vt>€/(T)}U{w: |w| < 2л}, (6.30 (6.3a) (6.38) Мг = {w: w ^ j i i w « , = ?sn,w /(!")} U (w: |w| < 4л2}, w (n i + „ ) wwww ( " ,+n) , |w>| =L = wyw£ I(J) (y i A'(wîv))} U {w : |w| < 2л 2 +2л}. Lemma 6.2 implies that F\JQMj ( j = 1, 2, 3), if either (*) is heterotypical or (*> is homotypical and e(k)=2 for some {in-1, ( / + 1 ) я - 1 } or (*) is homotypical,. e(k)=2 iff kn£{i, /+1}, and n^i, 7гИ(//+1), respectively. Indeed, if w $ M j then, w is long enough to be written in the form given in the first bracket of (6.3y) but with w having a semiirreducible factor н>Д/(T). Then either or х 2 ...х 2 <]иг and, consequently, if w' is a suffix of length n of w (n) , w(2n!), or w (n , +n) , resp., and,, similarly, w" a prefix of length n of w(B), w12"^, or w{n'+"\ we have u<\w'ww" or î w w ' m " (even v<iw). As the latter case can be reduced to the first one, both imply V/Ç.J by Lemma 6.2. Hence the assertion of the proposition follows by Proposition! 3.10, since M ^ F ™ , In order to obtain a standard form in J, we prove first L e m m a 6.4. If (Г) holds and w£J then there is a w£J such that (*) 1- w = w = Wj*;+2W2, Xc£X. P r o o f . If (*) is heterotypical the assertion is obvious; so let (*) be homotypical. There is а кшп which satisfies e(k)=2, kn^i+l. We are going to show that f o r G.Pollák:Hereditarilyfinitelybasedvarietiesofsemigroups 326 •every triple r, s, I of natural numbers there is an xc£X and a term w such that w= s = w=w 0 JJx? c Wj, f o r / = 0 , . . . , J; this is somewhat more than stated. First •consider the case r = 1. Let \X(w)\=L As w=w' implies now X(w)=X(w'), we only have to take a sufficiently long word w, say, |w| >2l+l(s—1)(/+1), in order to obtain a factorization of the required form. Now suppose the assertion holds for some r > 0 and arbitrary s, I. In the same way as above, one can find a w'=w such that the same subword x ^ p c j occurs in w' a sufficiently large number of times and at a sufficiently large distance from each other (this is necessary in order to cover the •cases where kn=i—\ or kn=i+2; c,d,f need not be different). Say, w' = as =w0 flxjx'cxjwj, \wj\^n+l. One can define endomorphisms <plt..., <ps such that s xkn(Pj=xrc for 7 = 1 , . . . , s and w'=w'0 [[U(Pj-wp sV w'=w'0 IJ j' wj=wo II » K I s / . Applying (*), we have with so" 16 wj> \w"j\ — \w'jV This completes the proof. P r o p o s i t i o n 6.5. If (T) holds and v is not of the form (4.1) then [V(J), V\ is finitely based. P r o o f . Let w£j; we can suppose that w=w'^ , c +2 w" by Lemma 6.4. First let the assumptions of both Lemma 5.2 and its dual (or those of Lemma 5.3 and its dual) be fulfilled. In virtue of (5.9) (or (5.11)) and its dual, and by Corollary 5.8, we have (6.4) w = w (n _ 2) x3 +2 x c(1) ...x c(i) ^ +2 w("- 2 > = w* (c(j) * C(k) if j * k). Thus, vi^eig 4 , and the assertion follows by Theorem 3.6, because (i) automatically holds if (*) is homotypical, and if it is not, then, starting from an arbitrary w ' = w with a minimal number of variables in X(w'), we can transform it to the form (6.4) by steps of the following two types: 1) first, the insertion of the (n +2) nd power of some variable — however, doing so it is not necessary to introduce new variables, and 2) a sequence of applications of (5.10), (5.11) and (5.14) or (5.14'); besides, (5.10) is always used for reducing the power of the elements, and the other three transformations do not change the set of the variables involved. For the rest we can suppose, according to the Remark made on p. 321, that the assumptions dual to those of Lemma 5.2 or 5.3 hold, but the assumptions of these lemmata do not, i.e., a) v=x1...x,-.1xfyf if (*) is heterotypical, and ft) v=xt... ...x^iXf^v' or y) v^xx-.x^^v' if (*) is homotypical. Let w=M'(i_1)wjc^)2jcc(X)... ...X C(I) M» ( " -2) , and write w in the form 327. Hereditarily finitely based varieties of semigroups Suppose that w is chosen in such a way (from the class of all w'=w of the same form), that the vector v=v(w)=(|X(ïv)|, p, I) is minimal in the lexicographical ordering. We claim that (6.5) ВДП{хс(0), Indeed, let d(q)=c(r), ...,*,(,_!)} = 0. and set If m2=i, put '*J|8 if t = u if t = i + 1 , if 7 > i + 1 , X,<p = xf(q) We have by the dual of (5.11), w = w1xyi$w2x?c$w3x%t+)1wi = (6.6) ¡w.x^fwxT^V! if in = i, 2 2 = W • Xdfà wi = vq> • Xd(q)w4 = щ(w2^0 )w3) v2 if in = i +1, WlXd(q)V3 if in > i + 1 1 with some w, vr, v2, va£ F", and in the first case by iteration also w = ЩхХ) v4, We have a contradiction with the choice of w in all cases. If m2=i+l, set / \xt(p if +1, X,<P = \ç J I Xrc(r (r ++ l) if t>i+1. As in this case (*) l- x" + 2 =x" + 3 , we can make use of the dual of (5.9). Hence W = w^SfêJ w2x"c(+0? w3x$> *S(+r2+1) x c ( r + 2 y. .x c(l) w<"-2> = = U(p-^r2+1)xcir+2)...xcil)w^-z) = in = V(p-j$lrl1)xcir+2y..xmw -v (6.7) щУ^сЫг) ХФ+2У--ХС(1) w<"-2> = = Wi *2fêj = = • • W3 • •^ X c i r + D - X c O ^ - V = G.Pollák:Hereditarilyfinitelybasedvarietiesofsemigroups 328 if /->0 and (6.8) w = w^îjgw.affitfw« = w ^ l f â w l x » ^ = . . . = w1xl{$w»a+*xZ$wi if r = 0 . In the first case we have reduced / by 1; in the second, and we can create the (n+2) n d power of a variable in this part of the word by Lemma 5.10. This proves (6.5). Furthermore, w ^ ^ w ^ J by the same lemma and (6.5). Let vf(i_i)W' be the longest one of all words it equals to. Then ««^aH^-^iv (else we could replace its subword of thé form wj/ by the longer word vty), and x(n+I...xm+II_,_1*JaM'(i_1)M'. Indeed, if e(k)=2, kn>i+1 for some k then let Wj for j < kn, Xj(p = Wj = yjWjZj, Xjlp = Wj = wkxykx+1 for j = kn, 9jzjyj+! for j =- kn ( y j = z j if |wy| = l). We have even v<P-ym+1 = (ijWjin)ym+i y=i = u<P-ym+1 = w1...wiwi+1wl...w„ym+1 = = wi...w'iwU1w'l...w'n = uxli = vxl> = wie„V...w'melm>, and 101^1=lwp|+2>|i><p-j'ni.(.1|. If, on the other hand, e(fc)=2 iff kn£{i, / + 1 } (this occurs only in case /?) with in£_{i, /+1}), then n^i, n?±(i i+1), whence ln+l?*(l+l)n for some / t t > / + 1 . Put wt if t£{i, i+l,In}, W/, w?, +1 if t = ln + l, w? else. We have wi«...w®,*1... s wl/'xl...xn-t-i = wf ...w?_1wiwi+1wiw?+2...wlx1...xn-i-1 = w}'-x1...xa-,-1 = = wi„:.wuww,„...wl„x1...x„-i-1. Applying (*) to this latter word, we obtain some word w* which contains w2 and all factors w* which do not enter iv, as well as x x , . . . , x , , - , ^ . Hence |W*|>|H'21I... •••^«^l-^n-i-llAs in the proof of Lemma 4.14, we can conclude now that w = wwl"-'-», w=\w0 (6.9) W* s w l i - 1 ) ww i ''- 1 \ w ='. ]]xfU)Wj, j=i w / u T(xi...x?), t=o (5 = 1 or 2). 329. Hereditarily finitely based varieties of semigroups Let M be the set of all words of the same form as w*: M l M2 = {w: w=lw0 = {щ: ПX/u)wJ> j=1 M 3 = {w3: |w,| = n - i - l } , M5 = Fm, M = { w i . . . w , : vt£Mu = i-1}, *A> f=o T{x\...xf)}, М 4 = Г(х п + 2 )иГ(У+ 1 ), M6 = (we: |we| = n - l } , *(и>()ГЩи>у) = 0 if i,j£{2,4, 5}, i We have seen that M i s a standard form for Vin J. Thus, by Theorem 2.9 and Lemma 3.5, the proof will be accomplished if we show that conditions (i) of Lemma 2.8 and (iii) of Theorem 2.9 are fulfilled. Now (i) holds — if (*) is homotypical, by Remark 1 made after Corollary 2.10, and if (*) is heterotypical, by the fact that in assuming that x"c+2 is a subword of w, we could choose xc as well from the variables of the original word which was to be transformed, and while transforming w to w* we never needed to introduce a new variable. Furthermore, let w=ww£M, <p£ End F°, wq> a prefix of some w'£M, and |й ( 2 ш - 1 ) ф|=2/и —1. By Remark 2 (after Corollary 2.10), we can confine ourselves for such q> that \x,(p\ = 1 for x ( €Z(w 1 w 3 w 4 w e ). If 1, (iii) holds obviously. If w ^ w ^ v , then к с р — и ^ щ щ • w', u ( £M t , and we obtain (wcp)* by applying (several times) the dual of either 5.9 or 5.10, and that of 5.14 or of 5.14', not changing thereby w<p. Finally, if vt>sw((_1)w2t;, w2v a prefix of ív, and either v = x f a ) x 2 i m . . . _ уХод, |wy|s2i; then, by assumption, \xfU)(p\ = \xda)(p\ = ... = \xd(t)(p\ = l, and X(w2<p)ПX(w<p)QX(w&cp). Thus, we can transform (w (i _ 1) w a x /( y ) )?» ( ' -:l) (xj (1) ...x d(() )v) to a standard form iv without changing either w0 or w e ; thereby we "standardize" the whole word w<p, without changing (wit-^WzXfy^tp. Or #2=0, \v\=2m—\, and the assertion is obvious once more. This completes the proof. Theorem A follows now from [6], Proposition 4.1, Lemma 4.2, Propositions 6.3, 6.5 and 2.5. References [1] А. Я. Айзенштат, О перестановочных тождествах, Современная Алгебра, 3 (1975), 3—12. [2] G. HIGMAN, Ordering by divisibility in abstract algebras, Proc. London Math. Soc. (3), 2 (1952), 326—336. [3] G . POLLAK, On identities which define hereditarily finitely based varieties of semigroups, in: Algebraic Theory of Semigroups (Proc. Conf. Szeged, 1976), Coll. Math. Soc. János Bolyai 20, North-Holland (Amsterdam, 1979); pp. 447—452. 330 G. Pollák: Hereditarily finitely based varieties of semigroups [4] , A class of hereditarily finitely based varieties of semigroups, in: Algebraic Theory of Semigroups (Proc. Conf. Szeged, 1976), Coll. Math. Soc. János Bolyai, 20, North-Holland (Amsterdam, 1979); pp. 433—445. [5] , On two classes of hereditarily finitely based semigroup identities, Semigroup Forum, 25 (1982), 9—33. [6] G . POLLÁK—M. VOLKOV, On almost simple semigroup identities, in: Semigroups (Proc. Conf. Szeged, 1981), Coll. Math. Soc. János Bolyai 39, North-Holland (Amsterdam—OxfordNew York, 1985); pp. 287—324. [7] M . S. PUTCHA—A. YAQUB, Semigroups satisfying permutation identities, Semigroup Forum, 3 (1971), 68—73. SOMOGYI B. U. 7 6720 SZEGED, H U N G A R Y Acta Sei. Math., 50 (1986), 331—33* The arity of minimal clones P. P. PÂLFY Clones play a central role in universal algebra and in multiple-valued logics A set of finitary operations is a clone of operations if it is closed under composition and contains all projections. The clones on a fixed set form a complete lattice with respect to inclusion. If the set is finite, then the lattice of clones is atomic and coatomic. The coatoms, i.e. the maximal clones, were classified in Ivo ROSENBERG'S profound paper [4]. On the contrary, quite little is known about the minimal clones. Recently B£LA CSAKANY [1], [2] determined all minimal clones on the three-element set. By definition, the arity of a minimal clone of operations is the minimum of arities of the nontrivial operations in the clone. Identifying any two variables in such an operation turns this operation into a projection. As observed by SWIERCZKOWSKI [5], if such an operation has at least four variables then it is a semiprojection,. i.e. there is an index / (1 ^i^k) such t h a t / ( % , ..., ak)=al whenever K ^ , . . . , Since the arity of any nontrivial semiprojection does not exceed the cardinality of the underlying set, it follows that the arity A: of a minimal clone of operations on an «-element set must satisfy (see [3,4.4.7]). It is easy to find unary, binary and ternary minimal clones, for examplethose generated by a constant function, a semilattice operation, or a median operation of a lattice, respectively (see [3, pp. 114—115]). If « > 2 , then any minimal clone contained in the clone generated by an arbitrary nontrivial w-ary semiprojection has arity n. But for the existence of a k-ary minimal clone of operations on an «-element set was not known. T h e o r e m . There exists a k-ary minimal clone of operations on an n-element set («S3) i f , and only i f , Isk^n. Received May 17,1984. P. P. Pdlfy 332 P r o o f . By the preceding remarks it is enough to point out a k-axy minimal clone for Fix different elements bx, ...,bk,bk+1£A, where \A\=n. Define a .fc-ary nontrivial operation / b y •Я6*» \alt otherwise. Since/is a semiprojection, the clone [ / ] generated by/ i s &-ary. We are going to prove that [ / ] is a minimal clone. For any term t representing a function in [ / ] (in short, *£[/]) we denote the first (from the left) variable of t by a(t), for example <K/(/(*2. xx, x3), xx, x1)) = x2. First we show that/satisfies the following identities: (1) / ( / . к , • • •, ' * ) = / for any fc-ary i* *»€[/]. (2) / ( * ! , t2, ...,tk)=f if the fc-ary terms t2,..., /*€[/] are such that <r(ti)=;сг <i=2,..., к), (3) Дхх, t2,..., tk)=Xl if t2, ..., /*€[/] and for some /, 2 <т(/,-)=л,1, (4) / ( x l 5 ? 2 ,..., / Jl )=x 1 if /2> • • > ' * € [ / ] and for some i and j, 2 •o(td=a(tj). Indeed, substitute a x , a 2 , A for the variables , x 2 , . . . - Observe that, by the definition o f / , if / € [ / ] and <j(t)=xt, then at the given valuation t takes on or bk+x and the latter can occur only if щ—Ь^ Hence if axj^bx then (1)—(4) obviously hold. Suppose ax=bx. In (3) takes on bx or bk+1, in both cases the left hand side is bx. Similarly, in (4) either tt and tj have equal values or one of them takes on bk+1, again forcing the left hand side to be bx. If {a2,..., ak}={b2,..., then/ takes on bk+1 and we have equality in (1), moreover, in (2) the set of values of t2, ..., tk is also {b2,..., bk} hence we have equality here as well. If {a2, ..., ak}?± {b2, ..., then some (2 s/sA:) cannot occur as the value of any £>ary term hence in (1) and (2) both sides take on bx. Now the minimality of [ / ] will be derived from the identities (1)—(4). We prove by induction on the length that any term is either equal to a projection or it turns into fby suitable identification and permutation of variables. Take a term t=f{tx, ..., tk). By the inductive hypothesis, if tx is not a projection then suitable identification and permutation of variables yields a term < ' = / ( / , t2,..., /£), where t'2, ...,t'k are jfc-ary. By (1) we have t'=f. Now let tx be a projection. Without loss of generality we may assume that tx=xx. If there is a t{ ( 2 s / s f c ) with a(t^)=xx or there are tt, tj (2si<jsk) such that a(t^=a(tj) then t=xx by (3) or (4), respectively. Otherwise, by permuting the variables we may assume that a(ti)=xi for / = 2 , . . . , к. Then identifying ... with xx we obtain / by (2). Hence for any nontrivial •*€[/] we have /€[/], therefore [ / ] is a minimal clone. Thus the proof is complete. The arity of minimal clones 333 Note that by our proof any nontrivial Är-ary operation satisfying the identities (1)—(4) generates a minimal clone. Indeed, the minimality of a clone is an inner property, hence it can be advantageous to consider clones abstractly. Following W. TAYLOR [6, pp. 360—361], an abstract clone T is a heterogeneous algebra on a series of base sets T l5 T2, ... equipped with composition operations Crm: —Tm (m,r= 1,2,...) and constants (that correspond to the projections) e^£T„ (/= 1, ..., n; n= 1, 2, ...) satisfying the identities C;(f, Ci(ult = Ci(c:(t, C£(e?, vlf..., v„),..., CZ(ur, vlt..., vn)) = uu ..., ur), vx,..., v„) (m, n, r = 1, 2,...), ..., O = t, (m, n = 1,2,...; i = 1,..., n), C;(f,eJ, ...,«» = * ( » = 1 , 2 , . . . ) . Subclones, homomorphisms, etc. are defined in the natural manner. An abstract clone is minimal if it is generated by any of its nontrivial members. Any homomorphism of a minimal abstract clone onto a nontrivial clone of operations on a set yields a minimal clone of operations. We will pursue this line of research in a forthcoming paper. Acknowledgements. I am deeply indebted to Béla Csákány: his pioneering work in this area inspired several ideas of the present paper, and our correspondence and discussions helped me to develop these ideals. I am also grateful to Ágnes Szendrei for her advice and to László Szabó for calling my attention to this problem. / References [1] B. CSÁKÁNY, Three-element groupoids with minimal clones, Acta Sei. Math., 45 (1983), 111— 117. All minimal clones on the three-element set, Acta Cybernet., 6 ( 1 9 8 3 ) , 2 2 7 — 2 3 8 . und L . A . KALUZNIN, Funktionen- und Relationenalgebren, D V W (Berlin, 1979). [4] I . G . ROSENBERG, Über die funktionale Vollständigkeit in den mehrwertigen Logiken, Rozpr. CSAVÄada Mat. Prir. Véd, 8 0 , 4 (1970), 3 — 9 3 . [5] S. SWIERCZKOWSKI, Algebras which are independently generated by every n elements, Fund. Math., 49 (1960), 93—104. [6] W. TAYLOR, Characterizing Mal'cev conditions, Algebra Universalis, 3 (1973), 351—397. [2] B . CSÁKÁNY, [3] R . PÖSCHEL MATHEMATICAL INSTITUTE O F THE HUNGARIAN ACADEMY OF SCIENCES REÁLTANODA UTCA 13—15 1053 BUDAPEST, HUNGARY 6 Acta Sei. Math., 50 (1986), 335—33* A note on minimal clones z s . LENGVARSZKY For the existence of jfc-ary minimal clones of operations on the «-element set was proved by P. P. PALFY [1] who exhibited concrete examples. Here we give a very simple nonconstructive proof of this theorem. First we prove the following claim: Let (A, be a partially, ordered set and k a natural number such that the cardinality of an arbitrary antichain in (A, is at most k— 1. Then the arity of any nontrivial monotone semiprojection on (A, does not exceed k. Indeed, let / be a monotone semiprojection on (A, with arity m^k+l. Without loss of generality we may assume that / i s a semiprojection to the first variable Let ax,..., am be arbitrary elements of A. By assumptions for some i and j, l^i^j^m, flj^Oj holds. For l S / S m we define the elements b, and c, by , = ' f a , if 7 = i,j, l a , if 1 (dj if l a , if I = i,j, Since / is monotone, a1 = b1=f(b1,...,bm)^f(a1,...,am)^f(c1,...,cm) = c1 = a1, i.e. / is trivial. In order to prove P&lfy's theorem, let k and n be natural numbers such that 3 ^ k s n . Suppose we have an «-element poset (A, such that the cardinality of an arbitrary antichain is at most k—1 a n d / i s a nontrivial, monotone, A>ary semiprojection on (A, ^ ) . Since A is finite, there exists a minimal clone C contained in the clone generated by / . Let g be a nontrivial function of minimal arity from C. Then g is a semiprojection (see [2]) with arity m. Clearly m^k; on the other hand g is also monotone, hence m S i by our previous claim, i.e. m=k. We will be done if for all k and «, we give an «-element poset (A, and a nontrivial, monotone, k-ary semiprojection / on it. For this aim let A be an Received August 29, 1985. 336 Zs. Lengvárszky: Minimal clones n-element set and u3,...,uk distinct fixed elements in A, L=A\{u3,..., ut}. Let ^ be a parial order on A such that the distinct elements u and v are comparable if and only if u, v£L (see the diagram). 0 1 o : O O-.-O | «8 »4 "fc O L Then any antichain of (A, has at most k—1 elements. Define a k-aiy operation/ by ,, faz if alta2£L and a3 = w3, ...,ak — uk f(ai,...,ak) = l a i otherwise Since \L\ ^ 2 , / i s a nontrivial semiprojection to the first variable. Suppose that a^ ^ ¿ x , . . . , ak^bk. If a^a^L and a3=u3,..., ak=uk, then bt, b2£L and b3=u3,... ...,bk—uk, hence f(at, ..., ak)=a2^b2=/(b1, ...,bk). If either at, a^L or a3= =u3,..., ak=uk does not hold then either b2aL or b3=u3, ..., bk=uk does not hold. Thus, / ( « ! , . . . , ak)=a1^b1=f(b1, ..., bk), i.e. / is monotone, completing the proof. References [1] P . P . PÁLFY, The arity of minimal clones, Acta Sci. Math., 5 0 (1986), 0 0 0 — 0 0 0 . [2] I- G. ROSENBERG, Minimal clones I: The five types, in: Lectures in Universal Algebra (Proc. Conf. Szeged, 1983), Coll. Math. Soc. János Bolyai, Vol. 43, North-Holland (Amsterdam, 1986); pp. 405—427. BOLYAI INSTITUTE ARADI VÉRTANÚK TERE 1 6720 SZEGED, HUNGARY Acta Sei. Math., 50 (1986), 337—33* Intervallfallende Folgen and volladditive Funktionen Z. DARÖCZY, A. JÄRAI und I. KÄTAI 1. Einführung CO Es sei A n >A n + 1 >0 («€N) und L'.= 2 Ki^- 00 eine Folge mit der folgenden n= l Eigenschaft: für beliebiges L] gibt es eine Folge e„£{0,1} (n£N) derart, dass oo x= 2! ¿n^n »st. Die Folge {4} wird dann intervallfüllend genannt. Z. B. ist {1/2"} n=i intervallfüllend mit L= 1. Ist {A„} eine intervallfüllende Folge, so nennen wir die unbekannte Funktion F: [0, Z ] - R volladditiv, falls /1=1 »1 = 1 für jede Folge e„€{D,1} (w£N) gilt. Unser Hauptziel in dieser Arbeit ist es, für geeignete intervallfüllende Folgen {!„} die volladditive Funktionen zu bestimmen. Ähnliche Untersuchungen in dieser Richtung kann man in der Arbeit [1] finden. Z. B. ist in [1] der Fall {^=1/2"} betrachtet. 2. Intervallfüllende Folgen Es bezeichne A die Menge der reellen Folgen {A„} mit A n >A n + 1 >0 (n€N) und es oo sei L : = 2 ! n= l D e f i n i t i o n 1. Wir nennen die Folge {A„}6 A intervallfüllend, falls es für beliebiges jc€[0, L] eine Folge £„€{0,1} (n€N) gibt, für welche (2.1) Eingegangen am 24 Mai, 1984. x=2*nK »=1 Z. Daröczy, A. Järai und I. Kätai 338 ist. Satz 2.1. Die Folge {X„}€A ist genau dorm intervallfüllend, falls (2.2) für jedes n€N 2 A; i=n+l gilt. Beweis, (i) Nehmen wir an, dass A„> 2 für irgendein ra£N, und es sei (=0 + 1 • co lt'—l' 2 Wir zeigen, dass dann die Zahl x:= 2 A.+.yfP), L] sich nicht 1=1 •= H+ 1 in der Form (2.1) darstellen lässt, d.h. dass die Bedingung (2.2) notwendig ist. Gilt £,=0 für irgendein i ^ n , so ist ¡=1 i=1 i=n+1 gilt hingegen £¡=1 für alle / S n , so ist i=1 -r 2M > 1=1 •• d.h. x kann nicht in der Form (2.1) dargestellt werden. n-1 (ii) Es sei x£[0, Z,] und wir setzen induktiv e„=l für 2 i A H - * und e„=0 andernfalls. Wir zeigen, dass 2 Z t h ^ x unmöglich ist, d.h. dass x in der Gestalt (2.1) darstellbar ist. Gilt £„=0 für unendlich viele Werte n, dann ist für diese Werte 71 CO n—1 - • • , '• x 2e^i ~ 2 < b, i=l i=l OO woraus wegen A„-»0 die Darstellung x = 2 folgt- Gih e„=0 nur für endlich i= l viele Werte n, so sei jVder grösste dieser Werte. Wir haben woraus x-2 ¡=1 2 i=N+1 x< 2 i=l A,.= ' i=W+l j • ' ••••••• i- folgt, ein Widerspruch. D e f i n i t i o n 2. Es sei {1„}ZA eine intervallfüllende Folge. Wir nennen die Zahl x€[0, L] eindeutig, falls es genau eine Folge e„€{0,1} (n€N) gibt, für welche (2.1) gilt. .-"-MN1' •>-•• •••..• Intervallfüllende Folgen und volladditive Funktionen 339 Bemerkung. Offenbar sind 0 und L eindeutige Zahlen. D e f i n i t i o n 3. Wir nennen die intervallfüllende Folge beliebiges N£ N die Restfolge {!„} — {A^} intervallfüllend ist. locker, falls für Bemerkung. Im Falle einer lockeren Folge sei LN := B=1 für beliebiges = N£N. n^N Dann ist jedes JC€[0, Z,^] darstellbar in der Form oo x = 2*t*t j=I mit £¡€{0,1}. D e f i n i t i o n 4. Wir nennen die intervallfüllende Folge jede Zahl JC£]0, Z,[ nichteindeutig ist. Satz 2.2. Ist die intervallfüllende Folge A ergiebig, falls locker, so ist sie auch ergiebig. Beweis. Es sei x€[0, L]; Dann gibt es eine Folge £„£{0,1} (n€N) derart, dass (2.3) x=2^K- (i) Ist in (2.3) e„=l nur endlich viele n erfüllt, so sei N der grösste dieser Werte. Da die Folge intervallfüllend ist, gilt ~ , X = 2ENK= /1=1 JV-l JV-l ~ 2 ENK + *N= 2 EN*N + 2 n=1 n=1 n—N+1 mit 5„€{0, 1} (n^N+l). Es ist also JC nicht eindeutig. (ii) Ist in (2.3) e„=l für unendlich viele n erfüllt, so gibt es ein JV(E N mit e w = l und X<L—1N =Ln. Darum gibt es eine Folge 5„6{0,1} (n£N, n ^ N ) für welche x = 2 • "=i HfiN gilt, d.h. x ist nicht eindeutig. ' Es sei 1 < ? < 2 und A n : = W («<=N). Dann ist {1 /q"}£A und L:= 2 W = . . • •. "=i = l/(q—1)>1. Es sei k£N festgewählt imd 1 2 d i e Wurzel der Gleichung (2.4) L-1 = 1 /qk. Satz 2.3. Für 1 < 9 < 2 ist die Folge {l/g"}€/i intervällfullend. Für ist {l!<f} locker, und folglich ergiebig. l<qSq(l) Z. Daröczy, A. Järai und I. Kätai 340 Beweis, (i) Im Falle l < g < 2 gilt für jedes n l/i"^(l/i*)(l/fo-l)) = 2 W, so dass wegen Satz 2.1. die Folge {1 /q"} intervallfüllend ist. (ii) Für l<q^q(l) hat man L—l^l/q. Dann ist bei beliebigem festgewählten N für die Restfolge {l/q"}-{l/qN} (2.2) trivialerweise erfüllt, falls nur n^N+l gilt. Ist hingegen n < N , so folgt aus q"/qN ^ l/q S die Ungleichung L-l 1/9-=£ 2 1 Iq'-l/q". i=n+1 d.h. es gilt (2.2). Somit ist die Folge {1/V} locker, und wegen Satz 2.2. auch ergiebig. Satz 2.4. Für q(l)<q<2 also auch nicht locker. ist die intervallfüllende Folge {\/qn}£A nicht ergiebig, Beweis. Der Beweis ergibt sich aus dem folgenden. Lemma. Für ist die Zahl (2.5) *:= ¿l/^-^JO.Lt 13 = 1 eindeutig. Beweis des Lemmas. Nehmen wir an, dass die mittels (2.5) definierte Zahl x auch noch eine andere Darstellung der Form (2.1) hat, wobei A„ := 1 /q" ist. Es sei N die erste natürliche Zahl für welche sN^8N gilt; hierbei ist <5„=1 für ungerades n, und S„=0 für gerades«. Nun gilt für SN=0 (gerades N) es=l, d.h. wegen x = 2 W >1=1 = N2W+ n = l sjqn = "2 W+ViN+ 2 /1 = 1 n=N+l 2 n=N+l haben wir 2 2 n=N+1 n=N+l W- Daraus folgt d / ? W ) ( ? / ( ? 2 - l ) ) 2 Bjq'^l/q", n=N+1 d.h. L—l^l/q, dies ist aber unmöglich, da im Falle <7(1)<<7<2 die Ungleichung L—l<l/q erfüllt ist. Für SN = l (Nungerade) und für eN=0 verläuft der Beweis ähnlich. Intervallfüllende Folgen und volladditive Funktionen 341 3. Über volladditive Funktionen Es sei {!„}£ A eine festgewählte intervallfüllende Folge. D e f i n i t i o n 5. Wir nennen die Funktion F: [0, ZJ-«-R volladditiv, falls für jede Folge e„€{0, 1} («£N) die Beziehung (3.1) «ei gilt. n=1 S a t z 3.1. Es sei eine intervallfüllende imd ergiebige Folge. Ist F: [0,1,]-•R volladditiv, so gibt es ein c£R derart, dass (3.2) für alle *€[0,L]. F(x) = cx Beweis. Wir setzen (3.3) F(x):=F(x)-F(L)xIL (x€[0,IJ). Dann ist F volladditiv und es gilt / ( 0 ) = / ( L ) = 0 . := {n|«6N, a„>0}. Es sei noch (3-4) Es sei P(k^=\an und P:= { := 2 V ntP Für ^ 6]0, L[ gibt es eine Folge e„€{0,1} derart, dass (3.5) n=i gilt, und die Darstellung (3.5) von der Darstellung (3.4) verschieden ist. Darum existiert ein n0£P mit e„ o =0, woraus wegen (3.1) n£P > 2 11 = 1 niP n£P = 2 ZnHK) = F{2 n=l U=1 = HZ) folgt, was unmöglich ist. Somit haben wir £ = 0 oder £=L, d.h. P=0 o d e r P = N . Der letztere Fall ist unmöglich, weil dann P(g)= P(L)>0 wäre. Ist aber P=0, so gilt F(x)^0 für jedes ;c€[0,L]. Da — P ebenfalls volladditiv ist, ergibt sich durch eine Widerholung des vorigen Gedankenganges — / ( ; c ) s 0 , woraus P(x)=0 für jedes x€[0, L] folgt. Aus (3.3) folgt jetzt mit c:= F(L)/L die Behauptung. B e m e r k u n g . In Satz 3.1. kann man die Bedingung der Ergiebigkeit durch diejenige der Lockerheit ersetzen. 342 Z. Daröczy, A. Järai und I. Kätai K o r o l l a r 3.1. Falls 1 die Bedingung ist und die Funktion F: [0, (L:= l/(g-l)) F( 2 ejq") = 2 e„ F(\!qn) /1=1 n=1 (3.6) für jede Folge £„€{0,1} (w(EN) erfüllt, so gibt es ein c£R derart, dass für jedes x€[0, L\ gilt. F(x)=cx Beweis. Wegen Satz 2.3. ist jetzt {\lqn}£A intervallfüllend und locker (d.h. ergiebig), so dass sich Satz 3.1. anwenden lässt. Die Beweisidee des Satzes 3.1. ermöglicht es uns, das folgende Resultat auszusprechen : S a t z 3.2. Es sei {)•„}£ A eine intervallföllende Folge, und F: [0, Z,]—R eine volladditive Funktion. Ferner sei anF(X„) (n£N). Für P:= {«|«€N, a„>0} und 2 K ist im Falle / V 0 und i V N die Grösse L[ eindeutig. n€P Beweis. Wegen der Bedingung i V 0 und i V N gilt £ €]0, L[. Ist £ nicht eindeutig, so gibt es eine Folge-en€{0, l} und n0£P derart, dass £ ^ = 0 und f = 2*nK n=i ist. Daraus folgt auf Grund der Volladditivät F(0 = F(2 n£P K) = 2 niP' < > 2 e„an = F( 2 ejn) /1 = 1 /1 = 1 = F(g), was einen Widerspruch bedeutet. Folglich ist £ eindeutig. D e f i n i t i o n 5. Es sei {X„}£A eine intervallfüllende Folge. Für induktiv nach n (3.7) "¿Bitoli+Xn^x, 0, für "2 S i t o X i + l ^ x . i=1 L] sei £„(*):= Sodann gilt wegen Satz 2.1. (3.8) 1, für 1 ¿e B (x)A„. n=i Die Darstellung (3.8) nennen wir die reguläre Darstellung von x. Satz 3.3. Es sei {A„}£ A eine intervallfüllende Folge. Bei beliebigem x£[0, L] gilt £„(.*)=0 für unendlich viele Werte von n. Intervallfüllende Folgen und volladditive Funktionen 343 Beweis. Für x = 0 ist die Behauptung trivial. Es sei 0 < x < Z , . Dann gibt es in (3.8) ein n mit en(x)=0. Gilt entgegen unserer Behauptung e„(x)=0 in (3.8) nur für endlich viele n, so sei iVder grösste dieser Werte. Wegen (3.7) ist nun "Z > x = "2et(x)Xi+ i=1 2 h i=N+l i=l in Widerspruch zu (2.2). S a t z 3.4. Ist {X„}£A eine intervallfüllende Folge und F: [0, Z,]—R volladditiv, so giltfür an := F(X„) (n£N) die Beziehung 2 \an\ n=l (3.9) <0 °- Beweis. Es sei P:= {w|»£N, ß„>0} und M:=N—P. wegen der Volladditivität m und F(L-Q woraus . . . . . . = F(2 n€P I := 2 n(P K K) = 2 F(K) = 2 ntP n£P kl = F( 2 4 ) = 2 F(k) = ~ 2 M n£M niM n£M 2 kl = n=i folgt. Dann gilt für F(0-F(L-0 S a t z 3.5. Ist {Ä„}£A eine intervallfüllende Folge und F: [0, Z,]—R volladditiv, so ist Ffür beliebiges x€ [0, L[ rechtsstetig. Beweis. Für beliebiges e > 0 gibt es wegen Satz 3.4. ein N derart, dass (3.10) 2 ITOI^e/2. i=N+1 Es sei 2 «>N+1 CO s K~ 2 . n=N+1 x wobei x= 2 n( )K eine reguläre Darstellung ist. Wegen Satz 3.3. ist <5^ >0. Falls n=i N e x -c y < x+<5 w ~ 2 *(x)K+ • * n=1 ~ 2 n=N+1 ^ 344 Z. Daröczy, A. Järai und I. Kätai so gibt es wegen y— dass N eo У n=l л=7Г+1 Л> eine Folge e*€{0,1} ( n ^ N + l ) derart, n=l n=N+l ist, und daraus folgt wegen der Volladditivität von F u n d wegen (3.10) \F(y)-F(x)\ = | 2 2 л=JV+1 /i=N+l e„(*)F(An)| =i 2 2 n=JV+l Satz 3.6. Ist {;.„}£ A eine intervallfüllende Folge und F: [0, i ] - R so ist F im abgeschlossenen Intervall [0, L] stetig. volladditiv, Beweis. Für beliebiges JCC[0, L] hat man wegen der Volladditivität von F (3.11) F(x)+F(L—x) — F(L). Wegen Satz 3.5. ist F für alle x£[0, L[ rechtsstetig, also auf Grund von (3.11) f ü r alle j>£]0, L] linksstetig, und somit stetig auf [0, L\. 4. Volladditive Funktionen im Falle spezieller intervallffillender Folgen Es sei l < g < 2 und {\/cf}eA eine intervallfüllende Folge. Ist F: [0, Z,]—R ( Z , : = l / ( ? - l ) ) volladditiv (d.h. gilt (3.1) für die Folge A„:=l/?"), so gilt nach Korollar 3.1. für die Beziehung F(x)=cx mit c konstant. Es ist natürlich danach zu fragen, was sich im Falle q(\)<q<2 sagen lässt, wenn also wegen Satz 2.4. die Folge {1 /q"} nicht ergiebig (nicht locker) ist. S a t z 4.1. Für q=q(k) (&€N) und volladditives Fgibt es ein c£R derart, dass F(x)=cx für alle x€[0, 1/(?(A:)-1)] gilt. Beweis. Es sei Jt€N festgewählt und F: [0, L] — R (L:= 1 /(q(k) — 1) volladditiv. Dann ist auch die Funktion F(x) := F(x) — F(L)x/L (x£[0, L]) volladditiv und es gilt F(0)=F(L)=0. Es sei a„:=F(l/qn) (n€N) mit q:=q(k). Wegen der Volladitivität gilt (4.1) 0 = F(L) = F(2 1 ¡q") = 2 HVq") n=l n- 1 2 am 1 o«4 2 71 = 1 Auf Grund der Voraussetzung ist 1 =L-l/qk= = Vi" Intervallfüllende Folgen und volladditive Funktionen woraus für beliebiges N£ N (4.2) 345 +n i¡q» = 2 Vq" n=i n^k folgt. Aus (4.2) ergibt sich der Volladditivität von F oo (4.3) aN = 2 a n=i N+» und eo (4.4). a N + 1 = 2°s+n+1 n=i n&k für alle NeN. Aus (4.3) und (4.4) folgt nun aN-aN+1=aN+1+aff+k+1-aN+k (4.5) aN+k+1—aN+k+2aN+1—aN für alle N£ N. Wegen (4.1) ist die Potenzreihe (4.6) d.h. = 0 №:=2a„z» n=i konvergent für | z | < l und für z= 1. Indem wir jetzt die Gleichung (4.5) mit der Zahl zN+k+1 multiplizieren und für N summieren, erhalten wir unter Berücksichtigung von (4.6) für |z| < 1 und für z=1 f(z)~ *+l 2 a,z'-2[/(z)/=1 k 2 aizc]+2izk[f(z)-a1z]-zk+1m ¡=1 =0 und daraus folgt /(z)[zk+1—2zk+z—l] = z(z-l) 2a zi-1 1=1i + zk+1(-ak+1-2a1). Aus der letzteren Gleichung erhalten wir für z = 1 und unter Berücksichtigung von' / ( 1 ) = 0 die Beziehung —ak+1—2a1—0, d.h. (4.7) / ( z ) [ z * + 1 - 2 z * + z - l ] = Z(Z-1) ¿ « . Z » - 1 = 2 ( 2 - 1 ) 0 ^ ( 2 ) 1=1 für alle | z | < 1, wobei Qk-i(z) ein Polynom von z höchstens (k—l)-ten Grades ist. Wir betrachten jetzt das Polynom (4.8) P(z) := Pk+1(z) := zk+1-2z*+z-l für welches l<z:=q(k)<2 wegen l/(q(k)—l)—l = l/q(k)k eine reelle Wurzel ist. Es sei (4.9) A(z):=zk+1-hz und 5 ( z ) : = 2 z * + l . Z. Daröczy, A. Järai und I. Kätai 346 Es ist A(z)=P(z)+B(z) |z| ^ 1 sind, ferner ist (4.10) wobei P, B holomorph im abgeschlossenen Einheitskreis \A(z)\ = \P{z)+B(z)\ < \P(z)\ + \B(z)\ für |z| = l. Die Ungleichung (4.10) ergibt sich daraus, dass für |z| = l \A(z)\ = | z | | z * + l | = |z*+l| < \2z*+l\ = \B(z)\ gilt. Darum haben nach dem Satz von Rouchi P und B mit Multiplizität gerechnet dieselbe Anzahl von Wurzeln im ofiFenen Einheitskreis |z|< 1. Da für die Wurzeln k von B die Ungleichung |z| = 1 /2|< 1 gilt, haben sowohl B als auch P im offenen Einheitskreis genau k Wurzeln. Da z = 0 und z = 1 keine Wurzeln von P sind, folgt auf Grund von (4.7), dass sämtliche sich im offenen Einheitskreis befindenden Wurzeln von P auch Wurzeln von ß*_i(z) sind, so dass Qk-i ebenfalls k Wurzeln hat. Dies ist oo nur möglich falls ß*_i(z)=0 für alle z, und so folgt aus (4.7) / ( z ) = ^ a n z " = 0 für | z | < l . Somit ergibt sich ak=0 oo x= 2 (ngN). Da nun jedes n=l L] eine Darstellung e 11 = 1 J<ln (en€{0, 1}) zulässt, erhalten wir auf Grund der Volladditivität von P F(x) = F(2*nll")= 11=1 woraus F(x)=cx (cF(L)/L) Aal = 0, folgt. B e m e r k u n g . Die Behauptung des Satzes gilt auch für q=q( 1). Dies bedeutet einen neuen, von der Beweismethode des Korollars 3.1. verschiedenen Beweis für das vorige q=q( 1). 5. Eindeutige Zahlen Gemäss Satz 2.4. gibt es eindeutige Zahlen für die intervallfüllende Folge {l/i"}€/l, falls ? ( 1 ) < ? < 2 . Satz 5.1. Es sei q(l)<q<2. Falls x€]0, 1[ für die intervallfüllende Folge eine eindeutige Zahl ist, gilt . (5.1) jc€ U I W , 1 fq-1). n=1 Beweis. Für *6]0, 1[ gibt es ein n derart, dass x£A„-.=[\lqn, 1 ¡q"'1) ist. Da für ^ ( l ) < g < 2 die Ungleichungen l l q " < L l q n < l / q n ~ 1 gelten, zeigen wir, dass im Falle x€B„:=[l/q", Llq")c.A„ die Zahl x nicht eindeutig ist, also für eindeutiges x die Beziehung x£[L/qn, l/q"'1) gilt, d.h. (5.1) erfüllt ist. Intervallfüllende Folgen und volladditive Funktionen 347 Dann lässt sich nämlich im Falle JE£B„ wegen 1/ ? " < i 1 l=n+1 /q'^L/q- jedes Element von [0, L/gf[, also auch x, in der Gestalt x=Zei/q"+1 ¡=i (5.2) schreiben, mit £¡€{0,1} (/€N). Anderseits hat x die Gestalt x= l/q"+9, ,+i wegen 0 s = 3 = ; c - l / q ' ^ L / q " auch 3 in der Form 9=ß^8i/q' , mit wobei <5,6{0, 1} (i£N) geschrieben werden kann. Darum gilt (5.3) x = W + J < W H t=i Offenbar ist wegen (5.2) und (5.3) x nicht eindeutig. S a t z 5.2. Gilt q(l)<qSq(2) und ist x€]0,1[ eindeutig in Bezug auf die intervallfüllende Folge {1/(7"} £/1, so gibt es ein N derart, dass (5.4) X = (1 /q»-1) gültig ist. i *=i l/q*-1 Beweis, (i) Es sei x£[l/q, 1) eindeutig. Dann gilt wegen Satz 5.1. x£[L/q, 1). Da x=l/q+Tx/q gilt, ist ]0, 1[ eindeutig, weil andernfalls x nicht eindeutig wäre. Anderseits haben wir Tx£[L—1, q—1), woraus wegen l/q2^L—l<q—l^L/q (diese Ungleichungen sind für q ( \ ) < q ^ q ( 2 ) richtig) unter Berücksichtigung von Satz 5.1. Tx$XL\q\ 1 lq) folgt. Daraus ergibt sich, dass Sx:= qTxZ[Liq, 1) c [1 \q, 1) und Sx eindeutig ist, weil Tx eindeutig war. Nun folgt (5.5) X = 1 Iq+Sx/q*, wobei Sx£[L/q, l)c[l/$r, 1) eindeutigist. Wir zeigen mittels Induktion nach«, dass (5.6) 2/1—1 x = 2 1 2 Iq^+S-x/q " 348 Z. Daröczy, A. Järai und I. Kätai gilt, wobei 1) eindeutig ist. Für n=1 ist (5.6) wegen (5.5) •erfüllt. Gilt (5.6), so haben wir wegen (5.5) Snx = 1 wobei S"+1x£[l/q, <5.7) /q+Sa+1x/q2, 1) eindeutig ist, also gilt l/q 2 k - 1 +Qlq+S n + 1 xlq s )lq* n = x = i=l 2n—l «:=i •d.h. (5.6) ist auch für n + 1 richtig. Aus (5.6) folgt wegen lim S"x/q2"=0 fl-»-oo x = 2 1 \q№~x <5.8) k=l und zwar ist auf Grund des im Beweis von Satz 2.4. auftretenden Lemmas diese Darstellung tatsächlich eindeutig. (ii) Falls x in ]0, 1[ enthalten und eindeutig ist, so gibt es ein N£ N derart, dass x£[llqN, l/q11'1) gilt. Daraus ergibt sich, dass qN~1x£[l/q, 1) eindeutig ist, d.h. es gilt wegen (i) notwendigerweise (5.8). Also ist x in der Tat von der Gestalt (5.4). B e m e r k u n g . Auf Grund der Definition sieht man leicht ein, dass für eindeutiges x€]0, L[ auch L—x eindeutig ist. 6. Volladditive Funktionen im Falle q ( l ) < q ^ q ( 2 ) Satz 6.1. Ist q(l)<q^q(2) und F: [0, X]—R volladditiv bezüglich der intervallfüllenden Folge {\/qn}£A {L:=\l(q—Vf),so gibt es ein cgR derart,dass F(x)=cx für alle x€[0, L\ gilt. Beweis. Setzen wir <6.1) / ( * ) : = F(x)-(F(L)IL)x so ist P volladditiv und es gilt F(0)= F(L)=0. (x£[0, L]), Es sei an:=F(l/q") (n£N) und P := {/iln^N, a„ => 0}. Ferner sei { := 2 nf.P 1/?". Wir zeigen dass ist. Andernfalls ist PT^H und folglich 4 = L wegen der Volladditivität von F folgen würde, dass L[, weil aus 0 ist, also Intervallfüllende Folgen und volladditive Funktionen 349 ein Widerspruch. Somit gilt Z V 0 und P ^ N , also ist auf Grund von Satz 3.2. £ eindeutig. Ist nun x£]0, L[ beliebig, so hat man wegen der Volladditivität von P (6.2) / ( * ) + f { L - x ) = P(L) = 0, woraus P(L/2)=0 folgt. Daraus ergibt sich ^ L / 2 , d.h. £<E]0, Lß[V]Lß, L[. Auf Grund der Identität (6.2) kann man ohne Beschränkung der Allgemeinheit £€]0, Lß [voraussetzen. Wegen q>q( 1) gilt £ / 2 < l , d.h. £<=]0, L/2[c]0, 1[, und auf Grund der Eindeutigkeit von £ folgt aus Satz 5.2. 1 1 i = i / q » - 2 Iii*"- = 2 i/g w + 2 ( l - 1 > fc=i *=i für irgendein N£ N. Es sei (6.3) (6.4) oc:= und (6.5) Dann gilt (6.6) *=i 22lqN+ilk~1) ß := 2 2 k=l und a+ß = 2f. L e m m a . f(a)=2F(<xß), P(ß)=2F{ßß)t Beweis d e s L e m m a s . Es sei «,:= 2 V q N + i ( k - 1 ) t=/ (6.7) («6N)- Wegen q ^ q ( 2 ) < q hat man q3-q2-q-1 woraus 2qa/(q*— \)<L (6.8) < ? 3 - 2 ? 8 + ? - l SO, folgt. Aus (6.7) ergibt sich nun a , = 2q*lqN+«'-»-1(q*-l)^LIqri+«i-1>-1 (i<EN). Definitionsgemäss gilt (6.9) « l = " ? / 9 w . + i ( | - 1 ) + « i + i (i€N) und wegen (6.8) «f := l / ? w + 4 ( i - 1 ) + a ; + 1 = a,—l/<7" + 4 ( i - 1 ) < < Llq*+*Q-»-i-llq*+W-*> = (¿0-1)/$»+«'-« = 1/}»+«'-« woraus wir wegen Satz 5.1. die Darstellung «f = 2 <*/?* *=N+4(J-1)+1 (^€{0,1}) 350 Z. Daróczy, A. Járai und L Kátai: Intervallfüllende Folgen und volladditive Funktionen entnehmen, d.h. wegen der Volladditivität von / u n d wiederum wegen Satz 5.1. gilt P(aü = Pil/qH+W-V+at) = F(l/qN+iil-»)+F(<xf) = f(l/q»+4(l-»)+F(l/q!i+4U-iy+<xi+1) = 2f(l/qN+«'-») = + F(ai+J. Aus der vorigen Gleichung erhalten wir (6.10) , P(a,) = 2fl J V + 4 ( l _ 1 ) +/(a i + i ) (<6N).. Aus (6.10) erhalten wir mittels Induktion (ai=a) für beliebiges ATgN F(a) = 2 2 + i=1 woraus für K—«o wegen der Stetigkeit von F im Nullpunkt F(a) = 2 2 «iY+4(;-i) = 2/(a/2) i=l folgt. Für ß verläuft der Beweis ganz ähnlich. F o r t s e t z u n g des Beweises des Satzes. Mit Rücksicht auf das Lemma folgt aus (6.6) F(a)+F(ß) = 2F(ccl2)+2F(ßl2) = 2F(£). Anderseits gelten nach der Definition von % die Ungleichungen / ( a ) < P(£) und P(ß)< P(£), womit wir auf einen Widerspruch gestossen sind. Es gilt also P— 0, und darausfolgt # ( x ) s 0 für alle x£[0, £,]. Indem wir diesen Gedankengang für —F wiederholen, erhalten wir — P ( x ) ^ 0 und somit gilt F(x)=0 für jedes x€[0, L], Hieraus folgt nun wegen (6.1) die Behauptung des Satzes. Literátor [1] Z . DARÓCZY, A . JÁRAI, I . KÁTAI, On functions defined by digits of real numbers, Acta Math. Hung., in print. (Z. D . und A. J.) MATHEMATISCHES INSTITUT L. KOSSUTH UNIVERSITÄT PF. 12 4010 DEBRECEN, U N G A R N a. K.) MATHEMATISCHES INSTITUT L. EÖTVÖS UNIVERSITÁT MÜZEUM KRT. 6—8 , 1088 BUDAPEST, U N G Á R N > Acta Sci. Math., 50 (1986), 351—380 3 Canonical number systems in Q{]/2) S. KÖRMENDI 1. Let us given an algebraic number field Q(Y) defined as a simple extension of the rational number field determined by y. Let denote the ring of the integers in Q(y)We shall say that an algebraic integer Q£ 5[y] is the base of a full radix representation in if every aÇ. can be written in the form a = J«,<?k, (1.1) k=0 where the digits.a t are nonnegative integers such that 0 ^ a k < N = |Norm (g)|. The largest set that we could hope to represent in the form (1.1) is the ring Z[Q], i.e. the polynomials in g with rational integer coefficients. The reason that the norm N yields the correct number of digits is due to the fact that the quotient ring Z[Q]/Q is isomorphic to ZN by the map which takes a polynomial in Q to its constant term modulo N. Any such radix representation is unique. Let P(X) denote the minimum polynomial of Q. Since Q is an integer in iS[y], therefore the coefficients of P(X) are rational integers, the constant term of P ( X ) is ± N . Suppose A(X), B{X)£Z[X] are polynomials whpse coefficients are integers in the range from 0 to N— 1. If A(G) and B(Q) represent the same element of Z[Q], then A ( X ) — B ( X ) is in the ideal generated by P(X) in Z[X]. Since the coefficients of A ( X ) - B ( X ) are in the interval [—JV-f-1, N— 1] and the constant term of P ( X ) is ±N, therefore A ( X ) - B ( X ) must be the zero polynomial, i.e. A(X) and B(X) have the same coefficients. I. KÁTAI and J. SZABÓ [1] proved that the only, numbers which are suitable basés fór all thé Caüssian integers, using 0 , 1 , . . . , N— 1 as digits, are —n±i where n is a positive integer, N=n2+l is the norm of —n±i. Their work was generalized by I. KÁTAI and B. KOVÁCS [2], [3], namely they determined all the bases for quad- Received April 20,1984. 7* 352 S. Körmendi ratic number fields, using natural numbers as digits. Similar results have been achieved by W. GILBERT [4], independently. B. KOVÁCS [5] gave a necessary and sufficient condition for the existence of number base in algebraic number fields. Namely he proved: If Q(y) is an extension of degree n of Q, then there exists a number base in S[y] if and only if there exists a SeSfy] such that {1, 9, ..., 3" - 1 } is an integer-base in S[y]. However, the determination of all the number bases in algebraic number fields seems to be a quite hard problem. Our purpose in this paper is to determine all the 3 number bases in Q\]f2\ This is the simplest case that has not been considered until now. We hope to extend our investigation for all cubic fields. 3 . • 2. Let a = f l , and let K(X)=X3—2 use some lemmas. • . .... • • be the minimum polynomial of a. We shall P L e m m a 1. Let <x=a+bo+co2 with a,b,c£Q, and let 3a, E2= =3(a2—2bc), E3= -(a3+2b3+4c3-6abc). Then a is a root of the polynomial P r o o f . Let í = e x p (27T//3) be one of the cubic roots of unity, and let a 1 =ir, cc2=a+b^a+c^2a2, az=a+b£,2a+c(^2<J)2 be the conjugates of a. Expanding the product (X—a1)(X—a2)(,X—ix3) we get immediately that this is T(X). L e m m a 2. (1, a, a2} is an integer base, i.e. cc=a+ba+ca2 if and only if a, b, c are rational integers. is an integer in Q(&) P r o o f . This is well known. L e m m a 3. Let aGSfir] {1, a, a 2 } is an integer basis if and only .if a = M ± « r , or a=M±(a+a2) with a rational integer M. P r o o f . Let a = a + b a + c o 2 . Then a 2 =(a 2 +Abe) +(2aA + 2c*)o+(2ac + b2)^. The matrix A of the basis transformation [1, a, <r2]-»[l, a, a2] has the form A = 1 a a2+4bc 0 b 2ab+2c* . 0 c 2ac+b* det A=±V if and only 6s—2c3 = ± 1. It is well known, see e.g. [6], that, all the solur tions of this Diophantine equation are: (2.1) (b, c) = (1,0), ( - 1 , 0 ) , (1,1), ( - 1 , 1 ) . . ; Let B denote the set of the number bases in Q(o). L e m m a 4. If a£B, then ( l , a , a 2 } is an integer base. .' - 3 __ 353 Canonical number systems in Q 0 2 ) P r o o f . Obvious. L e m m a 5. Let $€S[er] be such that {1, 9, 5 2 } is an integer basis. Let the minimum polynomial T(X)=X3+E1X2+E2X+E3 of 9 satisfy the conditions E3^2. Then 9£B. P r o o f . See [4]. Lemma6.7rSs-l, SgSM then 9$B. P r o o f . Let H a denote the set of those numbers a that can be written in the form a = <10+0!$+...+«¿9* with suitable digits a,€[0, |JV(3)|-1]. If 9 SO, then J / 9 g [ 0 , and so - 1 cannot be represented. If S = - l , then |JV(9)| = 1, a j = 0 , and so #¡>={0}. If |S|<1 and a € i / s , then |a| S a 0 + f l l |9| + . . . + a k (| - 1 ) |3|/(|9| - 1 ) , consequently Hs is a bounded subset of the real numbers. Since Z[9] is not bounded, the proof is finished. L e m m a 7. Let T(X)=Xa+E1XiE2X+E3 be the minimum polinomial of a, , , 2 andlet y = ( £ 2 + £ 1 + l)+(£ 1 + l ) + a . Then (1 - a ) y = T ( l ) . Consequently, if |r(7)| < < 1 , then y or —7 cannot be represented in the form r 0 + r 1 a + ... +rkak, /-^{O, 1 , . . . , . . . , | W ( a ) | - l } , i.e. a$B. P r o o f . The assertion 7 , (1)=(1—a)y is obvious. Let c=sgn T(l). Then cy = cr(l)+(cy)a, cT(l)6{0,..., |AT(a)|-l}. Let us assume in contrary that c has a representation in the form cy = r 0 +r 1 a+...+/•»<**. Then r0=cT( 1), c y = r 1 + r 2 a + . . . + r t a k _ 1 . Repeating this procedure we get that cT(\)=rQ=r1...=rk, < 7 = 0 , which does not hold. 3. From Lemmas 3 and 4 it follows that if a£B, then a = M ± < r or a = =M±(a+a2). Let T(X)=X3+E1X2+E2X+E3 be the minimum polynomial of a. Let us consider the table below. a Ei Et Et M+a M-a M+a+o* M-0-0' -3M -3M - 3M -3M 3 M* 3 M* M»+2 3(M*—2) 3(M»-2) M'-2 M*-6M+6 M*—6M—6 Conditions of Lemma 5 are satisfied if MS-3 Msor 4 M = -1 M S -5 M s -4 The numbers a satisfying the conditions stated in the last column belong to B. S. Körmendi 354 From Lemma 7 we get that a i f a s — 1, i.e. if a = M+a and Ms-2, a = M—<r and a = M+o+o* and Ms-3, a = M—o—o* and Ms2. AT s i , It remains to consider the following set of integers ...,a B , the minimum polynomials of which are denoted by T^X),..., TB(X), resp. a :. Jf8 + 9JT2+21X+ 25 — 3+tr 1 2 3 4 5 6 7 8 • 9 .Y3 + 6-X"2 + 12JT+10 *» + 2 jr» + 12Jr 2 +42Jr+34 —2—ff —a —4+tr+o -2 — 3—<r—<r2 -2-ff-cr2 -1-ff-tr2 X3 + 6X* — 6X+2 X» + 3X*-3X+1 X*-6X+6 —a—d1 X3-3^-3X4-11 l-O—(T2 v; N(oc) 25 ,. 10 2 34 . 15 2 1 6 11 L e m m a 8. We have a 6 , a 7 , a 8 , ot9$B. P r o o f . The conditions of Lemma 7 hold for a 6 , a 8 , a 9 . a 7 is a unit, the set of the digits contains only one element, the zero, so a 7 $B. L e m m a 9. a 3 = —a^B. •\ • • P r o o f . The set of the allowable digits are (0, f}. Let a 3 = a . First we observe that —1 = 1+a 3 , 2 = a 3 + a 6 . The general form of the integers id Q(a) is Z = =X0+X1a+Xza2, X£Z. By the relation —1 = 1+a 3 , each'Z can be written in the' form (3.1) . . . Z = r»+na-l-...,+rsa5 s . .. " •. : with nonnegative integers K0, ..., Y5. Let now Z ° # 0 be an arbitrary integer, written in the form (3.1). We shall define the following algorithm: tÇZ°):=>Y0+Y1+J,+Ys',-.h V \ I = F 0 -2[r„/2}€{0,1}. Z ( J ) = y x +Y 2 a + ( 7 3 + h ) a 2 + - Y ^ + r 5 a 4 + h a 5 : Then Z i 0 >=/+aZ ( 1 ) , furthermore (3.2) = [Yj2], = - ' = - s_ Canonical number systems in Q(lf 2) 355 Let us continue this procedure with Z (1) instead of Z (0) , and so on. We get a sequence Z (1) , Z ( 2 ) ,.... We say that the procedure terminates if Z (JV) =0 for a suitable N. It is obvious that a £B, if the procedure terminates for every Z. Let us assume in contrary that there exists a Z for which it does not terminate. Since the sequence ¿(Z^) the values of the members of which are positive integers, is monotonically decreasing, we get that *(Z< N >)=i(Z (N+1 >)=...=m>0. From (3.2) we get that ocZ<"+>+1>= =Z(N+n O'=0,1, 2,...), i.e. a* divides Z w for every positive integer k, which implies that Z ( W ) =0, contrary to our assumption. 4. It remains to consider the cases a l 5 ct^, a 4 , a 6 . We shall prove that the question whether they belong to B can be decided by a finite amount of computations. Let a£Q[o], a.=a+bo+co2, A={0,1,..., |AT(a)|-l}. For y£Q[o] the algorithm (4.1) y ^ a y i + i + n , r£A, y0 = y is well defined. Let r 0 £(0 0 ' e = Let A denote the matrix that describes the multiplication by a in the basé 1, tr, a 2 , i.e. for which * (4.2) holds. From (4.2) we get that (4.3) RT = ARi+1+rte rl+1 = A - ^ - r t A ^ e (i = 0,1, 2,...), where A~l has the following explicit form : (4.4) a2—2bc 2b2—2ac 1 2c2—ab a2—2bc A~ = N(ot) b2—ac 2c2—ab 1 4c2-2ab 2b2-2ac a2-2bc The algorithm terminates if 7 w = 0 f o r a suitable N, i,e. if TF,—0 in (4.3). Let || • || be a vector norm for which, with the corresponding matrix norm, (4.5) || A-i\\ = x 1 is satisfied. From (4.3) we get that (4.6) ri+N = (A-YTi-2 N-l k=0 r^A-y-^iA-ie), S. Körmendi 356 and hence that (4.7) ||ri+JJ 3 |r,| - 1 ) ( « / ( 1 "*))• From (4.7) we get immediately that the sequence r 0 , r x , . . . is bounded for every f 0 . Let us assume that there exists a y which cannot be represented in the base a. Then (4.3) does not terminate. Since any bounded domain contains only a finite number of vectors with integer entries, we get that (4.3) is cyclic. From (4.7) we get that (4.8) limsup \\rN\\ s ( | A T ( a ) | - ( x / ( 1 - * ) ) . Furthermore, the integer yN corresponding to TN cannot be represented in the base a. So we have proved the following assertion. Let e>0, and let S e be the set of those y for which \\r\\ s (|tf(«)|- ljBii-^BCx/Cl-^ +e =:L+e, r = T ( y ) holds. If a t h e n there exists a y w h i c h cannot be written in the base oc. Furthermore, if ||r,||sZ,/(l — x), then ||r t + 1 ||s£./(l—x), which is an obvious consequence of (4.7). This implies that the number of arithmetical operations that needs to be executed to determine the whole periodic sequence F 0 , r l t . . . is finite. By using the spectral norm for the matrices At corresponding to ah we get by an easy computation that Ur% « 0,63, \\At% « 0,75, \\A^\\S * 0,97, ¡¡A^h « 0,75, i.e. the condition (4.5) holds. 5. So we have proved the following T h e o r e m . The question whether the integers a x = — 3<7, (3^= —2—a, a 4 = —4+ +<r+<72, a6 = — 3—a—<t2 do or do not belong to B can be decided by executing a finite number of arithmetical operations. All the remaining elements of B are the following integers: (a) a = M+a, Ms-4, (b) a = M-a, Afs-3 (c) M s - 5, a = M+<x+o\ (d) a = M—a—a*, Ms-4. or M = - I or Af=0, 3 357 Canonical number systems in ß ( / 2 ) References [1] I . KÁTAI, J . SZABÓ, Canonical number systems for complex integers, Acta Sei. Math., 3 7 (1975), 255—260. B. KOVÁCS, Canonical number systems in imaginary quadratic fields, Acta Math. Hung., 3 7 ( 1 9 8 1 ) , 1 5 9 — 1 6 4 . [3] I. KÁTAI, B. KOVÁCS, Kanonische Zahlensysteme in der Theorie der quadratischen algebrischen Zahlen, Acta Sei. Math., 4 2 ( 1 9 8 0 ) , 9 9 — 1 0 7 . [4] B . KOVÁCS, Canonical number systems in algebraic number fields, Acta Math. Hung., 3 7 ( 1 9 8 1 ) , [2] I . KÁTAI, 405—407. [5] W . GILBERT, Radix representations of quadraticfields,J. Math. Anal. Appl., Elementary theory of numbers (Warsawa, 1 9 6 4 ) . [6] W . SIERPINSKI, D E P A R T M E N T O F COMPUTER SCIENCE EÖTVÖS L O R Á N D UNIVERSITY B O G D Á N F Y Ü T 10/B 1117 BUDAPEST. H U N G A R Y 8 3 (1981), 264—274. Acta Sei. Math., 50 (1986), 359—33* On measurable functions with a finite number of negative squares z . SASVARI To Professor Heinz Longer on the occassion of his 50th birthday 1. Introduction The complex-valued function / defined on the interval (—2a, 2a), 0 i s called Hermitian if f(—x)=f(x) for every x£(—2a, 2a). Let x be a nonnegative integer. The Hermitian function / i s said to have x negative squares if the matrix (1) (/(*<-*;))?,;=! has at most % negative eigenvalues for any choice of n and x 1} ..., xnZ(—a, a), and for some choice of n and xlt..., xn the matrix (1) has exactly x negative eigenvalues. Denote by 0P™;a) the class of all Hermitian functions defined on (—2a, 2a) which are continuous (measurable, respectively) and which have x negative squares. In [1] the question was raised if /€^3™ „ implies that / is locally bounded on (—2a, 2a). The aim of this note is to answer this question in the affirmative (Theorem 1). Therefore in [1] in the definition of a the condition of local boundednes of/ can be dropped. We mention that an arbitrary positive definite function / (that is x=0) is bounded. If, however, %>0, then there exist nonmeasurable functions with x negative sguares which are unbounded on each subinterval of (—ia, 2a), see [1]. As a consequence of Theorem 1, of the decomposition result in [1] and of [3, Theorem 2] we show that an arbitrary function has at least one continuation in (Theorem 3). An extension of Theorem 1 to locally compact groups is given in Section 3. A survey and a bibliography on functions with a finite number of negative squares can be found in [4]. Received April 28, 1984. 360 Z . Sasviri 2. The main result T h e o r e m 1. Jf /€^3™ „ then f is locally bounded on ( - 2 a , 2a). P r o o f . We show that / is bouiided on every interval It=[—2a+5, 2a—5], 0<<5<a. For c > 0 the function / + c has at most x negative squares. Therefore we can suppose that / ( 0 ) > 0 . If K > 0, define 5*/= 1/(01 < K}. The sets SKf are measurable and we have lim k(SKf) J-.«» = 4a where A denotes the Lebesgue measure. I f / i s not bounded on I s then there exists a sequence {/„}~c/ a with | / ( O I — °°- Let K > 0 be such that X(SKf) > 4a—¿/x 3 and (2) 0€S K /. We show that for every n = 1, 2,... there exist elements jc^, ..., x ^ j with the following properties: xln)e[-5/2,S/2] (3) (4) = Js for i=l,...,x+l x ^ - x < f > e S K f for (5) x^-x^ + tn£SKf for i,j= and jc{n) = 0, l,...,x+l, i,j = 1, . . . , x + l , i jt'j. Let x("^=0, and suppose that l s l < x + l , have been found such that (3), (4) and (5)hold with A:+l replaced by/. For each i=\,...,l we define Mi = (SKf+xnnJs, ( 0 i.j.m^l {(Ji\Mt)l>(Js\Nj)U(Ji\Qm)})^l3S/^s5 A( n Let Qt = (SKf+xl* + t„)nJs. | ^ n ) ± i „ | < 2 a - 5 / 2 and (2) it follows that . From and so Nt = (SKf+xln)-t„)DJi, = X(Ji) (M(n^nej)>o. be an arbitrary element of the set f| (Af ( nA^ng m ). Then (3), (4) and t.j,m=l (5) hold with x + 1 replaced by / + 1 . Therefore, for every « = 1 , 2 , . . . we can choose x*f\ ..., so that (3), (4) and (5) are satisfied. Now let ..., z£>+a be defined by Measurable functions with a finite number of negative squares 361 We consider the matrix A(n) = (a <;>)2*ti = (/(zi-> -Zj">))?.y= The relations (3), (4) and (5) imply K l i . a / N K l i w - i l = 1/(01, / = 1 , +l and \etff\ < K for the other entries of Aw. Using these facts it is easy to see that by setting Z><n)=det (e//j\J=v r=l, ...,2x+2, we have lim ^fiVl/WI" = (~ l)r» r = 1, lim D£\J\f{tB)\* = (-1/, ...,*+1, r = 1,..., x, Di">> 0. It follows that for it sufficiently large, the signs in the sequence ,Dl°\Din\...,Di$+i 1 change exactly x + l times. Consequently, by Frobenius's rule the matrix A(n) has x+l negative eigenvalues. This is a contradiction to the assumption that / h a s exactly x negative squares. The theorem is proved. Combining Theorem 1 and the decomposition theorem in [1] we have the following T h e o r e m 2. Every function /(E^P™. a admits a unique decomposition (7) № = f such that /c€^i0, c ( f ) + m (-2a<f<2a) and /(0=0 a.e. on (-2a, 2a). C o r o l l a r y 1. If a. is finite then fZ^.^is bounded on (-2a, 2a). Indeed, in the decomposition (7) the function fc is bounded on (—2a, 2a) according to [2] a n d / is bounded as it is a positive definite function. T h e o r e m 3. Lei where 0 < a < ° ° and x is a nonnegative integer. Then there exists a function /€^P™;oo such that f(t) =f(t) (-2a<i<2a). P r o o f . By Theorem 2 the function/admits a decomposition f ( t ) = m + m (~2a^t^2a) such that f s ^ o - a and / , ( 0 = 0 a.e. on (~2a,2a). In [2] it was shown that fe has an extension and by Theorem 2 in [3]/, has an extension If we set f=fc+j, we have and f(t)=?(t) (-2a<f<2a). Z. Sasvari 362 3. Some remarks 1. Let x again be a nonnegative integer. The definition of a function with x negative squares can be formulated on a group G as follows. Suppose that / i s a complexvalued function defined on a symmetric set VczG which contains the unit of G and has the property that f(g~y)=f(g) for every g£ V. The function/is said to have x negative squares if the matrix (/(ifcg/ 1 ))?,/-! (8) has at most x negative eigenvalues for any choice of « and glt..., g„€ V for which gigJ^ V ( / , 7 = 1 , . . . , « ) , and if for some choice of n and gi,..,g„ the matrix (8) has exactly x negative eigenvalues. We denote by the set of functions on F which have x negative squares. If G is a locally compact group with Haar measure A and Vis A-measurable we set K = [fZtyx-.v- f is A-measurable on V}. It is not hard to see that the arguments in the proof of Theorem 1 can be used in order to show the following result. T h e o r e m V. Let G be a locally compact group and /£ ^J™. v where V is an open symmetric subset of G. Then f is locally bounded, that is,f is bounded on every compact set KcV. 2. It follows immediately from Theorem 2 that a function with s e a l cannot vanish almost everywhere on (—2a, 2a). This fact remains valid for functions on a locally compact group. In order to see this we need the following. L e m m a 1. Let G be an arbitrary group and with finitely many translates of the support of f . If then V can be covered P r o o f . Let glt ...,g„€V be such that the matrix A=(f(gigJ1))"J=1 has x negative eigenvalues. Suppose that V cannot be covered with finitely many translates of S u p p / = {g€ V:f(g)?iO}. Then there exists a g£ V for which (Supp f ) g j \ / , 7 = 1 , . . . , « . Let tx, ...,t2n be defined by Then we have h = gi> t„ = gn, tnAri = gtg,..., Thus B has 2x negative eigenvalues, a contradiction. t^ = g„g. Measurable functions with a finite number of negative squares C o r o l l a r y 2. Let G be a locally compact group and let /€^P" If x^ 1 then f cannot vanish almost everywhere on V. 363 v where A ( F ) > 0 . T h e a u t h o r is indebted t o Professor Heinz Langer f o r suggesting t h e p r o b l e m discussed in this p a p e r a n d f o r several helpful discussions. References LANGER, On measurable Hermitian indefinite functions with a finite number of negative squares, Acta Sci. Math., 45 (1983), 281—292. [2] V . I . PLUS&VA, The integral representation of continuous Hermitian-indefinite kernels, Dokl. Akad. Nauk SSSR, 145 (1962), 534—537. (Russian) [3] Z. SASVARI, The extension problem for measurable positive definite functions, Math. Z-, 191 (1986), 475—478. [4] J. STEWART, Positive definite functions and generalizations, an historical survey, Rocky Mountain J. Math., 6 (1976), 409-434. [1] H. SEKTION MATHEMATIK TECHNISCHE UNIVERSITAT MOMMSENSTR. 13 8027 DRESDEN, G.D.R. Ааа ¿с/. Мшк-, 50 (1986), 365—366 Представление полиномов Лагерра о. в. висков Пусть И=¿¡с1х — оператор дифференцирования и (1) Ц,(х) = (1/|»0е я *~"Л"[е~**" + 1. я = 0,1, 2. — обобщенные полиномы Лагерра (см. [1], 10.12). В настоящей заметке устанавливается справедливость следующего представления для полиномов Ь%(х): (2) Ц,(х) = (1/п1)х—ех(х2П+ах+х)п[е-х]. Это соотношение является в известном смысле двойственным к формуле Родрига (1) и установленному в [2] представлению (3) Ц(х) = ((- 1)п/п\)ех(хП2+аВ+0)п[е-х]. Отметим, что представление (3) в частном случае а = О было доказано Л. Б. Р е д е й [3]. Доказательство (2) можно было бы провести, опираясь на установленную в [2] операционную лемму и почти дословно следуя использованному там ходу рассуждений (с заменой оператора /) оператором умножения на независимую переменную, и наоборот). Однако в настоящей заметке предлагается иное доказательство, основанное на единственности решения задачи Коши, для подходящего уравнения в частных производных. В самом деле, хорошо известно [1], что (4) 2 «(*)<" = (1 - О ^ - ' е х р { * * / ( * - 1)}. Кроме того, ясно, что функция "('»х)= 2 Поступило 5-ого февраля 1984. 8 №)(х2£+ссс+х)п[е-*] 366 О. В. Висков: Представление полиномов Лагерра дает решение задачи Копш (5) — = \)хи, «|,=о = С другой стороны, легко проверяется, что функция u(t, х) = (1 -xt)-*-1 exp {xftxt—1)} тоже является решением задачи Копш (5). Поэтому (6) 2 (taln\)éx(^D+oLX+Xy[e~x] BS о = (1 -xt)-'-1 exp {*»//(*/-1)}. Сравнение (6) и (4) с учетом (2) завершает доказательство. Литература [1] Higher Transcendental Functions, vol. 2, McGraw-Hill (New York, 1953). [2] О. В. Висков, О тождестве JI. Б. Редей для полиномов Лагерра, Acta Sei• Math., 39 (1977), 27—28. [3] L . В . RÉDEI, An identity for Laguerre polynomials, Acta Sei. Math., 3 7 ( 1 9 7 5 ) , 1 1 5 — 1 1 6 . BATEMAN MANUSCRIPT PROJECT, М А Т Е М А Т И Ч Е С К И Й И Н С Т И Т У Т И М . В. А. СТЕКЛОВА А Н С С С Р У Л . ВАВИЛОВА 42 МОСКВА 117333, С С С Р Acta Sci. Math., 50 (1986), 367—380 Orthonormal systems of polynomials in the divergence theorems for double orthogonal series F. MÓRICZ* 1. Introduction. Let (X, !F, fx) be a positive measure space and /, k= = 0 , 1 , . . . } an orthonormal system (in abbreviation: ONS) defined on X. We will consider the double orthogonal series (1.1) 2 2 a <PiÁx) i=0k=0 lk where {ajt} is a double sequence of real numbers for which (1.2) ¿¿a?*<~. i=0»=0 The rectangular partial sums and (C, a, /?)-means of series (1.1) are defined by m n *»»(*)= 2 2aik<pik(x) i=0k=0 and <Ax) = (1 IA'mAS) 2 2 i=o*=o '" = {mma) {«^-hP^-U respectively, where A A'-JiAttsxix), m,n = 0,l, ...). 2. Preliminary results: Convergence theorems. The extension of the Rademacher—MenSov theorem proved by a number of authors (see, e.g. [1], [5, Corollary 2], etc.) reads as follows. Received May 15,1984. This research was conducted while the author was a visiting professor at the Indiana University, Bloomington, Indiana, U.S.A., during the academic year 1983/84, on leave from the University of Szeged, Hungary. 7* F. Móricz 368 Theorem A .If 2 2 flatDog 0+2)] 2 [log (k+2)]2 < i=ot=o (2.1) then series (1.1) regularly converges a.e. In this paper the logarithms are to the base 2. The convergence behavior improves when considering <f%,(x) with a s O and /?s0 instead of Jmn(x). The following two extensions of the MenSov—Kaczmarz (a= 1) and Zygmund (a>0) theorems were proved in [7]. T h e o r e m B. If a > 0 and (2.2) 2 ia? t [loglog(i+4)] 2 [log(fe+2)] 2 <oo, i=0k=0 then series (1.1) is regularly (C, a, 0)-sammable a.e. T h e o r e m C. If a > 0 , )5>0, and 2 ¿a?*[loglog(i+4)] 2 [loglog(fc+4)] 2 <«>, (=0*=0 (2.3) then series (1.1) is regularly (C, a, fi)-summable a.e. and The next three theorems give information on the order of magnitude of ^ ( x ) respectively, in the more general setting of (1.2). T h e o r e m D [6, Corollary 2]. If condition (1.2) is satisfied, then SmnC*) = ^ { ^ ( » 1 + 2 ) l o g ( / i + 2 ) } (2.4) a.e. as max(m,ri) — T h e o r e m E [9, Theorem 1]. If a > 0 and condition (1.2) is satisfied, then (2.5) <T^n(x) = ox {log log (m+4) log («+2)} a.e. as max (m, n) — T h e o r e m F [9, Theorem 2]. If a > 0 , ^ > 0 , and condition (1.2) is satisfied, then (2.6) (x) = ox {log log (m+4) log log (n+4)} a.e. as max (m, h) — 3. Preliminary results: Divergence theorems. The conditions (2.1)—(2.3) and statements (2.4)—(2.6) are the best possible. To see this, from here on let (X, OF, ¡i) be the unit square X=[0,1]X[0,1] in 2 5 R , J " the ff-algebra of the Borel measurable subsets, and n the Lebesgue measure, in the sequel, the unit interval [0,1] will be denoted by./, the unit square / X / by S, and the plane Lebesgue measure by | • |. Orthonormal systems of polynomials in divergence theorems 369 T h e o r e m A' [10, Theorem 4]. If {aik} is a double sequence of numbers for which (3.1) |a t t | S max { k + 1 > t | , |a i > k + 1 |} (i, fe = 0, 1, ...) and oo (3.2) oo <Vog(i+2)f\log{k+2)]12 2 2 i=0k=0 then there exists a uniformly bounded double ONS {<pik(x1, x 2 )} of step functions on S such that (3.3) lim sup |s mn (x l5 a.e. as min (m, n) — . A function <p is said to be a step function on S if S can be represented as a finite union of disjoint rectangles with sides parallel to the coordinate axes, and <p is constant on each of these rectangles. R e m a r k 1. As a matter of fact, (3.3) was proved in [10] under (3.1) and the stronger condition that for all pairs of i0 and k0 (3.20 2 2 <4[log(i+2)] 2 [log(fc+2)] 2 = «,. i=i0k=k0 Assume (3.2') is not satisfied for a certain pair of /„ and k0, but (3.2) is. Then either ¿'S1«&Dog(i+2)]»=«» 1=0k=0 or S1i«iDog(fc+2)]»=co. i=o t=0 Now, it is a routine to construct an ONS {«¡»»(xj, x 2 )} such that (3.3') lim sups )mi (jc 1 , x^) a.e. as and n — k0—1, or m = ¿o — 1 and n—<=°. On the other hand, since (3.2') is not satisfied, by Theorem A the truncated series 00 (1.10 00 2 2 a <Pik(.x1, *a) i=i0*=fc0 ik regularly converges a.e. Consequently, the divergence expressed in (3.3') cannot be spoilt as min (/«,«)->• 00 and this is (3.3) to be shown. R e m a r k 2. In particular, it follows from Theorem A' that log («+2) cannot be replaced in condition (2.1) by any sequence g(n) tending to °° slower than l o g ( n + 2 ) as n—co. Similar observation pertains to Theorems B' and C ' below. 370 F. Móricz T h e o r e m B' [11, Theorem 2]. Set A-2,k = M , If and A-lik Apk = { V£ alfl* I=2"+1 = |au|, 4Pk = max {A„+lik,APik+1} 2 (p, k = 0,1, ...). (p = - 2 , - 1 , 0, ...; k = 0, 1,...) 2 a?*[loglog(i+4)] 2 [log(fc+2)] 2 = ~ , j=0k=0 then there exists a double ONS {cpik(xA'2)} of step functions on S such that lim sup Iff^C*!, x^l a.e. as min (m, n) — ' Making the convention that for p— —2 and — 1 by 2" we mean — 1 and 0, respectively, the definition of the Apk can be unified as = { *Z <4}1/2 /=2»+l (P = - 2 » - • • • ; k = •••)• T h e o r e m C' [12, Theorem 1]. Set A*pq = { *2 <4}1/2 0», 9 = -2, -1,0, ...)• i=2* + lfc=2«+l If and A*pk^maK{A*p+1,k,A*p,k+1} 2 i=0 (p = - 2 , - 1 , 0 , . . . ; fc = 0, 1, ...) 2 «fJ'og log (i +4)]»Qog log (/c+4)]2 = k=0 then there exists a double ONS {(p^^, x2)} of step functions on S such that lim sup \o%n(?cl, x2)| = °° a.e. as min (m, n) — 00. The divergence theorems corresponding to Theorems D, E and F will be stated in Section 5. 4. Main results. Following the arguments due to ME№>ov[4]andLEiNDLER[3], we can conclude an approximation theorem for double ONS of L 2 -functions by double orthonormal systems of polynomials (in abbreviation: ONSP) in xt and xz. This theorem can be considered an extension of [3, Theorem 1] from single to double ONS. T h e o r e m 1. Let x 2 ): '\k=0, 1, ...} be a double ONS on S, r, s= 1, 2, ...} a double sequence of positive numbers, {Mr: r= 1,2,...} and {Ns: s= 1, 2, ...} two strictly increasing sequences of nonnegative integers. Then there exist a double ONSP { P ^ ^ , x 2 ): i, k=Q, 1, ...} on S and a double sequence Orthonormal systems of polynomials in divergence theorems 371 {E„: r, J = 1 , 2, ...} of measurable subsets of S such that the following properties are satisfied: (i) | £ „ | s e „ ( r , j = l , 2 , . . . ) ; (ii) For every (xl5 x2)€S\Ers, andfor every M,.1<i§Mr and (4.1) | * 2 ) - ( - L Y - ^ A T F R I , XJ\ =§ £„ (r,s = 1 , 2 , . . . ; M0 = N0 = - l ) . where _/„(xl5 x2) equals 0 or 1 depending on r, s, and x2, but not depending on i and k\ (iii) If the functions <p,k are (not necessarily uniformly) bounded on S, then max li^Ct!, xj\ ^ 2{ sup l ^ f o , x^l +1} (i, k = 0,1, ...). R e m a r k 3. If the (pik are bounded, in particular, step functions on S, then it suffices to require that the functions q>ik are orthonormal only in each block A/ r _ 1 < < / s ¥ , and (r, j = l , 2, ...), but not altogether. R e m a r k 4. If in each block represented in a product form, i.e. (4.2) <pik(Xl, x,) = and the cpA can be (xd<pi2-s) (x2) where both {<p?' r \xj: M r _ x < i ^ M r ) and {(pf' s) (x 2 ): N ^ ^ k ^ N , } are bounded orthonormal functions on I (r, s— 1, 2, ...), then the resulting Pik can also be taken in the product form (4.3) Pik(xlf x2) = P i 1 - ' ) ( x J P j ? ^ (x2) in each block M r _ 1 < i ^ M r and N ^ ^ k ^ N , , where both {P f ( 1 , r ) (^: ^ M , } and {Pf ,s) (x 2 ): are orthonormal polynomials on I (r,s= = 1,2,...). The above approximation theorem enables us to strengthen Theorems A', B', and C ' in the same sense as it was done by LEINDLER [3, Theorems A and G ] in the case of single ONS. Namely, if there exists a double ONS for which such and such a series or sequence diverges a.e., then there exists a double ONSP which exhibits this divergence phenomenon. T h e o r e m 2. In each of Theorems A', B' and C' the double ONS {(pik(xi,x2)} can be replaced by a double ONSP {P tt (*i, x2)} of the form (4.3). 5. Immediate consequences of Leindler's results. Here we cite the main lemma of LEINDLER [3, Lemma 3] in the form of the following T h e o r e m G. Let {er: r = l , 2, ...} be a sequence of positive numbers, {Mr: r= 1,2,...} a strictly increasing sequence of nonnegative integers, and F. Móricz 372 {(pi (xj: /=0, 1,...} a system of boundedfunctions such that the (p{ are orthonormal on I in each block ( r = l , 2 , . . . ; A f 0 = - 1 ) . Then there exist an ONSP {P,(xi): / = 0 , 1, ...} on I and a sequence {Er : r= 1, 2, ...} of measurable subsets of I such that the following properties are satisfied: (i) \Er \^er (r—1,2,...; here | • | means the linear Lebesgue measure); (ii) For every x1 £l\Er andfor every \<p,(?cd--(-ly^^i^i)! Mr _1 <i^Mr , Si, (r = 1,2,...), where jr (xequals 0 or 1 depending on r andxx , but not on i; (Hi) max|J»,(*,)| s 2{sup |<z>;(*i)l + 1 } (i = 0 , 1 , . . . ) . Assume we have two sequences {e®: r = 1 , 2 , . . . } and {e<2): J = 1 , 2, ...} of positive numbers, two strictly increasing sequences {Mr: r= 1 , 2 , . . . } and {Ns : s=l, 2, ...} of nonnegative integers, and two systems { ^ ( x j : / = 0 , 1, ...} and {(pf\x2 ): k=0,1, ...} of bounded functions on I with bounds B ( p and respectively, such that the (pf^ are orthonormal on I in each block (/•=1,2, ...; M0=— 1) and the <p£2) are orthonormal on / in each block iV s _i< cArSiV, ( J = 1 , 2 , . . . ; N0 = — 1). Applying Theorem G separately to both cases yields two ONSP { P ^ f o ) : / = 0 , 1, ...} and {Pf'(x 2 ): k=0, 1, ...}, two sequences {/¿r(1): r = l , 2, ...} and {£j 2) : s= 1, 2, ...} of measurable subsets of / s o that properties (i)—(iii) are satisfied, respectively. It is not hard to verify that the product ONSP given by x2 ) = PVixJPPixz) provides an approximation to the product i,k=0, 1, ...} with the following properties: (T) Setting Ers =(E^XI)U(lXE^), (5.1) (i, k = 0, 1, ...) ONS i) {i>№(x1, x2 )=(pj (x1 )(pf\x2 ): ( r , s = 1,2,...); (ii) For every (x l 5 x2 )£S\Ers , (5.2) | ( X M 2 and for every M r _ 1 < i S A f r and ) (*.) • - ( - lyP'WPWpf»(Xj)Pi2) - (N# max ^ (xj\ S B i ^ + s ^ a™ (r, s = 1, 2, ...), where both j r (1) (^i) and j®\x2 ) equal 0 or 1; (iii) max S 4{sup IPp'ixOPrix^s (Xj)| + 1 } {sup \<pfp(Xa)| + 1 } (i, fc = 0,1, ...). Orthonormal systems of polynomials in divergence theorems 373 Relation (5.2) immediately follows via the identity (pWfpW-^ !),<«>+7"»pU)p(2) = ç,(2)|yi)_(_ 1)/"p(l)] + ç,(l)[ç)(2)_(_ iy<»/X*>] _ The main trouble is that the right-hand sides in (5.1) and (5.2) are of O {e^+fi®} and thus do not tend to 0 as max (r, In spite of this disadvantage, the approximation result just obtained is enough to state, for instance, that the double ONS can be replaced by double ONSP in the divergence theorems showing the exactness of Theorems D, E, and F. This is due to the fact that in these cases r and s can be chosen so as to depend on a single parameter /, say: r = r , and s=st, while both rt—00 and s ^ c o as /-*However, we can proceed another way. Starting with the strengthened versions of [3, Theorems D and E], the following three theorems can be deduced simply by forming the product system of two appropriate single ONSP as well as the product system {aik=cfpc^: i, k=0, 1, ...} of the corresponding single sequences {a^} and {Û£2)} of coefficients. T h e o r e m s D'. If (g(w): w=0,1, ...} is a nondecreasing sequence of positive numbers for which (5.3) Q(n) = o{log (n+2)} as then there exist a double ONSP {Pik(x1 ,x2)=P[i:>(xJP^(x2): i, k=0,1, ...} on S and a double sequence {aik} of coefficients such that condition (1.2) is satisfied and (5.4) where lim sup I S ^ f e , X^)\/Q(m) e (") = m S M N F A , X2 ) 00 a.e. as n = 2 2 <*ikPik(X1, i=0k=0 min (m, m) (m, n = 0,1, ...). X2 ) Using a double ONS , x2)=(pf\x1)(pf\x2)} this theorem was proved in [11, Theorem 2]. in the counterexample,, T h e o r e m E'. If {g(/j): n = 0 , 1, ...} and {r(m): m=0, 1,...} are two nondecreasing sequences of positive numbers, Q satisfying (5.3) and r satisfying (5.5) T (m) = o {log log (m+4)} as m then there exist a double ONSP {/^(xj, xJ^P^Xx^P^Xxz)} on S and a double sequence {a tt } of coefficients such that (1.2) is satisfied andfor every a > 0 lim sup \Zm„ (x 1 , x^l/z (m) q (m) = °° a.e. as min (m, n) where 1, *2> = (MAI) 2 2 AÏT-iSidx!, X2) (m, n = 0,1,...). F. Móricz 374 T h e o r e m F'. If [x(m)} is a nondecreasing sequence of positive numbers satisfying (5.5), then there exist a double ONSP {P^x^ x 2 )=P I i 1) (x 1 )Pi 2) (x 2 )} and a double sequence {a tt } of coefficients such that (1.2) is satisfied and for every a > 0 and /?>0 {5.6) where lim sup x2)\/x(m)x(n) = <=o a.e. as *2) = MUT) 2 2 1=0 (¡=0 min (m, ri) X,) (m, n = 0,l,...). Using double ONS { p ^ f o , x 2 ) = y ^ f a ) ( p < k \ x 2 ) } in the counterexamples, Theorems E' and F ' were included in [8, Section 5]. R e m a r k 5. Examining the structure of the counterexamples in Theorems D ' and F', the following slightly sharper result can be concluded: Estimates (5.4) and (5.6) remain true if g(m)g(«) and x(m)x(n) in the denominators are replaced by e 2 (min (m, n)) and x2(min (m, n)), respectively, provided 6(2n) S Cg(n) (n = 0, 1, ...) and x(m2) S Cx(m) (m = 0, 1, ...), where C is a positive constant. R e m a r k 6. A couple of other divergence theorems can be strengthened by inserting double ONSP in the above way. For example, the corresponding two-dimensional versions of [3, Theorems B, C, and F | hold also true. Proof of Theorem 1. It relies on the basic ideas of MENSOV [4] and LEINDLER [3]. Here we reformulate four lemmas of their papers for the two-dimensional case. These lemmas were stated and proved in the one-dimensional case. However, the proofs of the two-dimensional reformulations closely follow the original proofs. Where is needed, we indicate the necessary modifications. 6. L e m m a 1. Let { f ( x x , x2): l^i^N} be continuousfunctions, while {gj(x1, x2): I s j ' s W } step functions on S and let e^O. Then there exist functions {Gy(xls x 2 ): 1 ^j^N'} and a measurable subset E of S with the following properties: (a) The functions Gj are continuous on S; (b) (c) For every (x l5 x2)dS\E andfor every l^j^N', Gj(xls x2) = ( - l y t ' W g / X i , x2) where j(x1,x2) (d) equals 0 or 1 depending on (x l5 x2) but not on j; max |GJ(X 15 x^l S (*I.*T)€S (e) J max k ^ f o , x 2 )| ( l s j s N'); C*I.*S)€S 1 1 | / / f (*i,Xa)Gj(x,, xjdXldx2\^e o o (1 S i == N, 1 S j N% 375F.Móricz:Orthonormal systems of polynomials in divergence theorems This auxiliary result is the restatement of [4, Lemma 2, pp. 30—32] with a similar proof. The only thing to explain is that if g is a step function on S, then for every £ > 0 there exists a continuous function G on S such that (6.1) and (6.2) | { f o , Xa): G Ox, Xa) ^ g(x1, Xa)>| S e max |G(x l5 xj\ == max |g(x l t x2)\. (Xj.XsKS (xl,xi)€S This is clear if g (x x , x2)=gm (xjg™ (x2) even with some G (x x , x 2 )=G (1) (x^G^ (x2). In the general case, it is enough to consider the characteristic function g(x l 5 x 2 )= = X r ( X I > X2) of a rectangle R inside S given by R=(a1, a2> X (fix, /?2>, where <al5 a 2 ) denotes one of the intervals (a1 ,a 2 ), [a l5 a2), (a l5 a2], [a ls a j and </?i/?2) has a similar meaning. Setting 8 = min {e/4, («,-«0/2, 03 2 -ft)/2} we define G(x l5 x2) to be G 0 ^ ) G(2H*2) where G(1)(x!) = 1 for ax+5 S jq ^ a 2 —<5, 0 for 0 S Xi ^ a x and a 2 X l 1, linear for < < ax+8 and a2—£> < xx < a 2 in such a way that G(1) is continuous on I; and G(2) is defined in an analogous manner. It is easy to check that this G meets the conditions (6.1) and (6.2) . R e m a r k 7. If N'=N^N2 and and the functions ft and g} are given in the forms f,(x1, *2) =/i (1) (*i)/i (2) (*2) gjiixi, x2) = gfHxdg^ixJ (1 ^ i ^ N) ( l s j g N{, l s / s Ni), then the functions Gj can be also represented in the form (6.3) G j ^ , x2) = Gj" ( Xl ) G/2) (x2) (1 —j = Ni, 1 = 1^ N£). In order to see this, apply the original Mensov's lemma [4, Lemma 2] separately to the following two systems {/,(1)(xi), ^'(x,.): l ^ i ^ N , lSy'SiV^} and {f?\x2), g?\x2): l^i^N, l=s/=§JVa'} with £ ( 1 W 2 ) = e / 2 instead of £>0. As a result, we obtain two systems {Gf\Xl): l ^ N ; } and {G?\x2)\ l^l^N'J with corresponding sets Em and is(2), and corresponding exponents c2) and y'(2)(x2). Letting (6.3), £ = (£' 1 »X./)U(/X£ ( a ) ), and j(xl, x j = j ^ W + j ^ W , properties (a), (b), (c), and (e) are obviously satisfied (in case (e) provided e ^ 1). To verify the fulfillment of (d), we have to take into account that the extreme values of F. Móricz 376 the step functions g^'and gf> are not altered during the linearization process. Thus, for every (x l5 x2)6 S there exists a pair (xj, x£)6 S such that IG^OcOl s |Gj»(xOI = |*j»(*D| and |G,(2)(*2)I ^ \Gi2Hxd\ = |gP(x0|. Consequently, (d) is also satisfied. L e m m a 2. Let 0 < r < r ' , {77^^, jca): l S / S r } and {Qk(Xl, x2): be nonidentically vanishing polynomials in xx and x2, v = max №(*i> *«)l., max ie*(*i> *i)l}. IX j< = m T n { J J lPi(x1,x^)dx1dx2, 0 a = max{f r<k^r'} i 0 f Iliix^ x^Qk(xlt x 2 ) dx^ dx2, f 0 0 Qk(x1,x2)dx1dx2}, 1 1 f f Qk(x^ x^Q^, 0 0 y = max {4r's v, 1/x}, and If the polynomials {Il^Xi, x2): lS/Sr} exist polynomials {nk(xlt x2): ties are satisfied: i f x^ dxx dx2}, A= are orthogonal on Sand < T A < 1 , then there in xx and x2 such that the following proper- (a) The polynomials {77 i (x 1 ,x 2 ): l S / S r ' } are orthogonal on S; (b) max \Qk(x1} x^-n^x^ x^l ^ ok (r < k S r'). The proof is essentially a repetition of the proof of the corresponding result of MENSOV [ 4 , Lemma 3 , pp. 3 2 — 3 6 ] . R e m a r k 8. If r'^r'^ and nt(xlt and the polynomials J7f and Qk are given in the forms X2) = (xJIlW (X2) (1 S i S r ) Qu(x1, X2) = QP (Xl) g / » ( x j ( r < / c s r i , r r'2), then the polynomials n k can also be represented in the form (6.4) n k l ( X l , x,) = I i p ( x j n p ( x j ( r < f c S r i , r Indeed, apply the original Mensov's lemma [4, Lemma 3] separately to the systems W f o ) , fif}(*i): l^ter^teiQ and {n™(x2), Qf\x2): with the corresponding notations v(1), x(1), y(1), A(1) and v(2), ..., A(2). If and u (2) A (2) <l, then we can obtain polynomials IJ^ 3 for r < k ^ r [ and 77j2) for 377F.Móricz:Orthonormal systems of polynomials in divergence theorems such that the systems { i l f f e ) : orthonormal on I, respectively, and and {nf\x2): l s / s r ^ } are (r < fc ^ ri) and Now letting (6.4), the fulfillment of (a) is clear, while a slightly modified version of (b) follows via the elementary estimate max |QPCxJQPCxJ-iiPMnloCxJl* =5 v<2> max \Qp ( x j - l i p (xJI+v (1 > max [&(2) (xj-ll™ (x2)\ S V(2)<T(1)A(1) + V(1)<7(2)A(2>. This form is still enough during the proof of Lemma 4 below (cf. [3, p. 26, formula (3.4)]). L e m m a 3. Let {?>a(xi, x2): i, k=0, 1, ...} be a double ONS on S, {£„: r, s=l, 2, ...} a double sequence of positive numbers, {Mr:r= 1,2, ...} and {Ns: s= 1,2, ...} two strictly increasing sequences of nonnegative integers. Then there exist a double system x2): i, k=0,1,...} of bounded functions on S and a double sequence {Ers: r,s= 1,2,...} of measurable subsets of S such that the following properties are satisfied: (a) The functions \J/ik are orthonormal on S in each block and N.-^teN. (r, j=l,2,...; M0=N0=-l); (P) \EJ^srs (r,j=l,2,...); (y) For every (x l5 x2)£ S\Ers, and for every Mr_1^i^Mr and I<Pik(Xi, xj-tikix,., s= fi„ (r, s = 1,2,...). This lemma is a straightforward. extension of a lemma due to LEINDLER [3, Lemma 4, pp. 33—36]. The original proof works in the two-dimensional setting, since the blocks {(pik(Xl, x2): Mr_1^i^Mr and and the corresponding e rs (r, s~ 1,2,...) can be treated in an arrangement similar to the Cantor diagonal process, i.e. in the following succession: e u , s 12 , e21, s^, s22, e14, ... and the blocks are taken accordingly. L e m m a 4. Let (e„: r,s=1,2,...} be a double sequence of positive numbers, { M r : r = l , 2, ...} and {Ns: J = 1 , 2, ...} two strictly increasing sequences of nonnegative integers, and {t/iit(xl5 x2): i, k=0, 1, ...} a double system of bounded functions such that the \¡/a are orthonormal on S in each block and (r, s= l j 2,...; M0=N0= -1). Then there exist a double ONSP {¿V*!» x2): i, k= 378 F. Móricz = 0 , 1 , . . . } on S and a double sequence {Ers: r, s= 1 , 2 , . . . } of measurable subsets of S with the following properties: (ot) |£„|S£„ (r,s= 1,2, ...); (/?) For every (x l 5 x2)£S\E„, and for every Mr_x<i^MT x j - i - iy-<'"»»>P tt (xi, *2)l S e„ where (?) and J V j . ^ i ^ J V , , (r, s = 1 , 2 , . . . ) x 2 ) equals 0 or 1; , max I P t t f o , * ^ s 2 { sup IM*i,*2)l + l} (*, fc = 0 , 1 , . . . ) . R e m a r k 9. If in each block M r _ 1 < i ^ M r and N ^ ^ k ^ N , lpit can be represented in a product form analogous to (4.2): the functions where both {ipf-r)(x,): M^^i^M,} and tyf's)(x2): Ns^k^Ns) are bounded orthonormal functions on / (r, i = l , 2,...), then the Pik can be also represented in the product form (4.3) where both and are orthonormal polynomials on / (r, s= 1,2,...). The proof of Lemma 4 can be modelled on that of Leindler's basic lemma [3, Lemma 3, pp. 26—33]. We only note that both the Egorov theorem and the Weierstrass approximation theorem are valid in two-dimensional setting, as well. The former one states that if tK*i> x 2 ) is a bounded measurable function on S, then for every e > 0 there exist a measurable step function <p(xlt x 2 ) on S and a measurable subset E of S such that (1) \E\T~T; (2) № (*!, Xjj)-<p (*! for (* x , S\E; (3) (x^xJZS , max I<p(jca, *a)| S (x sup l ^ f o , x^l; ltX|)€S <1) (2) (4) If Xj) = i/' (x1)i/i (x2), then <p can be chosen in the form of (p(x1, Xa) = <p(1)(*i)9>(a)(Xj|). Concerning the two-dimensional version of the Weierstrass theorem, we refer to [2, pp. 89—90]. Choosing T= S and 91 to be the set of the polynomials P(xlt x 2 ) in xx and x 2 , properties (i)—(iv) in the cited paper are obviously satisfied, thereby ensuring the uniform approximation of continuous functions on S by the elements of 21. Finally, the validity of Remark 9 can be verified by means of Remarks 7 and 8. 379F.Móricz:Orthonormal systems of polynomials in divergence theorems 7. Proof of Theorem 2. We will present only the proof of the sharpening of Theorem A'. The sharpenings of Theorem B' and C' can be proved similarly. So, assume the fulfillment of (3.1) and (3.2). In the proof of [10, Theorem 4] a double ONS {<PTT (JCx , x2)- i, k=0,l,...} of step functions on S and a double sequence {H„: r, s= —1,0,1, ...} of measurable subsets of S were constructed with the following properties: (i) |//] = 1 where / f = l i m sup Hrs as max (r, s)->-°°; (ii) For every , x2)€ (7.1) r max r max 1 m l S - > < n S ! 2*- -<nS2* / = Z 2 r , n +l Z aikVikixt, xj s C^mM(r>s) (r,s = - 1 , 0 , 1 , . . . ) fc=2'- +l , where C is a positive constant and {tjr: r= — 1, 0,1, ...} is an increasing sequence of positive numbers tending to oo as (iii) In each block 2 r - 1 < / s 2 r and 2 s - 1 < & s 2 s the functions (p^ can be represented in the product form (4.2). Given any 5>0, on the basis of Theorem 1 we can construct a double ONSP {Ptkixi, x2)} and a double sequence {fl„} of measurable subsets of S such that (i) |H| = 1 where J7=lim sup Hrs as max (r, .?)—«=; (ii) For every (x l 5 x 2 )€ff„ (7.2) max max m Z n Z, a<*A*(*i,*2) ^ (C-5)f/max(r,s) (r,s = - 1 , 0 , 1 , . . . ) (cf. [3, Theorem 2, p. 21 and its proof on pp. 38—39]); (Hi) In each block 2 r ~ 1 < i ^ 2 r and 2 S " 1 <&;§2 S the polynomials represented in the product form (4.3). Relation (7.2) implies the a.e. divergence of the double series eo can be 00 Z Z a*Pik(x!, Xg) i=0 k=0 in the same way as (7.1) implies the a. e. divergence of the double series (1.1). References [1] P . R . AGNEW, On double orthogonal series, Proc. London Math. Soc., Ser. 2 , 3 3 (1932), 4 2 0 — 434. and F . DEUTSCH, An elementary proof of the Stone—Weierstrass theorem, Proc. Amer. Math. Soc., 8 1 ( 1 9 8 1 ) , 8 9 — 9 2 . [2] B . BROSOWSKI 380 F. Móricz: Orthonormal systems of polynomials in divergence theorems Über die orthogonalen Polynomsysteme, Acta Sei. Math-, 2 1 ( 1 9 6 0 ) , 1 9 — 4 6 . Sur les multiplicateurs de convergence pour les séries de polynômes orthogonaux, Recueil Math. Moscou, 6 (48) (1939), 27—52. [5] F. MÓRICZ, On the convergence in a restricted sense of multiple series, Analysis Math-, 5 (1979), 135—147. I [6] F. MÓRICZ, On the growth order of the rectangular partial sums of multiple non-orthogonal series, Analysis Math., 6 (1980), 327—341. [7] F . MÓRICZ, On the ( C , asO, /?sO)-summability of double orthogonal series, Studia Math., 81 (1985), 79—94. [8] F. MÓRICZ, The order of magnitude of the arithmetic means of double orthogonal series, Analysis Math., 11 (1985), 125—137. [9] F. MÓRICZ, The order of magnitude of the (C, a SO, /?ë0)-means of double orthogonal series, Rocky Mountain J. Math., 1 6 ( 1 9 8 6 ) , 3 2 3 — 3 3 4 . ![10] F . MÓRICZ and K . TANDORI, On the divergence of multiple orthogonal series, Acta Sei. Math-, [3] L . LHNDLER, [4] D . MENCHOFF, 4 2 (1980), 133—142. MÓRICZ and K . TANDORI, On the a. e. divergence of the arithmatic means of double orthogonal series, Studia Math., 82 (1985), 271—294. [12] K . TANDORI, Über die Cesàrosche Summierbarkeit von mehrfachen Orthogonalreihen, Acta Sei. Math., 49 (1985), 17£—210. ! [11] F. UNIVERSITY O F SZEGED BOLYAI INSTITUTE ARADI VÉRTANÚK TERE I «720 SZEGED, HUNGARY Ada Sci. Math., 50 (1986), 381—390 Birkhoff quadrature formulas based on Tchebycheff nodes A. K. VARMA 1. In 1974 P. Turin [6] raised the following problems on Birkhoff quadrature. If in the n ,h row of a matrix A, there are n interpolation points l £ x i , > ^ 2 l l > . . . > ^~x„n s — 1 then A is called "very good" if for an arbitrary set of numbers j>to and y£, there is a uniquely determined polynomial D„(f; A)=D„(f) of degree at most 2n — 1 for which Dn(f;A)^Xkn = ykn=f(xkn), A))x x =yL, fc = 1,2,..., ». In that case D„(f\ A) can be uniquely written as D„(f ; A) =2 Kxin)yin(x\ ¡=1 A)+ 2 y?n8,n(xi A) i=i where yin(x; A), Qin(x; A) are fundamental functions of the first and second kind, respectively. P r o b l e m XXXVI. What is the best class of functions for which the integfals of the polynomials n 2 ¡=i f(Xin)ytn(x,n) (n even) i tend to J f(x) dxl -i Here the ntb row of the II matrix is referred to the zeros of nn(x)= where P„(x) is the Legendre polynomial of degree n. P r o b l e m XXXVIII. Does there exist a matrix A satisfying i / yin(x; A) dxl* 0, i = l,2 Received June 21, 1984, and in revised form June 4, 1985. 9 n0? X J -1 Pn-X(t)dt A. K . Varma 382 P r o b l e m XXXIX. Determine the "good" matrices for which ¿ | f yin(x; A)dx| is minimal. In 1982 the author [7] was able to answer the above problems. This can be summarized by the following quadrature formula exact for polynomials of degree S i n — 1 : - m n + f i - m n(2n — l) J j w a x , 1 n(n—l)(n—2)(2n , + 2(2«—3) n(n-2)(2n-l) — l) j f , y /(*J ,e2Pan.i(xin) (1 -xl)f"(xin) PU(Xi„) ,+ • - In the above formula xin's are chosen to be the zeros of IIB(x). In 1961, the author [9] extended the results of SAXENA and SHARMA [6] of (0,1, 3) interpolation to Tchebycheff abscissas. We proved that if n is even, then for preassigned values j i 0 , ya, yi3 (/=1, 2, ..., n) there exists a uniquely determined polynomial f„(x) of degree S3n—1 such that (1.1) /„(*,„) = ym, / n '(x ; „) = ya, /„'"(*;„) = ya, i = 1,2, ..., n where xin's are the zeros of Tn(x). The object of this paper is to obtain new quadrature formulas based on / (xin), f'(xin), fm(X[n) where xin's are the zeros of Tn(x). We now state the main theorems of this paper. (1.2) T h e o r e m I. Let . 1 >Xln be the zeros of T„(x)=cosn6, S3n—1. Then we have (1-3) / _i } f(x\ / —% / 2 dx= U X)' r >...>x„„ > - 1 cos 8=x. Let f ( x ) be any polynomial of degree n 2 f(xin)Ain+ ,-=i " 2 f\xin)Bin+ ,=i n 2 ,=i " f"'(xin)Cin where (1 -Xl)2 dx- ( l i f n - x „3 iT'(x^ ]2 Xi l - "x f j) ' C (I Si (1.5) B — n (1 1 I (3 + 2 ( 2 / 2 2 + 1 X 1 } l' (x)dx Bin - — — (1 — xtn)T„ (XIN) + ^ —yirf. ; J J (!in 12fj2 jf Vin(X) (1_x2)i/2 i(i.V l4) Birkhoff quadrature formulas and /1 U.b) i (i A _ » f , . ¿ « . - - [ H - 3(1-xf„) A l 2nm-x№ 383 , + XiT^(xt) 4 , r.'fej] 2rP J ' T h e o r e m 2. Le/ / 0 ( x ) = l — x 2 then (1-7) f dx— ^f 0 (Xi„)A i n = - y An interesting consequence of Theorem 2 is the following: C o r o l l a r y 1. For f0(x)=\—x% lim 2Mxin)uin(x)^l-x2 at some x<E[-l, 1], i=l where uin(x) are the fundamental polynomials of the first kind (0,1, 3) interpolation based on Tchebycheff nodes. The explicit representation of uin(x) is given in the next section. (1.8) T h e o r e m 3. There exist positive constants cx and c2 independent of n such that CiTllnn < n 2 Mini - c 2 nlnn. i=1 Theorems 1, 2, 3 reveal an important fact that the quadrature formula obtained by integrating the Birkhoff interpolation polynomials of (0, 1, 3) interpolation based on Tchebycheff nodes is essentially very different from those obtained by integrating Lagrange or Hermite interpolation. (1.9) 2. Explicit representation of the interpolatory polynomials; (0,1,3) case. In an earlier work [9] we obtained the explicit form of the polynomial R„(x) (n even positive integer) of degree S 3n—1 satisfying (2.1) Unix*») = fkn, Kb*,) = g*„, K ' (xkn) = hn> k = 1, 2,..., n. It is given by (2.2) Ra(x) = 2 fi»"in(x)+ 2 ginVin(x)+ 2 Kwin(.x), i=1 i=l /=1 where the polynomials « ta (x), vin(x), u>in(x) are uniquely determined by the following conditions: (2.3) u'in(xkn) = uZ(xk„) = 0, w1B(xta) = { J (2.4) vin(Xlm) = i f i i x j = 0, v'in(xkn) = j j (2.5) w,a(Xka) = wUxJ vC(xk„) = { j 9* = 0, ^ * k=l k = >2> h2 ' jj ' .fc = 1 , 2 , . . . , « . 384 A. K. Varma The explicit form of fundamental polynomials is given by (¡0 where <7„-i,;(x) is a polynomial of degree S n — 1. It is given by (2.7) qn.Ux) = f J ^ d t + f J ^ d t + c * ] where ain, cin are chosen so that q„~iti(x) is a polynomial of degree Sn —1. „ in = _ _ L rJMD-jt nn _{ ( l - / 2 ) 1 ' 2 ' (b) * = 0/2) _ / ( (2 8) - l t;M> / + (i-o^o+o^ dt > r.'Ocj where J„_1i ¡(x) is a polynomial of degree S n — 1. It is expressed by the formula (2.9) 1 ^ / J ^ d t + f j f ^ d t2 + y , , ;,_„(*) = (1 -x*yi*[« f n J ^^ ^^J /d! "t ' + S„_! ~ , • ln— (1 _ ¿2)3/2*" J (I—i«)»/ 1Vv»7 where (2.10) 2 2 Fin(t) = ( l - i ) ^ ( 0 - ^ ( 0 + ( « + l ) i i n ( 0 2 r.'CxJ nin (2.H) « f «,„ - — J n\7\ R 2v 1 _ { tF !»«)+PMt) dt ( T T ^ > in2~7 /AXO+^C) (l-i2)1/2 1 j f (2.13) _ f y - U - *))+f t o (0 (i-01/2(i+08'2 o . 385- Birkhoff quadrature formulas (c) (2.14) + 3 ( ^ 2 ) Vin(x) + ¿in(*) where A,. = x,, 3(1-JC The above representation of uin(x) . r A is new and very useful in obtaining (I-*2)1'2 3. Preliminaries. Here we shall prove the following lemmas. L e m m a 3.1. For k=\, 2, ..., n we have ( 3.2) (I-x2)-/2dx=* A _ / _{ 1 -xl„ 4n I P r o o f . According to a theorem of nomial of degree s 4 n —1 then MICHELLI and I / g(x)(l-xa)-1/2Jx = (3.5) 1 = ^ [1 Id where xin's are the zeros of T„(x). First let g(x) T„(x)ll(x) . T;(Xkn) RIVLIN [5] x, n2(l-^)J if g(x) is a poly- A. K. Varma 386 and note that g(*,„) = 0, g'(xtn) = {l J J = k J k and 8K , f 3 x , J ( l - x L ) if i = k 10 if i k, in) on applying (3.5) we obtain (3.1). The proofs of (3.2) and (3.3) are similar, so we omit the details. The proof of (3.4) is on the following lines. Since t ( I - * 2 ) ( x - x j 1%,(x)Ij,(x) . _ u J (T^D 1 / (1 — x2)1 (x—xtn) = J_{ (1-xL) _ _ 1 f ljn(x) Lj ~ 3 J (l-x2kn)K( - _ I f ll(-x) ~ 3 J (1-xD = - j v2\1/2 X ) 2 } 1/a . d ,3 . , , . =• x(x Xfa,) ^ (1 - x 2 ) 1 ' 2 / , _ f2(l-x2)-(l-xxtn)^ I (l-x2)1/2 )ax ~ f j r ^ B ~ l L ( x ) ( 1 - x 2 ) ~ 1 / 2 dX+J ( (1~-xl) ( ^ W - ^ - ^ d x . Now applying (3.2) and (3.3) we obtain (3.4). This proves the lemma. L e m m a 3.2. For k= 1,2, ..., n we have (3.6) f i ^ t x i - v - v u t ^ ^ i x j - - ^ ] , and ftlL№-t2)-1,3dt = (3.7) P r o o f . It is well known that (3.8) Zta(x) = n n ,=1 Tr(Xkn)Tr(x) . Birkhoff quadrature formulas 387- and (3.9) K(x) = 4r Z i=1 (*), K.^x) = ( 2 r - 1 ) [ 1 + 2 2 Г.«(*)]1=1 Therefore 2ж "/22 ( 2 г - Ц Т ъ - М . = — /} (3.10) But a simple computation shows that [и/а] 2 2 ( 2 ^ 1 ) 7 ^ 0 0 = Г.'ОО-*ьУ(1 -xL). r=l (3.11) From (3.10), (3.11) we obtain (3.6). For the proof of (3.7) we first note from (3.8), (3-9) } 2 n>2 } г а к т d t = =2 t*,-i(xj f tK-1m~t2ri/2dt+ n -i 9 л/2 } f tT£(t)(l-t2)~1/2 _1 + -2Пг(хк„) " r=1 dt. But J tT£(t)(l —12)~112 dt = 0, -i and 2 f tTZ.1W-W-v»dt -l = (ji2r-iy-i) f -i T ^ m - t r ^ d t ^ = ((2r — l) 3 —(2r — 1))7T. Therefore 1 (3.12) TT л/2 f tl'Lm-tT^dt =- 2 ^-i(xj((2r-l)3-(2r-l)). But a simple computation shows that n/2 2(2r-l)37'2r_1(xta) = (3.13) ~ l-x£,+ в'Г.'бО 2 3n(l+xL) / (I-*« J Ш {\-t2?'*at- From (3.10), (3.17), (3.13) we obtain (3.7). This proves Lemma 3.2. 388 A. K. Varma 4. Proof of Theorem 1. First we will show that fwtoW-W-Wdt = (4.1) M flL(t)(l-n-1/2dt -i = Since T*(x) = {\+Tin{x))l2, (4-2) it follows from (2.6) and orthogonal properties of Tchebycheff polynomials fwkn(t)(l —t2)~1/2 dt = (4.3) = ((1 -xl)/l2n*) f (1 •+T2n(t))qn_lik(t)(\ -/2)"1/2 dt = —l = ((1 -xLW2rfi) f qn.Uk(t)(l--/2)-1/2dt. -l On differentiating (2.7) twice it follows that (4.4) (\-x^q'Utk(x)-xqUAx)+qn-i,kix) = akX(x)+Vkri(x). Next, we note that / ((i -x2) tf-uW-*?;-!^)) (i -x2)-1'2 dx = (4.5) = / (d(( 1 -xn^ixWdx) dx = 0. Therefore on using (4.4) and (4.5) we obtain / J . - u W d - / ) - 1 ^ ^ (4.6) = akn f T:(x)(l-x2)~1'2dx+ JlL(x)(l-x2)-y2dx. We also note that n is an even positive integer. Therefore of JC, and it follows that i (4.7) T'n{x) is an odd polynomial f T^x)(i-x2)-1'2dx = 0. On using (4.6), (4.7) and (4.3) we obtain (4.1). We also obtain from (3.6) the second Birkhoff quadrature formulas 389- part of (4.1). Next we will prove that fvin(x)(l-x2)-ll2dx = (4.8) - " ( 11 4n - f ) r f a ) + , f 3 + 2 0 ^ + 12X 1 - x D ^ { 12/i J J f j U 201 _2 (1 - f ) ' ' On using (2.8), (3.1) and (4.2) we obtain fvin(x)(l-x*)-ll2dx 1 (4 9) = J L X . + 2naXm+2T;{xin) = = /(1+^(0)5^(0 (l-t2)1'2 J 1 J L * + rJsz2VL.it Next, differentiating twice we obtain from (2.9) (4.10) (1 = On using (4.5), (4.7) we obtain /a i n ( ' } r J s - i ( * ) j.. _ (1 -x) 1 / 2 * P Pitt r J l 'in(x) (l-x2)1/2 ^ , + / J ^fa) (l -x 2 ) 1 / 2 X ' where pin is given by (2.12) and Fin(x) by (2.10). From (2.10) we obtain J r KM (1-x 2 ) 1 ' 2 J f1 /(1-^)^(0-^(0 ~ J 2Tn'(xin)(l-t2)1/2 2r„'(xJ(l-i2)1/2 a t + / w ^ x o -/ 2 ) i / 2 /;;(o) J 2T;(xin) / —2//fa(Q+H2l'in(Q ^ J 27,n/(xin)(l — z2)1/2 / -2?c(o+»2/f;(o 2r„'(x in )(l—i 2 ) 1/2 / —2tl"n(t) + n2l'in(t) ~ J 2TJ (xin) (1 — i 2 ) 1 ' 2 Therefore, on using (4.9), (4.11), (2.12) together with the above statement it follows that J 1 r,.(x) dx ax = —x-~ 2n3 ( l ~ x2l ) f 2n J (l-x2)1/2 (4.12) X, "-'l4+4n2l 3 1-xfJJJ (l-tyi* dx ++ 390 A. K. Varma: Birkhoff quadrature formulas F r o m (3.7) we h a v e N o w , on using (4.12) a n d (4.13) we obtain (4.8). Lastly, f r o m (2.14), (3.2), (3.4), (4.1), (4.8) a n d (3.7) after simplyfying we obtain P <4.14) F r o m (4.1), (4.8) a n d (4.14) o n e can p r o v e T h e o r e m 1. T h e p r o o f s of T h e o r e m 2 a n d Theorem 3 follow easily f r o m T h e o r e m 1, s o w e omit t h e details. References and P . TÚRÁN, Notes on interpolation. I I , Acta Math. Acad. Sci. Hungar., 8 ( 1 9 5 7 ) , 201—215. J . BALÁZS and P . TÚRÁN, Notes on interpolation, ÜL, Acta Math. Acad. Sci. Hungar., 9 ( 1 9 5 8 ) , 195—213. G. D. BIRKHOFF, General mean value and remainder theorems with application to mechanical differentiation and integration, Trans. Amer. Math. Soc., 7 (1906), 107—136. G . G . LORENTZ, K . JETTER, S . D . RIEMENSCHNEIDER, Birkhoff Interpolation, Encyclopedia of Mathematics and its applications, Vol. 19, Addison-Wesley Pub. Co. (Reading, Mass., 1983). C . A . MICEHELLI and T. J . RIVLIN, The Turán's formula and highest precision quadrature rules for Chebyshev coefficients, I.B.M. J. Res. Devebp., 16 (1972), 373—379. R. B. SAXENA and A. SHARMA, Convergence of interpolatory polynomials (0,1, 3) interpolation, Acta Math. Acad. Sci. Hungar., 10 (1959), 157—175. P . TÚRÁN, On some open problems of approximation theory, J. Approx. Theory, 2 9 ( 1 9 8 0 ) , 23—85. A. K. VARMA, On some open problems of P. Túrán concerning Birkhoff Interpolation, Trans. Amer. Math. Soc., 274 (1982), 797—808. A. K. VARMA, Some interpolatory properties of Tchebycheff polynomials; (0,1,3) case, Duke Math. J., 28 (1961), 449—462. [1] J . BALÁZS [2] [3] [4] {5] {6] |7] [8] £9] D E P A R T M E N T O F MATHEMATICS UNIVERSITY O F FLORIDA 201 WALKER HALL GAINESVILLE, FLORIDA 32611, U.S.A. Acta Sei. Math., 50 (1986), 391—396 Remarks on the strong summability of numerical and orthogonal series by some methods of Abel type L. REMPULSKA In this paper we shall prove that Leindler's theorems on the strong summability of orthogonal series, given in [2], are true for the methods (A; £„) of Abel type. 1. Let C " ( 0 , 1 ) be the class of real functions defined in (0, 1) and having derivatives of all orders in (0, 1). Denote by B„={bk(r; n)}k=0 a sequence of functions of the class C°°(0, 1) and such that (!) ' P p tl: for k,p—0, 1, ..., n. As in [3] we write Rk(r\Bn)= £ bp{r-, and ARk(r; B„)=Rk(r; B„)-Rk+1(r; B„) for k=0, 1, ... and r£(0, 1). In [3] the following definition is given: A real numerical series (2) £ uk t=o (Sk = u0+... + uk) is summable to s by the method (A; Bn) if the series 2 fc=0 and if the function L(Bn), (3) £ ( r ; B„) = 2 k=0 R k(r\ B„)uk = 2 ARk(r\ (rC(0,1)) satisfies the condition ^lim L(r;Bn)=s. fc=0 is convergent in (0, 1) B„)Sk The classical Abel method, i.e. (A; B0) method, will be denoted by (A). We shall write L(r) for L(r; B0). Received May 22,1984. L. Rempulska 392 In [3] and [4] there were given fundamental properties of the methods (A; B„) of summability of numerical and orthogonal series, and some applications of those methods to the Dirichlet problem for some equations of Laplace type. In [3] and [4] it was proved that T h e o r e m A. Series (2) is summable to s by a method (A; B„) if and only if l i m r-i- ( l - r y * pL dr ( r ) s s \' 10 * ? = <>> if p = l,...,n. If the sequence B„ is defined as follows : b0(r; n) = 1, b„(r; n) = (r-r 2 )"/«!, (4) bk(r\ n) = bk(r; for k=l, n-l)+-^bk(r;n-l)} ..., n — 1 and « = 0 , 1, ..., then L(r;Bn) = ( l - r r ^ t Z ( k l " ) r * S k for 7J=0, 1, ... and r£(0, 1) ([3], [4]). Moreover in [3] it was proved that (5) ARk(r- BB) = ZWp(r; B„) r* for rÇ(0, 1), k=0, 1, ... and n è 0 , if Wp(B„) are some functions of the class 0 ( 0 , 1 > with (6) Wp(r; BS] ^ = 0 for p, q = 0, 1, ..., n. From (5)—(6) and from the Taylor formula for Wp(Bn) we obtain L e m m a 1. Let r 0 €(0, 1). Then, for every sequence B„, there exist positive constants Mi(r0) and M2(r0) depending on r0 such that M 1 (r 0 )(l-r)"+ 1 (fc+l) n r* S \ARk(r;Bn)\ M2(r0)(l-r)"+1(k+ 1)V for k=0, 1, ... and rÇ(r 0 , 1). 2. We shall say that series (2) is strongly (A; -8„)-summable to s with exponent 0 if the function H(B„, q), (7) H(r-, B„, q) = J MJ?k(r; 2?„)|\S k -s\* k=0 (r€(0, 1)) satisfies the condition (8) r lim H(rx Bn, q) = 0. 393 Strong summability of numerical and orthogonal series By (7), (8) and Lemma 1, we obtain L e m m a 2. Series (2) is strongly (A; B„)-summable to s with exponent only if 0 if and lim (1 - r ) B + 1 2 ( k + l y » * ! ^ - s|* = 0. i*=o (9) Lemma 2 implies C o r o l l a r y 1. Forafixedn, the methods (A; B„),for the strong summability of numerical series (2) are equivalent, i. e. if B„ and B* are two sequences having properties (1), then r lim H{r\ B„, q)=0 if and only if \\im H(r; B*, q)=0. C o r o l l a r y 2. If series (2) is strongly (A; B„)-summable to s with exponent then it is strongly (A; B„)-summable to s with every exponent 0<q<-ql. 0, The next statement is obvious: L e m m a 3. If series (2) is strongly (C, 1 )-summable to s with exponent q> 0, i.e. lim (l/(» + l ) ) l to-sl« = 0, then for every p> 1. lim (l/(n+l) p ) 2 { k + i y - l \ S k - s \ " = 0 k=0 Applying Lemma 3, we shall prove L e m m a 4. If series (2) is strongly (C, Y)-swnmable to s with exponent q> 0, then condition (9) is satisfied for n=0,1, ... . P r o o f . If (2) is strongly (C, l)-summable with exponent q>0, then |5fc—s|®= Hence the series 2 (Ar+l),,rk|5rit— i f is convergent in (0,1) and for n= k=o = 0 , 1, .... Applying the Abel transformation, we get =o(k). (l-r)n+1 ¿(fc+lF^ISit-sl« = (l-r)B+2 ¿ ( k + l ) " + V / t k=0 k-0 for r€(0,1) and n = 0 , 1, ..., where lk = (l/(fc+l) B + 1 ) p=o By Lemma 3 and by Toeplitz's theorem ([1], p. 14), we obtain (9) for « = 0 , 1 , . . . . Thus the proof is complete. 394 L. Rempulska L e m m a 5. Suppose that for series (2) condition (9) holds with n=p+\ (p£N) and with some exponent q>0. Then (9) also holds with n=p and with exponent q. P r o o f . Let u.(r\ for r€<0,1). Hence q) = ( i - r ) " + 1 ¿ ( f c + i y ^ i s i - s i « k=0 rUp(r; q) = ( 1 - r ^ 1 f\l-t)->-*Up+1(t', • . o for r6<0,1). But, f (l-t)7*-*Up+1(t; o q)dt = oidl-r)-'-1) q)dt (as r -*- '1 —) if lim Up+1(r; q)=0. This proves our statement. Lemmas 2 and 5 prove T h e o r e m 1. For a fixed integer « s 0, the following conditions are equivalent for every numerical series (2), for every q>0 and every sequence B„: (here H(r; q)= = H(r;B0,q)). (a) Bn,q) = 0, (b) lim ( l - r ) B + 1 2 (k+iyt*\Sk-s\> (c) limJl-ry-^Hir; fc=0 q) = 0 for = 0, m = 0, 1, ..., n. 3. Let {<P*(.K)}£°=o be a real and orthonormal system on the interval <0, 1). We shall consider the strong summability of orthogonal series (10) 2ckcpk(x) k=0 with k=0 by the methods (A;B„). The strong summability of (10) by the methods (A; B„), defined by the sequence'(4), was examined by L . L E I N D L E R [ 2 ] . k Let Sk(x)= 2 cp<Pp(x) and let / b e the function given by the Riesz—Fischer p=o theorem, having expansion (10). By L(r, x; Bn) and H(r,x;B„,q) with s=f(x) (r€(0,1), x€(0,1)) we denote the functions as in (3) and (7) but for series (10). As usual ([1]) we say that two methods of summability are equivalent in L* if the summability of series (10) in a set E of positive measure by one of those methods implies the summability of (10) to the same sum almost everywhere in E by the other method. Strong summability of numerical and orthogonal series 395- In [3] we proved the following T h e o r e m B. The methods (A; B„), n=0, 1, ..., and the Cesàro (C, 1) method of summability for orthogonal series (10) are equivalent in L,2. In [2] L . LEINDLER proved T h e o r e m C. If orthogonal series (10) is Abel-summable to f ( x ) in (0, 1) almost everywhere, then lim (1 -r)n+i 2 Pt 1 r*|S*(*)-/(*)l4 '-1t=oV ' / =0 for any nÇN and q>0 in(0, 1) almost everywhere. Applying Theorem C and Corollary 1, or arguing as in [2], we obtain T h e o r e m 2. If orthogonal series (10) is (A)-summable to f (x) in (0,1) almost everywhere, then it is strongly (A; B^-summable to f ( x ) in {0, 1) almost everywhere with every exponent q>0 and every sequence B„(n=0, 1, ...)• Applying Lemma 1 and arguing as in the proof of Theorem 5 given in [2], we can prove T h e o r e m 3. Suppose that a and q are two positive numbers and B„ («S0) is a sequence having properties (1). If the coefficients ofseries (10) satisfy the condition k=l then H(r,x-Bn,q) = ox((l~rY) if qa.< 1 ; and H(r,x; in the case qa^l B„, q) = ox((l-r)*) ox((l-r)*|log(l-r)|W) O x ((l-r) ( B + 1 ) /«) if if if n+1 >qa, n+1 = qa, n+l<qa but 0 < g s 2 , almost everywhere in <0, 1) as r->-l —. .396 L. Rempulska: Strong summability of numerical and orthogonal series References and H . STEINHAUS, Theory of orthogonal series, Gosudarstv. Izdat. Fiz.-Mat. Lit. (Moscow, 1 9 5 8 ) . (Russian) LEINDLER, On the strong and very strong summability and approximation of orthogonal series by generalized Abel method, Studio Sei. Math. Hungar., 16 ( 1 9 8 1 ) , 3 5 — 4 3 . REMPULSKA, On some summability methods of the Abel type, Comment. Math. Prace Mat., in print. REMPULSKA, Some properties and applications of summability methods of the Abel type, Funct. Approximatio Comment. Math-, 14 ( 1 9 8 3 ) , 1 7 — 2 2 . ![1] S . KACZMARZ [2] L . [3] L . '[4] L . T E C H N I C A L UNIVERSITY O F P O Z N A Î J INSTITUTE O F MATHEMATICS 3 A P I O T R O W O STREET •60—965 P O Z N A N . P O L A N D / Acta Sci. Math., 50 (1986), 397—403 Behavior of the extended Cauchy representation of distributions DRAGlSA MITROVI6 1. Introduction. There is an interesting correspondence between the spaces ®'a=@'a( R) of distributions and the class of functions that are analytic in the complex plane C with a boundary on R, except for a set of points lying in C — R, and vanish at the point of infinity. In the present paper we make a study of this correspondence. As we shall see it depends essentially on the support of distributions, order relation of included functions, and their distributional boundary value in either half plane A+ = {z£C: Im(z) > 0}, A~ = {z£C: Im(z) < 0}, z = x+iy. The problem under study is motivated by some facts from the theory of integrals of the Cauchy type. Namely, to every function it: R—C Holder continuous with compact support equal K there corresponds the function If v(z) = u(z), then: (1) v is an analytic function in C—K; (2) v(z) has the boundary values and v~(x) in C; (3) «(z)=0(l/|z|) as |z[ — Conversely, given a function v which satisfies the conditions (1)—(3), then it is the Cauchy integral of some u with supp u=K. If T is a distribution, then the notation Tt is used to indicate that the testing functions on which Tis defined have t as their variable. The pairing between a testing function space and its dual is denoted by (T, q>). The space of C°°=C°°(R) functions having compact support is denoted by its dual 2>'=3>'(\l) is the space of Schwartz distributions on R. As regards the general properties of the spaces <5a and <S'a we refer to [1]. 2. Definitions. In order to describe the correspondence in question in a condensed form we introduce some classes of functions. Received April 10, 198410 D. Mitrovic 398 Let AT be a closed subset of R and let {alf a2,..., a„} (n£N) be a finite set of distinct complex points lying in A+UA~. A function / i s said to belong to the class {M} if ( m . l ) / i s analytic in the domain C—(ATU^, a2, ..., a„}), ak being a pole of order <xk ( ¿ = 1 , 2 , . . . , « ) ; (m.2) / ( z ) converges (weakly) in either half plane to a ^'-boundary value; (m.3) / ( z ) = 0(l/|z|) as |z| We use the notation {Mc} for the class of functions in {M} that satisfy (m.l) when AT is a compact set. Also, a function/is said to belong to the class {M0} if it satisfies the conditions (m.l), (m.2) and the condition (m.4) /(«») = lim / ( z ) = 0. Z-* OO Thus we have the inclusions {M c }cr{Ai}c{M 0 }. Further, the class of functions that satisfy the conditions (m.l)—(m.3) when the set of poles is empty is denoted by {^4}. The class {Ac} is the subclass of {A} relative to compact set K in (m.l). If here the condition (m.3) is replaced by (m.4) we have the class {A0}. R e m a r k . The arbitrary sets involved in (m.l) are not necessarily the same for all functions in a class defined above. Now denote by R(z) a meromorphic function, vanishing at the point z = <», with prescribed poles a1,ai,...,an (in A + {JA~) and their principal parts. Let Te0a' ( a s - 1 ) . The function Ffrom C - ( s u p p TU{a1,a2, ..., an}) to C defined by (1) P(z) = (1/2*0(7;, l/(t-z))+R(z) will be referred to as the extended Cauchy representation of T. Let us observe that every function / i n {A0} ({M0}) is sectionally analytic in C with a boundary on R (except for the poles), that is, it can be decomposed into two independent functions/ + (z) and f~(z) such that / ( z ) = / + ( z ) for z£A+, f(z)= = / ~ ( z ) for z£A~ (the half planes being punctured at the points of poles). 3. Main result. We need the following L e m m a [5]. I f f + ( z ) is a function analytic in A + with / + ( z ) = 0 ( l / | z | ) as |z| —°o in A and if f+(x+ie) converges to 3>'-boundary value f+ as e— +0, then: 1) f* belongs to for all a < 0 ; 2 ) / + ( x + i e ) converges to 0'a-boundary value f+ as e— - • + 0 ( a < 0 ) ; 3) generates the Cauchy representation a, % Extended Cauchy representation of distributions 399 For a function f ~(z) analytic in A ~ and satisfying here the conditions similar to ones of / + (z), we have ~(z) for z£A~ (3) - ( i / 2 « o o ; - . !/(<-«» = for zÇA+. The distributional version of the previous discussion concerning the integral of the Cauchy type leads to the following T h e o r e m . Let T£@'x ( a s - l ) with supp T=K and let {a±, a2, ...,a„} (n£N) be a set of distinct complex points located in A + \JA~. If f(z)= F(z), then / 6 {M0}. Conversely, given an /6{M}, then it is the extended Cauchy representation of some for all a€[— 1,0) with supp T=K. P r o o f . Consider the direct part of the theorem. To prove the statement (m.l) it suffices to note that the Cauchy representation f ( z ) of Tis an analytic function in the domain C—K ([1, p. 56]). The statement (m.2) follows directly from [4, Theorem 2]: /+ = Fx+ = Tx/2—(l/2ni)(Tx * vp 1 / * ) + * ( * ) . / T - Fx — — TJ2—(l/27ii)(Tx*vp l/x)+R(x). Observe that the rational function R(x) is a regular distribution (in G'a for all a<0). As regards the statement (m.4) it is a simple consequence of the hypothesis _R(°°)=0 and the fact that every sequence of functions q>„(t)= l/(t—z„) converges to zero in ( a ^ — 1) as z„-»«=(n— Conversely, suppose given an /6{M}. Then in view of Lemma the assertions (m.2) and (m.3) together imply f ~ t K for all a < 0 . Now define Tx= = / + - / - . Since ( / + —f~)eO'x for all a < 0 and the Cauchy kernel belongs to <S'a for all a S — 1, we can associate to Tthe Cauchy representation t(z) = 0/2ni)(Tt, l/(t-z)) = (l/2^/)<(/, + ~ f r ) , !/('-*)> for all a€[—1, 0). Clearly, f is analytic in C—supp T and vanishes at the point z = ° ° ; moreover, it is easy to show that in this situation t(z)=0(\l\z\) as |z| — To prove that f is the extended Cauchy representation of T first we shall show that the function H from C—(supp J U {ax, a2, ..., a„}) to C defined by (4) H(z)=f(z)-f(z) is meromorphic in C. In fact, after a simple computation we have ((Hi -H-), for all (5) 10* <p) = <(/+ -/-), Since T x = f + - f x <p) = ( ( f t -*£), <P) it follows (Hi, <p) = (Hx, cp) D. Mitrovic 400 for all (pgSf. Further,let A = {z£ C: - < / < I m ( z ) < d } be the strip of the half height ¿ = Min{|Im(a 1 )|,|Iiii(fl 1 )|, ...,|Im(a n )|}. - + Let (a, b) be an arbitrary finite open interval in R, E and E~ two open rectangles contained in A which have (a, b) as a common edge. Evidently, His an analytic function in A except the boundary on R consisting of the set supp TU K. Applying the distributional analytic continuation principle ([6], [3, p. 244]) the' equality (5) implies that the function H is analytic in i s + U (a, b)K)E~, and consequently, in all of A. Thus H is analytic everywhere in C except for the poles ak of / , and as a meromorphic function which vanishes at the point of infinity it may be written uniquely in the form (6) H(z)= 2 t=ip=I 2BkJ(z-aky, where the coefficients Bk p must be determined (by means o f / ) . Since the function T is analytic in G — supp T, using Theorem on the partial fraction expansion of rational functions ([2]) from (4) we get (7) BkiCCk-m = (1/m!) lim dm[(z-aky,f(z)]/dzm (w=0, 1, 2, ..., ak—1). Returning to equality (4) with (6) and (7) it follows the representation (8) / ( z ) = (l/27ii)(Tt, l / ( i - z ) ) + 2 2 *=ip=I BkJ(z-aky. So we have established that the given / 6 {M} is the extended Cauchy representation of Tx=(f+ -f~)£0'a for all a e [ - l , 0 ) . Next we have to prove that supp T=K. First let AT be a closed proper subset of R. Since the function/is analytic on the open set R—K, it follows that ( f x , (P) = ejim </+(*+is), (p) = lim (f~(x-ie), q>) = ( f ~ , <p) for all cp with support disjoint from K (<p<i@(R-K)). Thus <(/+ - f ~ ) , <p)= ={TX, <p)=0 for all such (p. Hence we may conclude that supp T=K. The assumption that supp Tc. K properly leads to the conclusion that there exists an open inters val (a, ¿)c(K—supp T) on which (//" - / " ) is zero of 3>' ((a, b)). Therefore (by the analytic continuation principle)/would be analytic on (R—AT)U(a, b) contrary to the hypothesis. For the same reason supp T= R in the case K~ R. Finally suppose that there exists a distribution — 1) distinct from T and such that f(z)=$(z)+H(z) for z1C-(K[J{a1, a2, ...,<*„}). According to [4, Theorem 2] we have / + - f ~ - § ~ = SX. Hence TX=SX on Si and this implies TX=SX on <Sa (since S> is dense in 0a for all a^R). But this contradicts the hypothesis on S. Thus,: the distribution T is unique. The proof is complete. Extended Cauchy representation of distributions 401 In particular, if all poles % of the function / are simple (&=1,2,..., ri), then in the representation (8) instead of double sum we have n 2 res [/(z), ak]l(z—ak). k=l 4. Consequences. First assume that the set of poles of the function F is empty. In this case f is reduced to the Cauchy representation t of T. Thus we have at once C o r o l l a r y 1. Let ( a S r - 1 ) with supp T=K. If / ( z ) = f ( z ) , then fE{Ao}. Conversely, given an f£{A}, then it is the Cauchy representation of some T£G'a for all a € [ - l , 0) with supp T=K. Nevertheless we can prove the second part of this Corollary directly, that is, without intervention of the meromorphy. In fact, since the distributions f* and f ~ belong to <J£ ( a < 0 ) we may define Tx=f+ —f~. As Tx is a linear continuous functional on @a generating the Cauchy integral t(z) we have for all a€[—1,0) f(z) = (l/27rO</,M/(i-z)>-(l/27tO</f, W-Z)). Using the formulas (2) and (3) we get at once the required result f M = KJ i / + ( z ) for I f - ( z ) for zZA+, z£A~, that is, / ( z ) = f ( z ) . So we have proved by Lemma that the given /€{^4} is the Cauchy representation of some T£&'a. Denote in Schwartz's notation by $'=$'(¥£) the space of distributions on R with compact support (recall that £ ' c <S'a for all agR, but an T£<9'a with compact support belongs to <?'). From Theorem we derive C o r o l l a r y 2. Let with supp T=K. If f(z)=F(z), then /<E{MC}. Conversely, given an /€{Af c }, then it is the extended Cauchy representation of some T^S' with supp T=K, We have to comment only the assertion (m.3). The function F around the point z = 0 has the Laurent expansion of the form t P(z) = C0+C1/Z+C2/Z2+... which converges.uniformly and absolutely outside the smallest disk containing K and allpoles ak (&=1, 2 , . . . , n). The fact that P{z) vanishes as z—°° impliesthat c 0 =0, and the required result follows at once. Consequently,: to every pair (T, {a1, a2, ..., a„}) with T££", nCN, there corresponds an f(L{Mc} and to every f€{Mc) there corresponds a pair (T, {a1,a2, ...,a„}) with T£#',n£N. D. Mitrovic 402 C o r o l l a r y 3. Let versely, given an f(z{Ac}, supp T=K. with supp T=K. If f ( z ) = f(z), then f£{Ac}. then it is the Cauchy representation of some T^S' Conwith Thus one can place distributions in &' into a one-to-one correspondence with functions in {Ac}. It may happen that f=F£{M} (any given /£{Af} is the extended Cauchy representation of some T£Q'a ( a s —1) with supp T=K). For example, the function f defined by • / ( z ) = F(z) = (1/2TT0(VP 1//, l / ( I - z ) ) + l / ( z - I ) belongs to {M} with K=R. This follows from /+(z) = l/2z+l/(z-i), /"(z)=-l/2z+l/(z-l), z£A + — {i], z€d- , with f+ = l/2(x+i0) + l/(x-i), f - = l/2(x-i0) + l/(x-i). Conversely, given / + ( z ) and / _ ( z ) we reconstruct / ( z ) starting with fx —/T=VP In addition, by means of the second part of Theorem we' sblve the following boundary value P r o b l e m 1. Let T be a given distribution in 0'a ( a s —1). Find a function f€{M) whose 3l'-boundary values fx and f~ satisfy the condition fx—f~ — Tx on R. The general solution is given by (8), where Bk p are arbitrary real or complex coefficients. It is of interest to sketch the following results: if in Corollaries 2—3 we replace (via condition (m.2)) the convergence in the 3>' topology by one in 0'a for a given a£[—1, 0), we get new corollaries 2.1—3.1 respectively. F a c t 1. Corollaries 2—3 are equivalent to Corollaries 2.1—'3.1. To prove this first observe that /£{M} remains in {M} if we substitute the convergence in Q>' for one in 0'a (a£ R). Next, we use the representation (8) or Lemma. Also, if in Problem 1 we replace ( a s - 1 ) by T£G'X ( - l ^ a c O ) and the convergence in 2/' by one in &a, we come to P r o b l e m 1.1. Let T be a given distribution in 0'a (— 1 ^ a < 0 ) . Find a function /€{M} whose O'a-boundary values fx and f~ satisfy the condition fx —fx = TX on R. F a c t 2."Problem 1 with T£<9'x ( - 1 ^ a < 0 ) is equivalent to Problem 1.1. Similarly, substituting under previous Conditions the class1 {M} for {Mc} and {Ac} we come to an equivalent Problem 1.2 and Problem 1.3, respectively. Extended Cauchy representation of distributions 403 References Distributions, complex variables, and Fourier transforms, Addison-Wesley (New York, 1965). J. W. DETTMAN, Applied complex variables, Macmillan (New York, 1965). A . MARTINEAU, Distributions et valeurs au bord des fonctions holomorphes, in: Proceedings of an International Summer Institute held in Lisbon (1964). D. MiTROVié, Tbe Plemelj distributional formulas, Bull. Amer. Math. Soc., 71 (1971), 562—563. D. MrrRovié, A distributional representation of strip analytic functions, Internat. J. Math. Math. Sci., 5 (1982), no. 1,1—9. W . R U D I N , Lectures on the edge-of-the wedge theorem. Amer. Math. Soc. (Providence, R . I . , 1971). [1] H . J - BREMERMANN, [2] [3] [4] [5] [6] UNIVERSITY O F ZAGREB FACULTY OF TECHNOLOGY D E P A R T M E N T O F MATHEMATICS PIEROTTIJEVA 6 ZAGREB, YUGOSLAVIA Acta Sci. Math., 50 (1986), 405—410 On Stieltjes transform of distributions behaving as regularly varying functions V. MARlC, M. SKENDZlC, A. TAKACI 1. Introduction. The asymptotics of the Stieltjes transform of distributions J" with support in [0, belonging to a subset, specified below, of the space of (Schwartz) distributions, whose behavior (at zero) is of the type T~x* log-'x+ in the Lojasiewicz sense, or (at in the Sebastiao E Silva sense, is studied by LAvoiNEandMisRA [1], [2]. The aim of this paper is to extend their results to the cases when T~xyL0(x)+, v JC—0+ and T~x L(x), Here L0 and L belong to the class of slowly varying functions (s.v.f.) introduced by KARAMATA [ 3 ] in 1 9 3 0 . A real valued function L(x) is slowly varying at infinity, if it is positive, measurable on [a, for some 0, and such that for each (1.1) lim L(Xx)fL(x) = 1. A function JLoC*) is s - v - a t z e r o if Z, 0 (l/x) is s.v. at infinity. E.g. all positive functions tending to positive constants are s.v. at infinity, products of powers of iterated logaX rithms, the function (1/x) J dt/In t, are such, etc. Slowly varying functions , are of frequent occurrence in various branches of analysis (Fourier analysis, number theory, differential equations, Tauberian theorems) and of stochastic processes, whenever more information than the mere fact of convergence is needed. Here we also emphasize the use of s.v.f. in the theory of distributions. Also, the function i?(x)=x v I,(x) is called regularly varying at infinity with index v. 1.1. Following [2] we denote by J'(r), Re r > — 1, the space of distributions T with support in [0, admitting the decomposition (1.2) T = Received April 28, 1984. B+&f(x) V. Marié, M. Skendzié, A.TakaCi:Stieltjestransformofdistributions 406 where A: is a non-negative integer, EP is the distributional differentiation operator of order k,f(x) is a locally integrable function with support in [a, for some a s 0 and such that OO (1.3) / |Wx-'-^dx^co, and B is a distribution with support in [0, a]. Notice that T is a tempered distribution. Further, the Stieltjes transform of T£J'(r) is defined by F(s) = ys{T} = (Tx, ( x + s ) " ' " 1 ) (1.4) = (lx,(x+s)-'-1)+r^+1> f - f{x)(x+s)-'-k-*dx, s € C \ ( - c o , 0]. Here the first term on the right-hand side in the second line of (1.4) exists since ( x + j , ) _ r ~ 1 coincides on the support of B with some infinitely differentiable function. Throughout the paper we assume that s > 0 . The following result of then LAVOINE and MISRA [2] is needed in the sequel: L e m m a 1.1. Let B be a distribution with support in [a, b] where 0 < a < ¿ > < S f M - (B, x - ' - 1 ) , (1.5) if a=0 then (1.6) f+1Sfs{B} s — 0+; - (Bx, 1>, s-oo. # 1.2. We next give the basic properties of the slowly varying functions ([3], [4]) needed in the paper. (i) The limit (1.1) holds uniformly in any finite interval [a, b], a >0. (ii) For any p > 0 there holds xpL(x) x-p£(x)-0, x-°°. The next property is a Theorem of A U A N É I Ó , BOJANIÓ and TOMIÓ [ 5 ] , and represents our main tool for the proofs. (iii) Let g(x) be a Lebesgue integrable function on an interval /. Then J g(x)L(Ax)dx~L(A) J g(x)dx, i i A— provided that one of the following conditions is satisfied: A) / = [ 0 , b], and the integrals (1.7) / g(x)L(Xx)dx, 0+ converge; the latter for some /?>0. /x-'|g(x)|dx 0+ Stieltjes transform of distributions 407 B) I=[a, oo), a > 0 , and the integral (1.8) / x*|g(x)|dx a converges for some />>0. C) /=[0, oo) and (1.7) and (1.8) both hold. 1.3. Among the various definitions of the behaviour (at zero and at infinity) of generalized functions, we use the following two: Definition as x v Z, 0 (x) + , i.e. 1.1 (cf. LOJASIEWICZ [ 6 ] ) . T~xvL0(x)+, The distribution x-0+, behaves at zero Re v > — 1, if there exist a > 0 and a distribution R with support in [0, a] such that T=xvL0(x)+ for x£[0, a] and (1.9) i^-1Lo1(t)+(R„<p(xJt))^0, t ^ 0+ for each function cp infinitely differentiable on some neighborhood of [0, subscript " + " means that the functions bearing it are equal to zero for x s O . Definition infinity as xvL(x) (cf. i.e. 1.2 SEBASTIAO E SILVA [ 7 ] ) . T~xvL(x), if for some The The distribution T£3>'+ behaves at x-oo 1 and x€[a, •»), there holds Tx=Dkf(x) L-H*)*-'"^*)^-^, (where (v + l)*=(v + l)(v+2)...(v+fc), +R and * — and (v + l ) 0 = l ) . 2. Results. We prove the following two theorems giving the behavior of the Stieltjes transform^ of the distribution T£J'(r) at zero and at infinity respectively. Notice that = F(s) is a (holomorphic) function and the asymptotics has to be understood accordingly. T h e o r e m 2.1. Let R e r > - 1 , Re v > - 1 , R e ( r - v ) > 0 , further let L0(x) be slowly varying at zero and T£J'(r). If (2.1) then T~xvL0(x)+, ys{T}~B(v+1, x —0+ r-v)s'-rL0(s), s - 0+. 408 V. Marié, M. Skendzié, A.TakaCi:Stieltjestransformofdistributions T h e o r e m 2.2. Let R e r > - 1 , Re v > - l , R e ( r - v ) > 0 , further let L(x) be slowly varying at °o and T£J'(r). If T~xvL(x), (2.2) then x -*oo y,{T}~B(y+\ir-v)sv-,L(s), s —oo. By taking in Theorem 2.1 L0(x)= 1 and L0(x)=In1 x, j£N, one obtains respectively Theorems 3.2.1 in [1] and 2.1 in [2] for Re v > — 1 of Lavoine and Misra. Similarly, by taking in Theorem 2.2, k=0, L(x)=1, L(x)—kiJx one obtains their Theorem 5.1. m in [1] and Theorem 3.1 in [2]. 3. Proofs. P r o o f of T h e o r e m 2.1. By virtue of (1.2) and (2.1) one has (3.1) T = x"L0(x)++R+B+Dkf(xy, here the supports of R, B, f (x) are in [0, a], [a, b], [b, respectively, and R satisfies (1.9); L0(x) may be chosen conveniently in [a, «>). We apply the Stieltjes transform to the distributions at both sides of (3.1), multiply by (sy~rL0(s))~1, and then estimate each summand of the right-hand side. To treat the first term, put in the occurring integral s= I/A, x=s/u, and to the obtained integral oo A ' " / H r - v - 1 (l + ")- r - 1 L(Au)dM o with L(x) = L0(\]x) apply the result 1.2 (iii) C). Thus for the first term one obtains ($v-'Z,0(s))-i/^^--*B(v+l,r-v), s 0+. To complete the proof one has to show that the remaining three terms tend to zero with s. The second term is such due to (1.9) and to the property 1.2 (ii) (with L0(s)=L(l/s)). The third term is such due to (1.5) of Lemma 1.1, and to thé property 1.2 (ii) as above. The fourth term is (s*-'L0(s))->Sf,{D*f(x)} = (s'-'Us))-1 ^ ^ ^ f AxXx+sy-^dx. The occurring integral is bounded by an absolute constant and (j v "" r Z 0 (i)) _1 —0, as before, which completes the proof. P r o o f of T h e o r e m 2.2. Because of (2.2) the function f ( x ) in (1.2) is of the form f(x) = c*+vL(x){ l + o ( x ) ) , Stieltjes transform of distributions 409 where co(x) is a locally integrable function with support in [a, » ) and such that ©(*)—0, je — oc, and c _ 1 = ( v + l)fc. Hence (3.2) T = cÜt{^+vL(x)+)+Bí+Dk{^vL(x)ú3(x)} where B1 is with support in [0, a] \ L(x) may be chosen conveniently in [0, a]. Now we proceed as in the proof of Theorem 2.1, i.e. apply the Stieltjes transform to both sides of (3.2), multiply by (i v - r Z,(j)) _ 1 and estimate each term on the right-hand side separately. We apply to the integral occurring in the first term the result 1.2 (iii) C), yielding í^{i>tjck+vL(x)}~5(v+1, r—v)s*~rL(s), s -co. Now we see that the second term tends to zero for this time we have to use 1.2 (ii) and (1.6) of Lemma 1.1. The third term 73, say, is estimated as follows |/ 3 | S (L(s))- 1 / s^+kL(sy) dy+iLis^-'Mis) 0 f y^-^~1L(sy)dy «life where M ( j ) = s u p 1^(^)1 for y^as^ 1 1 2 . Hence | / 3 | ^ e ^ E . , for since ¡©(¿jOI is bounded, M(j)—0, j— and by applying to the occurring integrals (1.2), (iii) A) and (1.2), (iii), B) respectively. R e m a r k . By altering slightly the method of proof used above we can obtain similar results when the distributions behave as some functions more general than the regularly varying ones. Thus the following result holds: T h e o r e m 3.1. Let Re r > — 1, T£J'(r), CO /?>0, f a \h(x)xp+v\dx converges (a>0). T~xyh(x), then ^{Tj^ms-'-1, and let h(x) be such that for some If JC-CO where m is a constant that can be calculated. References [1] J . LAVOINE {2] J. [3] J . et O . P . MISRA, Théorèmes abéliens pour la transformation de Stieltjes des distributions, C.R. Acad. Sci. Paris. Série A, 279 (1974), 99—102. LAVOINE and O . P . MISRA, Abelian theorems for the distributional Stieltjes transformation, Math. Proc. Cambridge, Philos. Soc., 8 6 ( 1 9 7 9 ) , 2 8 7 — 2 9 3 . KARAMATA, Sur un mode de croissance régulière des fonctions, Mathematica (Cluj), 4 ( 1 9 3 0 ) , 38—53. 410 [4] [5] [6] [7] V. Marié, M. Skendzié, A. TakaCi: Stieltjes transform of distributions Regulary varying functions, Lecture Notes in Math- 508, Springer-Verlag (Berlin—Heidelberg—New York, 1976). S . AuANCié, R . BOJANIC, M . ToMié, Sur la valeur asymptotique d'une classe des intégrales définies, Pubi. de l'Inst. Math. Beograd, V N ( 1 9 5 4 ) , 8 1 — 9 4 . S. LOJASIEWICZ, Sur la valeur d'une distribution en un point, Studia Math., 16 ( 1 9 5 7 ) , 1 — 3 6 . J- SEBASTIAO E SILVA, Integrals and order of growth of distributions, Inst. Gulbenkian de Ciencia Lisboa, 35 (1964), 7124. E . SENETA, INSTITUTE O F MATHEMATICS UNIVERSITY O F NOVI SAD NOVI SAD, YUGOSLAVIA Acta Sei. Math., 50 (1986), 411—396 Normal approximation for sums of non-identically distributed random variables in Hilbert spaces V. V. ULYANOV The problem of estimation of the speed of convergence in the central limit theorem in Hilbert spaces has a history of nearly twenty years. In most papers the speed is studied on the class of balls with a fixed center. This is an important and natural class of sets, but it is not very rich. However, in contrast to the finite dimensional case, one has shown that in Hilbert spaces (in general) it is impossible to construct estimates which are uniform with respect to rich classes, since not even on the class of all balls the speed of convergence in the central limit theorem in Hilbert spaces is uniform (see e.g. [1], p. 70). The first estimates of order n~1/2 on balls with a fixed center under the assumption of finiteness of some moments and without any other additional restrictions (such as independence of coordinates) were obtained by GÖTZE [ 2 ] . Following Götze's paper a series of papers appeared, mostly based on Götze approach, which improved and extended his results (see e.g. [3], [4], [5]). The estimates for the case of independent not necessarily identically distributed random variables (i.non-i.d.r.v.) were obtained by BENTKUS [5] (see Theorem 3.3 in [5] or the condition (5) and the estimate (6) below). The previous results for the case of i.non-i.d.r.v. were obtained by BERNOTAS, PAULAUSKAS [6], ULYANOV [ 7 ] , [8]. However, corollaries from results [6]—[8] for i.i.d.r.v. give estimates of the order n _1/G . In the present paper we construct estimates on some classes of Borel sets, in 9 particularly on balls with a fixed center, for the case of i.non-i.d.r.v. Our results improve the corresponding estimates of BENTKUS [5], have the "natural" form and at the same time they are obtained under somewhat different conditions. One of the main features of our estimates is that they require minimal moment conditions and their dependence on the (truncated) moments has an explicit form. We shall use the methods of [2], [3], [5] and some ideas from [7]. Received July 2, 1984 and in revised form, April 5, 1985. 412 V. V. Ulyanov In what follows, H is a real separable Hilbert space with inner product (x, y), x,y£H, and norm |x|=(x, x) 1/2 , D : H-»H is a bounded symmetric operator \D\ = sup | ( D x , x)|/|x| 2 , x^O h: H-+R1 is a linear continuous functional, W(x) = (Dx,x) + h(x), Aa,r = {x£H: W(x+a) < r}, N„ = Let A: H-*H r S 0, a^H; {\,2,...,n}. be a bounded symmetric operator with eigenvalues oo = . We write A£G(P, k), JS>0, if and only if <rk^p. Denote tr A= 2 <*i- Let Z be a ranj=I dom variable with values in H. Denote by % the symmetrization of X, i.e. %= X1—X2, where Xx and X2 are independent copies of X. For <5 > 0 put where IB is the indicator of the set BczH. By c (resp. c( •)) with or without indices, we denote constants (resp. constants depending only on quantities in the parentheses); the same symbol may stand for different constants. Let Aj, i£N n , be any numbers and 0<zN„. Put /1(0)= 2 V ae Our main result is the following theorem. T h e o r e m . Let Xt, i£N„, be i.non-i.d.r.v. with values in H with zero means and covariance operators Aiy i£Nn, respectively. Assume that there exists an operator A0 such that (1) Ai = liA0, ¿¡SO, i£Nn, 2 k = i i=1 and jttrAi= 1=1 1, (DA0feG(P, 13), for some 0 > 0. n Put Sn= 2 and let Z be a Gaussian (0, A0) r.v. with values in H, ¡=i Then for all h S 1 (2) A = sup \P{SniAa.r)-P{ZiAa>r)\ rEO where At= ± E\Xki\\ ¡=i L3= % E\Xl\\ »=1 ^ Cl(l + |a|3)(/l2+L3), c ^ c M , №1, P)- ' Random variables in Hilbert spaces 413 C o r o l l a r y 1. Assume that A0€G(fi, 13)for some /?>0. Then for all n=1 (3) Ax = sup |P(|5„+a| < r)-P(\Z+a\ < r)| S c(/?)(l+|a|»)(/l 2 +L 8 ). r SO C o r o l l a r y 2. Assume that A1=A2=...=A„, E\Xi\asL,i^Na. Then for all «si (4) A ^ C W D + A^G0?, W^LN- 1 13), for some /J>0, '*. R e m a r k s . 1. Our theorem improves estimate (3.14) of Theorem 3.3 in [5]; For completeness we recall the corresponding result proved by BENTKUS [5] (Theorem 3.3). Let Xt, i€N„, be i.non-i. d.r.v. with values in H with zero means and covarictnce n operators At,i£N„, respectively. Assume that ^tTAi= 1 and there exists a notmegative operator A0: H-+H such that (5) A{ S A0ln, i£Nn, and (DA0)2€G(fi, k), for some &>0. Let q,e,B be any numbers, 2, 0-c < e S l , i ? > 0 . Then there exists a constant c=c(e) such that if feSc then for all »Si (6) A ^ c,(l +1a s |)(^2+^s+(«/cr|) E - 1 + (n max £|Z ( 1 | 2 ) B ), where c2=c2(fi, e,q,\D\, \h\, B), o= max (n^E\X}\^-%\ Thus our theorem shows that the last two terms on the right hand side of (6) may be omitted. At the same time we replace condition (5) by condition (1). 2 . Estimate ( 4 ) was obtained earlier by YURINSKI! [ 3 ] . The proof of the theorem is based on a series of lemmas. L e m m a 1. Let A(, i£N„, be nonnegative numbers such that max A, s 1/3. Then there exist sets /=1,2. @l5 0 2 such that 0 i n© 2 =0, 0 1 U0 2 =A' n , A ( 0 j ) S l / 3 , <0 <0+1 P r o o f . It is easy to see that there exists an/„such that ^ A , s l / 3 , ^ Put 0 ! = { 1 , 2 , . . . , / 0 + l } . The above construction implies Lemma 1., L e m m a 2. Let A(,/£JV„, be nonnegative numbers such that ¿ A , = 1, it max A, m . R s 1/3. A, >1/3. 414 V. V. Ulyanov Let Mt, i€N„, be any nonnegative numbers. Then there exists. 0<zNn R^X(0)s3R, such that M M(0)/A(0)g f i1=1 P r o o f . As in Lemma 1 it is easy to see that there exist 0 l 5 0 2 , . . . , &„, such that 0 , n 0 j = 0 , i V j , IJ 0,=N„ and R^X(0t)s3R, / = 1 , 2 , ...,m. Assume that the ratios M(0,)/A(0,) are arranged in the following way M(eh) ^ M(0j „ A(0(l) - A(0it) ^ M ( 0 j X(0im) • This implies M(0il)/X(0ll)^ 2 /=i Put 0 = 0 , . Lemma 2 is proved. L e m m a 3. Let X be a r.v. with values in Hand EX—0, E\X\i< z£H, 5>0 <*>. Then for any zf S 2 E ( X , z) 2 —4|z| 2 (£|A r 1 | 2 +2.E|.Jf 1 | 8 /i), (7) where P r o o f . We have (8) E({2y,zf (9) As in (8) we get (10) Since EX=0, = E(X\ z ) 2 - £ ( ( ^ ) 3 , z)2 S E(X\ E(X\ z)2 = 2 E { X \ zf-2{E(X\ z))2. z)2 S £ ( * , z ) 2 - | z | 2 £ | * i l 2 . (11) Moreover (12) zY-\z\*E\(X\\\ E(X\z) = -E(Xi,z). ¡E(Xi,z)\ ^ IzK^I^I 2 ) 1 / 2 . From (9)—(12) it follows that (13) Furthermore (14) £(^1,z)2s2£(Z,z)2-4|z|2£|A'1|2. £ KJ?1),!2 S E |£T/<5 ^ 8 £ |.Y l | 3 /5. Using (8), (13) and (14) we get (7). Lemma 3 is proved. L e m m a 4. Lei A, B be any bounded linear operators in H, A^O. Then the sets of non-zero eigenvalues of the operators AB, BA and A1,2BA112 are the same (taking into account the multiplicity of the eigenvalues). R a n d o m variables in Hilbert spaces P r o o f . See VAKHANIA [9], p. 84, 415 or Lemma 2.3 in [5]. L e m m a 5. Let X,(Yt), i£N„, be i.non-i.d.r.v. (independent Gaussian r.v.) with values in H with zero means and covariance operators A„ i£N„, respectively. Let R be any positive number, Rs 1/6. Assume that A, — XtA0, (15) 2 trJi,= 2 f=J i=l AJ £ 0, = l> (DA0)KG(fi, 13) for some Let 6 > i n 0 2 = 0 J 01\J02=N„. V, =($}Y /? > 0, jR»/(200|£)|2). max X, =SR, A2 i simn (16) i£N„, Put A= 2 cov Vt, B= 2 cov Fj, where itOx i£0s 3 = 400\D\ 2 (A 2 +L 3 )lf}. or Vt — Then there exists 0^ such that (DAD)llzB(DAD)ll2£G(Rp/2, (17) P r o o f . Let x£H. 13), tiA S 12R. z=(DAD)1/2x, Put A2(Q)= 2E ¡(.0 Note that \Xa\\ E(?i,x)2 (18) 1^(0) = 2 E\Xl\\ i£0 = 2E(Yi,x)2. From (18) and Lemma 3 it follows that (19) (Bz, z ) S 2(A„z, Furthermore (20) z)X(02 ) \Z\2(A2 (02)+2L3 (02 )/S). - 4 \z\*^4\D\2 \x\2A(0J. By Lemma 4 the sets of the non-zero eigenvalues of the operators (DAD)ViA^DAD)1,% and All2DADAlla are the same. Put y=DA]j2x. As in (19) we have (21) Moreover (22) (Ay,y) S 2(A0y,y)A(0J-4 \y\2(A2(0d+2L3(01)IS). \y\2^4\D\2\x\2X(0J^4\D\2\x\2. Since under the assumptions of Lemma 5 (DA0)2£G(/?, 13), by Lemma 4 we have (23) All2DAoDAl'aeG(0, By Lemma 2 there exists a such that (24) n* 13). R S A ( 0 J ) ^ 3 R , LS (01 )/X(0L ) Z*. V. V. Ulyanov 416 Now from (15), (21), (22) and (24) we have for any x£H 2 2 2 2 •V: 2 (All DADAl'*x, x) S 2(Ay DA0DAy x, x)R-l6\D\ \x\ {A&+.2L3(01)IS) (25). . S 2(Ay2DA0DAl'2x, x)R-pR\x\s. 3* From (23), (25) and the results of §4, Ch. Zin [10] it follows that Ay*DADAy2<iG(Rp, 13). (26) Similarly from (15), (16), (19), (20), (24), (26) and from the simple inequality (27) tr A s= 4-1(0!) we get (17). Lemma 5 is proved. P r o o f of T h e o r e m . Put + F(r)^P(S n ^A a w r ), F ^ r ) ^ =P(3*eAar), b(r)=P(Z€Aar). Let f ( t ) and g(t) be the Fourier—Stieltjes transforms of F x and b respectively. Using the inequality |fr'(r)|=§ / g(t)dt, — oo the symmetrization inequality (see Lemma 2.1 in [3]) and Lemhia 2.4 in [5] we get (28) It is easy to see that (29) \b'(r)\^c(\D\,m + \a?). I F O O - F . w i s 2 n \ x > \ s l) -s A 2 . •••••••• i=l By Theorem 2, §1, Ch. 5 in [11], from (28), (29) we have for any T > 0 (30) ]P(SnZAa,r)-P(Z£Alhr)\^A2+c(l ; + \a\*)IT+ / U n / i O - g i O l dt. ' ' 5 -T Now we estimate \f(t)—g(t)\. (31) where and By Theorem 4.6 in [12] we havd 1 / ( 0 - «(01 ^ c(|/| + 1/1^(1 + \a\*)(A2+Ls)x(t), ; any subset of Nn containing not more than one element* F„), V = X F or VI=?I, i£N„, Y Y ,.... Y are independent Gaussian r.v.'s with zero means and covariance operators A , A ,..., A„, respectively. V = { V is . .; M X , V2 ,..., T 1 ? 2 N T 2 167 Random variables in Hilbert spaces Denote 4=A+-Z-3- The left hand side of (2) is not greater than 1. Hence we may assume without loss of generality that (32) Amc3, where c 3 is a constant small enough. In fact, if (32) is not true then (2) is obvious with c t ^ l / c 3 . We may also assume that max A,- S A 2 ' 2S . ISiSn (33) In fact, if there exists an z0 such that Af >/1 2/25 then tr A, >/l 2 / 2 5 . Since tr A, = we have E ^ f ^ A 2 ' ™ . Moreover, E\Xk\2 = E\Xiai\2+E\X>\\ Now we consider two possible cases. Case 1. E\X,^E\Xfj2. Then E\X^>A^jl. Since A ^ E t f ^ 2 № 25/23 have A>A l /2, that is /l>(l/2) . This contradicts assumption (32). Case 2. E\Xff>E\XioL\\ (£|A? 0 | 2 ) 3/2 Then E\Xlf=-A2'25/2. 2s'2 we We have (E|A?0|2)3/2 ~ ' 75/44 Hence /1>(l/2) . This also contradicts assumption (32). Furthermore, from the definition of x(t), (33) and Lemma 1 it follows that if we denote (34) S{ = inf Eexp { 2 * 7 { 2 DV}, £ Vj)}, 81 > 0, where @ i n ® 2 = 0 (35) and 2 then (36) Note that for any symmetric r.v. X,z£H, 8>0 we have £ e x p {i(z, X)} ^ £ e x p {i(z, Xs)}. Therefore (37) <5fS inf £ e x p {2 ii ( Z DV'}, 2 Vj)}> where V;=Vf if Vj=X} and V'j=Vj if V j = f j t [5] we get for all t and M that U 0 2 . By Lemma 2.5 in 4|D|«5 e |i| s 1, 4 \D\ MS max {y, e} ^ 1, (38) di^c inf (exp ( - 0 2 /(tr ¿ + 5 g ) ) +exp ( - y2/tr B) + <p (s)), V. V. Ulyanov 418 where ¿=min {2\t\, M}, <p(s)=Eexp {is (DU, V)/2}, U, V are independent Gaussian r.v.'s with zero means and covariance operators A= Y" cov V, and B= lie i = 2 c o v K'> respectively. From (1.4) in [3] it follows that <p(s) = ]J (1 +s 2 /^/4) _ 1 / 2 , j=i (39) where Pj,j= 1, 2, ... are the eigenvalues of (DAD)1/2B(DAD)112. Now we estimate the right hand side of (38) for different values of t. Case I. U|sSc/(/lln(l//l)). Put y=c ln x / 2 (l//l), = c/(A In (1//1)). From (1), (27) we get (40) tx ö=cln(l//4), ő=cA, M= A+trB^A. Hence for the above values of y, q, S, M we have exp (— g 2 /(tr A+ŐQ))+exp (41) (— y 2 /tr B) S. cA°. By Lemma 5 and (32), (33), (35) there exist 6>x and a constant c such that (42) (DADf/2B(DADyi\G(cP, From (39), (42) we have (43) ( K s ^ c O + i 1 8 )- 1 . 13). Case2. c/(A In (\IA))^\t\^clA. Put y = c l n ^ O / z i ) , Q = C , M = C / ( A In S=cA. By Lemma 5 and (32), (33), (35) there exist © i and a constant c such that {DAD)1'2 B {DAD)1'2 6 G (cA2'25 p, 13), trA^ (44) (I/A)), cA2'25. From (39), (40), (44) we have (45) Si ciA'+il+A^KA Furthermore, put T=c/A, (45) we get (46) f In (1/4)))- 13 ) T^cftA W-^M-gWdt^cil c(Ac+A312'25 In13 (I I A)). In (1/A)). From (31), (34), (36), (37), (41), (43), +W A f -T (1 + t2)x(t)dtm -T ^ c(l + |a|3)/l / (\ + t2)5ídt^c(l — T + \a\s)A{ f + — TX f + /^(1 Tt OO ^ c(l+|a|3)/l(l+ / ^ d r s —T * fiil+t^l^dt+A^ln^il/A^^cil Estimates" (30) and (46) imply (2). The theorem is proved. + la^A. Random variables in Hilbert spaces 419 P r o o f of C o r o l l a r y 1. This follows from the theorem. To this end it is enough to put h=0, D=T, the identity operator, and to note that if A0£G (/5,13), then A*£G(P, 13). The proof of Corollary 2 is obvious. I am grateful to professor J. Mogyoródi for his attention to my work. References Normal approximation — some recent advances, Lecture Notes in Math., Springer-Verlag (Berlin, 1 9 8 1 ) . [2] F . GOTZE, Asymptotic expansions for bivariate von Mises functionals, Z. Wahrsch. Verw. Gebiete, 50 (1979), 333—355. [3] V. V. YuRiNSKil, On the accuracy of Gaussian approximation for the probability of hitting a ball, Teor. Verojatnost. i Primenen., 27 (1982), 270—278. [4] B . A . ZALESSKII, Estimates of the accuracy of normal approximation in a Hilbert space, Teor. Verojatnost. i Primenen., 27 (1982), 279—285. [5] V . BENTKUS, Asymptotic expansions for distributions of sums of independent random elements in a Hilbert space, Litovsk. Mat. Sb., 24 (1984), No. 4, 29—48. [6] V . BERNOTAS, V . PAULAUSKAS, Non-uniform estimate in the central limit theorem in some Banach spaces, Litovsk. Mat. Sb., 19 (1979), No. 2, 23—43. [7] V. V. ULYANOV, On the rate of convergence in the central limit theorem in a real separable Hilbert space, Mat. Zametki, 29 (1981), No. 1,145—153. [8] V . V . ULYANOV, On the accuracy of closeness estimates for two distributions of sums of random variables with values in some Banach spaces, Vestnik Moskov. Univ. Ser. 15, 1981, No. 1, 50—57. [9] N . N . VAKHANIA, Probability distributions in linear spaces, Mezniereba (Tbilisi, 1 9 7 1 ) . [10] N. DUNFORD, J . T . SCHWARTZ, Linear operators. II, Wiley (New York, 1 9 6 2 ) . [11] V. V. PETROV, Sums of independent random variables, Springer-Verlag (Berlin, 1 9 7 5 ) . [12] V . BENTKUS, Asymptotic expansions in the central limit theorem in a Hilbert space, Litovsk. Mat. Sb., 24 (1984), No. 3, 29—50. [1] V . V . SAZONOV, vol. 879, MOSCOW STATE UNIVERSITY FACULTY O F APPLIED MATHEMATICS A N D CYBERNETICS 117234 MOSCOW V—234, USSR Acta Sci. Math., 50 (1986), 421—410 A connection between the nnitary dilation and the normal extension of a subnormal contraction C. R. PUTNAM 1. Introduction and theorem. Let H be an infinite dimensional, separable, complex Hilbert space and let T be a bounded (linear) operator on H. If T is a contraction (|| I'll S L ) on H, then, by a well-known result of B. S Z . - N A G Y [7] there exists aHilbert space Kzj H and a unitary operator U on K for which (1.1) Tn = PU"\H and T*" = PU*"\H, n=0,1,2,..., where P is the orthogonal projection P:K-*H. If K is the least subspace of K which reduces U and contains H (as will be supposed) then U is the (unique) minimal unitary dilation of T. See HALMOS [3], S Z . - N A G Y and FOIA§ [8]. Next, let T be any subnormal operator, so that there exists a Hilbert space K'^H and a normal operator N on K' for which NHczH and T=N\H. Thus, N is a normal extension of T and, if P' denotes the orthogonal projection P': K'-*-H, (1.2) T" = Nn\H and T*n = P'N*a\H, n = 0, 1, 2, .... In case Kf is the least subspace of K' which reduces N and contains H (as will be supposed) then N is the (unique) minimal normal extension of T. (See HALMOS [3] and, for an extensive treatment of subnormal operators, C O N W A Y [2].) The operator T is said to be a pure subnormal operator if it has no normal part. Henceforth, it will be supposed that T is both a contraction and a pure subnormal operator. Let the associated operators U and N defined above have the corresponding spectral resolutions (1.3) U = f zdGz C on K and N = f zdEz on K', D- This work was supported by a National Science Foundation research grant. Received July 4,1984. 422 C. R. Putnam where D is the unit disk D= {z: |z|< 1} with closure D~ and C = { z : |z| = l}. The main object of this note is to point out the following explicit connection between the operators U and N: T h e o r e m . Let The a pure subnormal contraction on H with the minimal unitary dilation UonK and the minimal normal extension N on K' of .3). Then, for any Borel set p on C andfor any vector x in H, <1.4) WP)x\\*+ fhp(z)djEzxr = \\G(fi)xr, D where (1.5) hp(z) = (l/2n) fRe(Pz(t))dt, Po with (e*+z)!(eu-z) Pz(t) = ea6j?}. •and 0o={t:OiSt^2n, The function Re (Pz(.t)) is the Poisson kernel and, as is well known, is positive for all t£C, z£D, while hfi(z) is harmonic in D. The formula (1.4) is contained "between the lines" in [6], pp. 333—334, but apparently has not appeared explicitly in the literature. For completeness, the argument -will be given below. As above, let P and P' denote the orthogonal projections P: K-+H and P' : K'-* —H, so that, by (1.1) and (1.2), for x in H and « = 0 , 1, 2, ..., one has Tnx= =PU"x=Nnx and Tnx=PU'"x=P'N*nx. Hence, if / = / ( z ) is analytic in D and •continuous in D~ then f fdEzx = P / fdGzx D- and P' f fdEzx C •Consequently, if h=h(z) D~, then = P f D~ JdGzx. C is any real harmonic function in D which is continuous on P' fhdEzx = P JhdGzx, D- x£H. C Next, let P be any closed subset of C and let q> be a real-valued continuous function on C satisfying <p=1 on/? and O^qxl on C— p. Then there exists a function •h(z), given by the Poisson integral, which is harmonic in D, continuous in D~, and satisfies h=cp on C. Consequently, P'(fhdEz+ D fq>dEz)x = P fq>dGzx, C xiH. C On forming inner products with x one obtains >(1.6) f<pd\\Ezxl*+ fhd\\Ezxr= f<pdiGzx\\*. Unitary dilation a n d normal extension 423 On replacing (p by <p„=<pn and h by the corresponding hn, n=1,2,..., one sees that ( p ^ c p ^ . . . and the sequence {<?„} converges to the characteristic function of /?. Similarly, O s h „ s l , h ^ h ^ . . . , and {A„} converges to h f (z) of (1.5). Clearly, one has the relation ( 1 . 4 ) , when /? is closed, and the extension of ( 1 . 4 ) to arbitrary Borel sets /? readily follows. It is known that ||G z x|| 2 is, for each x in H, x^O, equivalent to arc length Lebesgue measure on C ; see SZ.-NAGY and FOIA§ [8], p. 8 4 . The absolute continuity of Ez on C follows from ( 1 . 4 ) . (That is, E{fi)—0 whenever /? is a Borel set on C having arc length measure zero.) Other proofs of this last result are given in CONWAY and OLIN [2], p. 3 5 , OLIN [4] and PUTNAM [5] (see also [6]). 2. U as the sweep of N. It may be noted that (1.4) of the Theorem or, equivalently, ( 1 . 6 ) , in which cp is now any continuous function on C and h=h(z)=0(z) is its harmonic extension to D~ (via the Poisson integral), can be interpreted in terms of the sweep of a measure. (For the concept of "sweep" see CONWAY [2], p. 3 3 4 . ) Thus, one has f Qdfi — J <p dfl, Dc where dn=dlEzx\\* and d(l=d\\Gzx\\2, so that (I on C is the sweep of p on D~. 3. Two corollaries. C o r o l l a r y 1. Under the hypotheses of the Theorem, suppose that, in addition, (3.1) Then (3.2) X = E(C)x for some x£H, Xr*0. Ez on C is equivalent to arc length measure on C, that is, E(fi)=0 for a Borel set /? of C if and only if f} has arc length measure zero. P r o o f . In view of the remarks at the end of section 1, it is sufficient to show that P has arc length measure zero whenever E(fi)=0. It follows from (3.1) and (1.4) that £ ( | z | < l ) x = 0 , so that ||.E t x|| i! =||G z x|| 2 , z on C. However, as noted above, ||0.x|| 2 is equivalent to arc length measure on C and the proof is complete. For use below, let a t ={e , s : O s j s / } , G ^ G i c O . I f A=[a,b]c[0,2n], let AE=E„-Ea C o r o l l a r y 2. Suppose that for some x£H, (3.3) where A is any subinterval of holds. (3.2), and and put Et=E(at) AG=Gb-Ga. and x^O, 2 inf{MGx|| /M|} = 0, a [0, In] and \A\>0 is its length. Then (3.1), hence also C. R. Putnam 424 P r o o f . By (1.4) and (1.5), (3.4) № D 7 M I + (1/2k) / ( M \ A \ ) ( ¡Re{Pz{t))dt)d\Ezx\* D = \\AGxfl\A\. A By (3.3), there exists a sequence of intervals A„, |/4„|>0, « = 1 , 2 , . . . , where An= =[a„, b„\ and a„,bn-*c for some c in [0, 2n]. It follows from (3.4) and Fatou's lemma that J R e ( P z ( c f j d \ E z x Y = 0. D Consequently, E(D)x=0, that is, (3.1), and hence (3.2). 4. Remarks. It follows from Corollary 2 that if Ez on C is not equivalent to arc length measure on C (so that there exists a Borel set j? on C of positive arc length measure for which EQ?)=0), then, for every x in H, x^O, there exists a constant kx for which ^AGx\\2l\A\^kx^0 for all subintervals A of [0, 2n]. This result can be regarded as a refinement of the relation (4.1) log(.d\\Gtx\\*ldt)£L(0,2n), which is valid whether or not E, on C is equivalent to arc length measure on C. In fact, (4.1) holds for arbitrary completely nonunitary (not necessarily subnormal) contractions T; see S Z . - N A G Y and FOIA§ [8], p. 8 4 . Since for each x£H, both ||is(x||2 and ||ir t x|| 2 are absolutely continuous on [0,2n], it is seen from (3.4) with A=[t, t+At] that (4.2) d\EtxVldt + (1/2TI) J^{Pz(t))d\\E:xr = d\\Gtx\m D holds a.e. on In fact, the relation corresponding to (4.2) but with the equality replaced by " S " follows from Fatou's lemma. That, in fact, equality holds (a.e.) follows from an integration and the fact that x=E(D~)x=G(C)x. We are indebted to K. F. Clancey and to J. B. Conway for very helpful discussions, especially in connection with the "sweep" interpretation of (1.4) as given in section 2. References [1] J. B. CONWAY, Subnormal operators, Research Notes in Mathematics, 51 Pitman Advanced Publishing Program, 1981. [2] J. B . CONWAY and R . F . OUN, A functional calculus for subnormal operators. I I , Mem. Amer. Math. Soc., 10, No. 184 (1977). Unitary dilation and normal extension A Hilbert space problem book, Second edition, Graduate Texts in Mathematics, vol. 19, Springer-Verlag (Berlin—Heidelberg—New York, 1982). R. F. OUN, Functional relationships between a subnormal operator and its minimal normal extension, Thesis, Indiana Univ., 1975. C. R. PUTNAM, Peak sets and subnormal operators, Illinois J. Math., 2 1 (1977), 388—394. C . R . PUTNAM, Absolute, continuity and hyponormal operators, Internat. J. Math, and Math. Sei., 4 (1981), 321—335. B . SZ.-NAGY, Sur les contractions de l'espace de Hilbert, Acta Sei. Math., 1 5 (1953), 87—92. B . SZ.-NAGY and C. FOIA§, Harmonie analysis of operators on Hilbert space, North-Holland Publishing Co., American Elsevier Pub. Co., Akadémiai Kiadó (1970). [3] P . R . HALMOS, [4] [5] [6] (71 [8] 425 D E P A R T M E N T O F MATHEMATICS P U R D U E UNIVERSITY WEST LAFAYETTE, I N 47907, U.S.A. Acta Sci. Math., 50 (1986), 427—410 C*-nonns defined by positive linear forms JÁNOS KRISTÓF It is well known that the norm of a C*-algebra A is uniquely defined by a set of its positive linear forms, namely M = sup/7(* 5 *) (1) /€S for all x£A, where S is the set of positive linear forms f on A such that | | / | | ^ 1 (cf. [1]). It is worth mentioning that the set S in (1) can be defined by an entirely algebraic way; the linear f o r m / o n A is in S if and only if / ( A ) í R + and | / ( x ) | 2 S Sf(x*x) for all x€A. This means that in the right side of (1) only such entities enter which are related to the algebraic structure of A. The latter observation leads to the result that defining a C*-norm on a #-algebra is equivalent to indicating a certain set of positive linear forms on it. So the question arises naturally; how to choose a set S of positive linear forms on a given *-algebra so as to obtain a C*-norm on it by the definition (1)? The aim of this paper is to examine this problem. Due to the elementary character of our further investigations we shall constantly refer to the basic works [1] and [2]. I. C*-seminorms defined by positive linear forms In the present study the vector space of the linear forms on the »-algebra A is denoted by A* and co (P) stands for the a (A*, v4)-cIosed convex hull of the subset P of A*. If A is a »-algebra with unity and P is a set of positive linear forms on A then the set {/<E/>|/(l)Sl} is denoted by P(l), where 1 is the unit element of A. Further, assuming that P ( l ) is a (A*, ^-bounded, || • ||P denotes the mapping from A into R + Received August 23,1984. -428 J. Kristóf -defined by the equation <!)' M l r : = sup /e«i) ffi?*) for all x£A. It is obvious that || • ||P is a seminorm on A. The dual seminoma of || • Hp is denoted by || • ||p. Given a »-algebra A and a linear form / on it, for all x£A we define the linear forms x.f and f.x on A as the mappings y>-*f{xy) and y*-+f (yx), respectively. Clearly, x.(f.y)=(x.f).y thus one may use the simple notation x.f.y instead of x.(f.y) or (x.f).y. Our first result concerns a sufficient condition on a set of positive linear forms providing C*-seminorms by the aid of (1)'. T h e o r e m 1 .Let Abe a *-algebra with unity and P a nonvoid set of positive linear forms on A satisfying (I) P(l) is o(A*, Aybounded. (II) R + P<=P and x*.P.xczco(P) for all x^ A. Then || • ||p is a C*-seminorm on A and every f£co (P) is || • \\P-continuous and | | / | | p = / ( l ) . Moreover, i f P separates the points of A then || • ||P is a norm on A and the involution of A is proper. P r o o f . Since co (P) is nonvoid and a (A*, ^-bounded, we may form the seminorm || • ||Co(p) besides || • || P . We claim that these seminomas are equal. Of course, || • ||p51| • II^CP)order to prove the reverse inequality it suffices to show that _/(x*x)S||x|| 2 for all x<=A and / e ( c o ( P ) ) ( l ) , / # 0 . If /E(co (P))(l) then there is generalized sequence (fdiii in co (P) such that / pointwise on A. In particular, / ( 1 ) - / ( 1 ) and / ( 1 ) > 0 , thus we may suppose that f,( 1 ) > 0 for all /£/. Then take f{:=(f(l)/fi(i))fi (/€/). Clearly, //<E(co(P))(l) with regard to the first part of (II) and it is easy to see that co (P(l))=(co (P))(l). On the other hand, f,'-*f pointwise on A. From this we infer that given an element x of A we have (X*JC) — -*f(x*x) and / / ( X * X ) ^ | | J C | | 2 , since / ' 6 c o ( P ( l ) ) , thus /(x*x)S||x|| 2 . Now fix an • element/in (co(P))(l). Then \f(xW ^f(i)f(x*x) & Ml CP) = 1*111 for all x£A, i . e . / i s || • || P -continuous and | | / | | p S l . The first part of (II) now yields that R + c o ( P ) c c o ( P ) , hence/is || • || P -continuous and | | / | | p = / ( l ) for all _/€co (P). We show next that (2) f(y*x*xy) \\x\\2Pf(y*y) for all / € c o (P) and x,y£A. If f(y*y)=0 then choose an arbitrary positive real number e to obtain f(y*x*xy)/e = ((ylfi)*.f(ylfc))(x*x). C*-norms defined by positive linear forms 429 Since by (II) the linear form standing on the right hand side belongs to (co (P))(l), we now have f(y*x*xy)^e\\x\\% for all e>0, i.e. the equality f(y*x*xy)=Q= = \\x\\%f(y*y) holds. If f(y*y) >0, then f(y* x* xy)ff(y*y) = ((y/yfU^)*.f.(yfyJU^y)))(x*x) and the linear form on the right hand side belongs to (co (P))(l), hence we obtain the desired inequality. From the inequality (2) it follows that ||x.y||pS||x||p||j>||p for all x,y£A. The only thing that remained to be proved is the inequality ||x||pS||x*x||p for all x£A. If x€A and f£P(l) t h e n S ||/||;i|x*x||p=/(l)||^||pS[|x*xIlp thus || • ||, is a C*-seminorm on A. The last assertion of the theorem is an immediate consequence of our previous considerations. II. C*-norms defined by positive linear forms The assumptions (I) and (II) introduced in Theorem 1 are not sufficient for P to ensure that || • ||P be a C*-norm on A. Our next aim is to impose further conditions on P in order to have possibility of proving the completeness of A with respect to the uniform structure defined by || • || P . ' We need two auxiliary lemmas. Before formulate them we agree that given a »-algebra A with unity and a nonvoid set P of positive linear forms on A satisfying (I), the linear subspace and the || • Hp-closed linear subspace of A* spanned by P will be denoted by sp (P) and sp (P), respectively. Lemma 1. Let Abe a *-algebra with unity and P a separating set ofpositive linear forms on A satisfying (I). Then the a (A, sp (P)) and g(A, sp (P)) topologies coincide in each || • \\P-bounded subset of A. Proof. Let (x,) ier be a generalized sequence in A such that xt—x in the o(A, sp (P))-topology and suppose that we have M:=sup ||x;|| P < We claim — — ¡e/ that Xi—X in the cr(A, sp (P))-topology. If f{sp (P), / £ s p (P) and /'€/ then \F(x,)-m\ ^ \f(xd-f(xd\ + l/W-f(x)\ + \f(x)-J(x)\ s II/—/||p(M+ ||x||p)+1fixd-/(x)|. Since / € i p (P) and /(x,)—/(x) for all / € s p (P), we easily deduce that /(x{)-<-fix). It is obvious that a (A, sp (P)) is a stronger topology on A than <r(A, sp (P)), however, Lemma 1 indicates a certain strict intrinsic relation between them. 12 430 J. Kristóf L e m m a 2. Let A and P be as in Lemma 1 and suppose (III) x.P<=ip (P) for all x£A. Then the multiplication in the algebra A is || • ||P-boundedly left ctnd right continuous in the a (A, sp (P))-topology. P r o o f . Consider a || • || F -bounded generalized sequence (x()iei in A such that Xi—X in the a (A, sp (P))-topology. Then combine Lemma 1 and (HI) to obtain that f(yxt) = {y.f)(xd - 0'•/)(*) = f(yx) for all / € P and y£A, i.e. yx^yx in the a (A, sp (P))-topology. Due to the obvious equality fy=(y*f)* and the trivial fact that the set sp (P) is closed with respect to the natural adjunction of A*, we deduce that xty-*xy in the same topology. We are now ready to formulate our main result on C*-norms defined by positive linear forms. T h e o r e m 2. Let Abe a *-algebra with unity and P a separating set of positive linear forms on A satisfying (I), (II), (III) and (IV) A is sequentally complete with respect to the uniform structure defined by the <t(A, sp (P))-topology. Then A is a C*-algebra whose (unique) C*-norm equals || • ||P. P r o o f . With regard to Theorem 1, A, equipped with || • ||p is a pre -C*-algebra. Let A denote the envelopping C*-algebra of this pre-C*-algebra. For every || • Hpcontinuous linear form f on A l e t / denote its unique norm continuous extension to A. We shall prove that A=A. First we show that there exists a unique mapping n from A onto A with the property fon=f for all / € P . The uniqueness of n is an immediate consequence of the assumption that P separates the points of A. To prove the existence of it let us consider a fixed element x of A. There is a sequence (x„)ngN in A such that )|jc„—x||P-»-0, where the C*-norm of A is also denoted by || • || P . Then ( x n ) „ e N is a. j] • || P -Cauchy sequence in A, hence a Cauchy sequence in the weaker uniform structure defined by the a(A, sp (P))-topology. Now, condition (IV) implies the existence of an element x in A with the property that x„ — x in the a (A, sp (P))-topology. We define it(x) to be equal to x. Then, for all / € P , by virtue of Theorem 1 we have /(*(*)) = f(x) = lim n /(*„) = lim n / C O =/(*), thus the existence of n is verified. We claim that fon=f holds for all / £ s p ( P ) . Indeed, if / € s p P and (/ n )„ e N is a sequence in s p ( P ) such that \\ f„—f\\p-*Q then we also have ||/„—/||p-^0, 431 C*-norms defined by positive linear forms where || • \\'P denotes the dual norm of the C*-norm of A. Thus /„-+/ pointwise on A, hence f(it(x)) = lim f„(n(x)) = Mm}n(x) =f(x) n n for all x£A, thus providing the desired equality. Obviously, it is linear and it is continuous in the topology defined by the C*-norm on A and a(A, sp (P)) on A, respectively. It is easy to see that n preserves the involution of A and A, respectively. On the other hand, non=n, since f(x)=f (x)= =/(n(x)) for all / g P and x£A, i.e. we have x=n(x) (x£A). We show that the map n is multiplicative, thus TT, in fact, is a »-algebra morphism between A and A. Let x£A and y£A. Applying (III) we infer x / £ s p (P) for every f£P, hence f(n(xy))=f(xy) = (x.f)(y) = ( £ f ) ( y ) = (x.f)(n(y)) =f(xn(y)) i.e. 7t(xy)=xn(y). Next, let x£A and y£A. Then there is a sequence (x„)„€N in A such that ||jc„—i||P—0. The above established continuity property of n now yields xn=7i(x„)~*7t(Jc) in the a(A, sp (P))-topology (moreover, in <r(A, sp (P))). Since n ( x j ) = x „ n ( y ) (n€N) and the sequence (x n ) n6N is || • || P -bounded in A, Lemma 2 implies that n(x„y)—Ti(x)Ti(y) in the a (A, sp (P))-topology. Furthermore, we obviously have x„y->-icy in the C*-algebra A, thus applying the continuity of n again we obtain n(x„y)-+ n(xy) in the a (A, sp (P))-topology, i.e. 7i(x)n(y)=7t(xy). To finish the proof we refer to the well known fact that a *-algebra morphism from a C*-algebra into a pre-C*-algebra is necessarily norm continuous (cf. [1] or [2]). Thus 71 is norm continuous and A=Ker (id^—7t) is dense and closed in the C*-algebra A, i.e. A=A. III. Examples for C*-norms defined by positive linear forms This last section contains two important examples for C*-norms defined by positive linear forms. Then it becomes clear that it is not difficult to construct in certain »-algebras with unity such sets of positive linear forms which satisfy the conditions (I)—(IV) formulated in sections I and II. E x a m p l e 1. Let A be a von Neumann algebra in the Hilbert space H and for all z£H let f . denote the positive linear form on A defined by the formula fz(T):= := (Tz\z) for all T£A. Then the set P:= {fz\z£H} satisfies the axioms (I)-(IV). The proof of this assertion is provided by the standard application of the Banach—Steinhaus theorem; we omit the details. In this case a (A, sp(P)) and a (A, sp(P)) are the weak and ultraweak operator topologies on A, respectively. Of course, the norm || • ||P coincides with the usual operator norm on A. 12* 432 J.Kristóf: C*-norms defined by positive linear forms E x a m p l e 2. Let .s/denote a <7-algebraofsubsetsintheset T and A be the »-algebra of complex valued, bounded, s/—i8(C) measurable functions (where âS(C) denotes the Borel c-algebra of C). Let us define P as the set of integrals on A arising from <r-additive finite positive measures defined on sé. Then P satisfies the axioms (I)—(IV). In this case sp ( P ) = s p (P) and a sequence (<?>„)„€N in A converges to the function (p£A in the a(A, sp (P))-topology if and only if <p„—<p pointwise on T and the sequence is uniformly bounded. This proposition can be verified by the standard use of the theorem of Lebesgue and that of Banach—Steinhaus. Of course, the norm || -||p coincides with the sup-norm. These examples make clear that the class of C*-algebras with unity whose norms are defined by positive linear forms satisfying the axioms (I)—(TV) contains strictly the class of von Neumann algebras. It is easy to show that there are C*-algebras with unity (even commutative ones) that do not belong to this class. However, these C*algebras have certain properties very close to those of von Neumann algebras. As a matter of fact, further investigations on these C*-algebras yield an interesting version of the spectral theorem for normal elements, analogous to the spectral theorem for normal operators in Hilbert spaces. References [1] J . DIXMIER, Les C*-algébres et Leurs Représentations, Gauthier Villars Éditeurs Théories spectrales, Hermann (Paris, 1 9 6 7 ) . [2] N . BOURBAKÍ, D E P A R T M E N T O F ANALYSIS EÖTVÖS L O R Á N D UNIVERSITY M Ú Z E U M K R T . 6—8 1088 BUDAPEST, H U N G A R Y (1968). Bibliographie M. Barr—C. Wells, Toposes, Triples and Theories (Grundlehren der mathematischen Wissenschaften, Band 278), XIII+345 pages, Springer-Verlag, Berlin—Heidelberg—New York— Tokyo, 1985. This book provides an introduction to the three concepts of topos, triple and theory, and describes the connections between them. Among the three topics, topos theory is central in the book. That reflects the current state of development and the importance of topos theory as compared to the other two. A topos is a special kind of a category defined by axioms saying roughly that certain constructions one can make with sets can be done in the category. However, the notion of topos originated as an abstraction of the properties of the category of sheaves of sets on a topological space. Later, mathematicians developed the idea that a theory in the sense of mathematical logic can be regarded as a topos. In this book a topos is regarded as being defined by its elementary axioms, saying nothing about set theory in which its models live. One reason for this attitude is that many people regard topos theory as a possible new foundation for mathematics. Chapter 1 is an introduction to category theory which develops the basic constructions in categories needed for the rest of the book. A reader familiar with the elements of category theory including adjoint functors can skip nearly all of these. Chapters 2, 3 and 4 introduce the three topics of the title, respectively, and develop them independently up to a certain point. Each of them can be read without the other two chapters. Chapter 5 develops the theory of toposes further, making use of the theory of triples. Chapter 6 covers various fundamental constructions which give toposes, with emphasis on the original idea that toposes are abstract sheaf categories. Chapter 7 provides the basic representation theorems for toposes. Theories are then carried further in Chapter 8, making use the representation theorems. Chapter 9 develops further topics in triple theory, and may be read independently after Chapter 3. The book provides a fairly thorough introduction to topos theory covering topologies and representation theorems but omitting the connection with algebraic geometry and logic. Each chapter ends with a list of exercies. The exercises provide examples or develop the theory further. The book can be read by graduate students with a familiarity with elementary algebra. Gy. Horvdth (Szeged) Kenneth L. Bowles—Stephen D. Franklin—Dennis J. Volper, Problem Solving Using UCSD Pascal. Second Edition with 106 illustrations, XI+340 pages, Springer-Verlag, New York—Berlin—Heidelberg—Tokyo, 1984. This book is designed both for an introductory course in computer problem solving and for individual self study. This is a revised and extended edition of one of the most successful introductions to Pascal, "Microcomputer Problem Solving Using Pascal", Springer-Verlag, 1977. 434 Bibliographie In practice, it seems best to learn programming first using Pascal, and then to shift over to one of the other languages. Pascal is clearly the best language now in widespread use for teaching the concepts of structured programming at the introductory level. Structured programming is a method designed to minimize the effort that the programmer has to spend on finding and correcting logical errors in programs. Put more positively, it is a method designed to allow a program to produce correct results with a minimum amount of effort on the part of the programmer. The key to structuring in Pascal is the procedure. Therefore, this book introduces and emphasizes procedures from the very start. Procedures for graphics are introduced in the first chapter and the first programming assignment requires the student to use them. By the second chapter, students are writing and using their own procedures. The early and continuing emphasis on procedures is the major organizational difference between this book and most others which, in contrast, often do not introduce procedures until a third or even half way through their coverage of Pascal. The subject matter has been chosen to be understandable to all students at about the college freshman level, with almost no dependence on a background in high school mathematics beyond simple algebra. At an introductory level, the basic methods of programming and problem solving differ very little between applications in engineering and science and applications in business, arts ór humanities. It is possible to motivate and teach students across this entire spectrum using problem examples with a non-numerical orientation: the manipulation of text strings and graphics. Chapter 1 of the book introduces the students to the use of the UCSD software system for Pascal. Chapter 2 through 7 present basic tools for programming and for expressing algorithms. Chapter 8 through 12 add tools for working with data transmitted to the computer from external devices and for working with complex data. Chapters 13—15 provide illustrations of complex problems of types that are frequently encountered by virtually all programmers. The appendices at the end of the book are included for reference purposes and survey some additional features óf the Pascal language. Each chapter starts with a statement of the objectives that the students should attain before proceeding to the next chapter. If you have a personal computer, the UCSD software system for Pascal, and this book in addition, you can easily learn to write computer programs and will master the bases of computer : problem solving. The book is equally suitable as a textbook of a course. ' J . K. Dévényi (Szeged) Differential Geometric Methods in Mathematical Physics, Proceedings, Clausthal, August 30-September 2, 1983. Edited by H. D. Doebner and J. D. Hennig (Lecture Notes in Mathematics, 1139), VI+337 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1986. The aim of this series of conferences is to promote the application of geometrical, analytical and algebraic methods and their interplay for the modelling of complex physical systems. This volume contains 20 papers submitted by participants óf the conference (the 12th in the series) organized by H. D. Doebner, S. I. Andersson (Clausthal) and G. Denardo (Trieste) at the Institute for Theoretical Physics A, Technical University of Clausthal, F.R.G. The main topics treated in the proceedings are described by the following key words which are also the titles of the chapters: Momentum Mappings and Invariants — Aspects of Quantizations — Structure of Gauge Theor i e s — Non-Linear Systems, Integrability and Foliations — Geometrical Modelling of Special Systems. '•• ~ . , . • The volume is dedicated to the memory of the outstanding mathematician and mathematical physicist Steven M. Paneitz, who died in a tragic accident while attending this conference at the age of 28. . . .Piter T.. Nagy (Szeged) Bibliographie •435 Dynamical Systems and Bifurcations (Proceedings, Groningen 1984). Edited by B. L. J. Braaksma, H. W. Broer and F. Takens (Lecture Notes in. Mathematics, 1125), 129 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. Readers paying attention regularly to the review section of these Acta have certainly realized that nowadays more and more monographs, texts and conferences are devoted to the modern theory of differential equations and especially to bifurcation theory. This is of course due to the interest in the topic, both in pure and applied mathematics. The present volume is the proceedings of the International Workshop on Dynamical Systems and Bifurcations, organized by the Department of Mathematics of Groningen University, April 16—20, 1984. Almost all of the articles are concerned with the geometric theory of dynamical systems (papers by M. Chaperon, R. Dumortier, A. Floer and E. Zehdner, J. Palis and R. Roussavie, F. Takens, G. Vegter). One paper (written by R. Dieckerhoff and E. Zehdner) deals with the boundedness of the solutions of a second order timedependent nonlinear differential equation, and another one (by J. A. Sanders and R. Cushman) is devoted to global Hopf bifurcations. Li Hatvani (Szeged) E. Grosswald, Representations of Integers as Sums of Squares, XI+251 pages, Springer-Verlag, New York—Berlin—Heidelberg—Tokyo, 1985. . There are a number of branches of mathematics which seem to have no use in practical applications and in which the problems are merely investigated for their own beauty. The first of these is clearly the theory of numbers, called "The Queen of Mathematics" by Gauss. Everybody knows something about integers. Here many questions or problems can be formulated within the capacity of the man of the street. These questions are sometimes so interesting as the best puzzles having surprising results. One of the oldest problems is the finding of Pythagorean triangles, right triangles whose sides are integers. The next question is which of the integers can be represented as a sum of two or more squares? Is it true that every integer can be written as a sum of four squares? These are curious questions in themselves and surprisingly they do have applications, for example in lattice point problems, in crystallography and in certain problems of mechanics. In the last few decades it was in fact practice that has raised several questions which can be answered by the aid of number-theoretic results. This book contains the enlarged versions of lectures given by the author in 1980—1981 for an audience consisting of particularly gifted listeners with widely varying background. Therefore the theme of this work, starting at the most elementary level but pushing ahead as far as possible in some directions, seems to be ideal. Besides the elementary — but by no means simple — methods -there appear various other notions from other branches of mathematics too, e.g. quadratic residues, elliptic and theta functions, complex integration and residues, algebraic number theory etc. The list of mathematicians who have obtained results in the study of the problems in this book includes so illustrious names as Diophantus, Fermat, Lagrange, Gauss, Artin, Hardy, Littlewood, Ramanujan, Siegel and Pfister for instance. The author made a serious effort to make the book accessible to a wide circle of readers. He follows roughly the historical development of the subject matter. Therefore, in the early chapters; the prerequisities are minimal. More advanced tools are necessary in the later chapters. A number of interested problems is proposed at the end of many chapters, ranging from •fairly routine to difficult ones. Also, open questions are mentioned. • 436 Bibliographie Finally we cite the last sentence of the author's "Introduction": "The success of this book will be measured, up to a point, by the number of readers who enjoy it, but perhaps more by the number who are sufficiently stimulated by it to become actively engaged in the solution of the numerous problems that are still open." L. Pintér (Szeged) Erich Hecke, Lectures on the Theory of Algebraic Numbers (Graduate Texts in Mathematics, Vol. 77), Springer-Verlag, New York—Heidelberg—Berlin, 1981. This is a translation of Erich Hecke's classic book, originally published in German in 1923. It is a welcome event that, after sixty years of its first edition, this excellent book became available to the English-reading public. The first three chapters are of preparatory character: Chapter I contains the elements of the theory of rational integers, Chapter II summarizes the basic facts on Abelian groups that are needed later on, and Chapter III deals with the structure of the group 5R(n) of the residue classes mod n, relatively prime to n. The theory of algebraic numbers starts in Chapter IV with a short introduction into the algebra of number fields (Galois theory is not discussed). Ideal theory, the core of algebraic number theory, is developed in Chapter V. Next, in Chapter VI, analytic methods are applied to the problem of the class number and to the problem of the distribution of prime ideals. Quadratic number fields are treated in detail in Chapter VII; in particular, the Quadratic Reciprocity Law is derived, and the class number of k ( Í d ) is determined with, as well as without, the use of the zeta-function. Finally, Chapter VIII is devoted to the proof of the Quadratic Reciprocity Law in arbitrary algebraic number fields. After that a book, like this one, had been in continuous use for sixty years, there is no doubt it will serve new generations of students and mathematicians who want to get acquainted with algebraic number theory. There are, however, two things which the present-day reader will miss: a subject index, and a short survey of what has happened in the field since 1923. Unfortunately, in certain places the translation is not quite correct. Agnes Szendrei (Szeged) Dan Henry, Geometric Theory of Semilinear Parabolic Equations (Lecture Notes in Mathematics, 840), IV+348 pages, Springer-Verlag, Berlin—Heidelberg—New York, 1981. Nowadays the geometric theory of differential equations is an intensively developing branch of mathematics. The present book also deals with such general questions as existence, uniqueness, continuous dependence of solutions on the right-hand side, the semigroup properties of solutions, stability questions for nonlinear semigroups, Lyapunov functions, invariance principle, existence of equilibria and periodic solutions and the behaviour of solutions in their neighbourhood, questions of bifurcation, the application of the adjoint system, invariant manifolds and the behaviour of solutions in their small neighbourhoods, exponential dichotomies, orbital stability, perturbations of right-hand side, etc. The feature of the book is that the main results are formulated for general differential equations written in Banach spaces. The conditions of the theorems can be met by semilinear parabolic differential equations. Typically, the linear part of the right-hand side of the equation is a sectorial operator. The questions studied are well-prepared by examples. The results are illustrated by interesting applications concerning nonlinear parabolic equations that arose in physical, biological and engineering problems. One of the chapters gathers the examples that accure in the book. The titles of the sections of this chapter show a wide range of the applications: Nonlinear heat equation. Flow of electrons and holes in a semiconductor, Hodgekin—Huxley equations for nerve axon, Chemical reac- Bibliographie 437 tíons in a catalyst pellet, Population genetics, Nuclear reactor dynamics, Navier—Stokes and related equations. There are sections concerned with special problems of semilinear parabolic equations, e.g. the existence of travelling waves. Some exercises make this book interesting. They can be well comprehended after the study of the material, but the author also gives hints in more difficult cases. This book is of interest to experts of the geometric and qualitative theories of differential equations. I feel it essential for researchers of parabolic partial differential equations. It gives a well-structured theoretical background and shows the directions of interesting applications. / . Terjéki (Szeged) E. Horowitz, Fundamentals of Programming Languages, Second Edition, XV+446 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1984. Traditional books on programming languages are like abbreviated language manuals. This book takes a fundamentally different point of view by focusing on a few essential concepts. These concepts include such topics as variables, expressions, statements, typing, procedures, data abstractions, exception handling and concurrency. By understanding what these concepts are and how they are realized in different programming languages, the reader arrives at a level of comprehension far higher than what can be achieved by writing programs in various languages. Moreover, the study of these concepts provides a better understanding of future language designs. Chapter 1 is devoted to the study of the evolution of programming languages. Twelve criteria by which a programming language design can be judged are presented in Chapter 2. Subsequent chapters develop the concepts mentioned above. Much work has been done on imperative programming languages. The last three chapters cover non-imperative features such as functional programming, data flow programming and object oriented programming. A large number of exercises enriches the text. This book is warmly recommended as a good text for a graduate course whose objective is to survey the fundamental features of current programming languages. Gy. Horváth (Szeged) O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics (Applied Mathematical Sciences, 49), XXX+322 pages, Springer-Verlag, New York—Berlin—Heidelberg— Tokyo, 1985. If an instantaneous state of a physical system is described by a function (e.g. string, membrane, temperature of a body, fluid stream) then the mathematical model of the system is often a second order partial differential equation. The purpose of mathematical physics is to study these equations using pure mathematical methods. The basic problems are the following: Under which conditions on the domain and on the functions involved in the equation does the equation have a solution with prescribed values on the boundary? Is the solution unique? How can the solutions be approximated by solutions of simpler problems? The book is concerned with these problems for linear equations. The investigations for the existence and uniqueness of the solutions of boundary value problems are governed by a very natural principle. If a boundary value problem admits more solutions then it cannot be a good model of a uniquely determined physical process. So the first step is to find conditions for the uniqueness of the solutions. By experience, in case of linear problems the existence of the solutions is a consequence of their uniqueness (e.g. for systems of n linear algebraic equations in n unknowns). The 438 Bibliographie 438 author tries to establish this principle also for boundary value problems introducing various classes of generalized solutions. There are other features of the book. The author considers elliptic, parabolic and hyperbolic •equations alike. She studies also the smoothness of the generalized solutions and the connection between the generalized and classic solutions. To illuminate this, let us have a look at Chapter 2 devoted to the elliptic equation. First the solvability of the boundary value problems is established in the space W\(Q) consisting of all the elements in 1^(0) that have generalized first derivatives in £j(i3). The problems are reduced to equations with completely continuous operators and their Fredholm solvability is proved. Examples show that these solutions may not have second order derivatives (not even generalized derivatives either), and they salitisfy the conditions of the problem in some generalized sense. It is proved that under a minor improvement of the functions in the equation and a certain increase in the smoothness of the boundary, all generalized solutions in Wi (Q) belong to Wl (Q) and satisfy the equation in the ordinary sense for almost all x€S2. The lengthy final chapter is devoted to the Method of Finite Differences. Introducing grids in the basic domain, the method reduces various problems for differential equations to systems of algebraic equations in which unknowns are the values of grid functions at the vertices of the grids: The limit process obtained when the lengths of the sides of the cells in the grid tend to zero is also examined here. The author is one of the pioneers of proving convergence in Z^QHiorm in case of initial-boundary value problems for hyperbolic equations. The original Russian edition is supplied in the present translation by "Supplements and Problems" located at the end of each chapter. They are useful to awaken the reader's creativity by providing topics for independent work. This excellent monograph is highly recommended to everyone interested in the theory of partial differential equations and its applications. L. Hatvani (Szeged) S. Lang, Complex Analysis, VII+367 pages, Springer-Verlag, New York—Berlin—Heidelberg—Tokyo, 1985. The first edition of this book was published in 1977. The author has rewritten many sections, added some new material and made a number of corrections. The book consists of two parts. Part I (Basic Theory) is intended as an introduction to complex analysis for use by advanced undergraduates and beginning graduate students. Part II (Various Analytic Topics) contains more advanced topics, the chapters here are titled as follows: Applications of the maximum modulus principle; Entire and meromorphic functions; Elliptic functions; Differentiating under an integral; Analytic continuation; The Riemann mapping theorem. The author has made the necessary material on preliminaries as short as possible to get quickly to power series expansions and Cauchy's theorem. In every book on complex functions, one of the most interesting questions is the presentation of Cauchy's theorem. Perhaps the author's words about this problem enlighten the basic attitude of the book: "I have no fixed idea about the manner in which Cauchy's theorem is to be treated. In less advanced classes, or if time is lacking, the usual band waving about simple closed curves and interiors is not entirely inappropriate. Perhaps better would be to state precisely the homological version and omit the formal proof. For those who want a more through understanding, I include the relevant material." He has included both Artin's proof and the more recent proof of Dixon for the theorem. Several solved examples illustrate the results making easier the understanding and carefully selected exercises are proposed. The chapters of Part II are logically independent and can be read in any order. Here we mention only one of the most striking applications, generally omitted from standard courses, the pro- Bibliographie 439 blem of transcendence: Given some analytic function / , describe those points z such that /(z) is an algebraic number. The most attractive feature of the book for the reveiwer is the successful, composition of the classical and modern methods and results. L. Pintér (Szeged) László Leindler, Strong Approximation by Fourier Series, 210 pages, Akadémiai Kiadó, Budapest, 1985. Shortly after L. Fejér had proved his summability theorem, Hardy and Littlewood noticed that.it was true in a stronger sense. This was the first instance when strong means were considered but, except for a few feeble attempts, no one had analysed the question further until the late 1930's when J. Marcinkiewicz and A. Zygmund verified that (with the usual terminology) (*) — n+ 1f k=0M f , x) -f(x)|» - 0 (p > 0) almost everywhere. It had taken another quarter of a century before G. Alexits and D. Králik turned to the analogous approximation problem. What they found was quite surprising: for Lip a ( 0 < a < l ) functions the left-hand side of ( * ) with p—1 has order {«"'}, i.e. the classical estimate of S. N. Bernstein holds true in the strong sense, as well. This result inevitably brought up the question about the mechanism behind these — literally — strong results and a rapid development in this field was predictable. At this crucial stage appeared L. Leindler on the scene and began to systematically study various kinds of strong means. His papers in the period 1965—1980 exerted dominating influence on the course of events and his one is the lion's share in the fact that today we have the theory of strong approximation at all. By the end of the 1970's the results of Leindler and several other authors began to take the shape of a more or less complete theory and the time was ripe for a monograph collecting and organizing the various results. The book under review is an up-to-date summary of results about strong means. It can and certainly will serve as a reference book. Its content can be recommended not only to the experts of the field but to anyone interested in trigonometric approximation. Leindler's work may also be useful for graduate students for it contains many important techniques of mathematical analysis together with intricate counterexamples which have already proven to be useful in various other branches of analysis. The organization of the material is clear, the whole book is well got up. It was a good choice to omit the proof of certain theorems when they would have required repetition of earlier used techniques. At the same time the reader can learn about the latest and most general results — the author paid special attention at least to announce them. The only criticism I make is that with a little more effort and some 20—30 extra pages the parallel theory of strong summability could have been incorporated into the book, giving thereby a complete account of results about strong means. (The seemingly analogous theory of strong summability of general orthogonal series requires distinctly different arguments.) The book consists of four chapters. Chapter I deals with the order of strong approximation, i.e., with so-called direct theorems. One of the most general estimate of this type was proved in Leindler's very first paper on the subject and for every classical mean the estimate he obtained turned out to be sharp in many function classes. However, an inequality being sharp does not mean that it can be reversed, so the question of what can be said in the opposite direction, i.e. when we inquire about properties of functions provided the order of some kind of strong mean is known, is very interesting. Chapter II is devoted to this problem. Chapter III establishes various imbedding relations of function spaces yielding in many cases the identification of several of these spaces. In the last chapter some miscellaneous results in three new directions are treated. 440 Bibliographie 440 Finally, it is appropriate to note that in spite of the fact that the theory presented in the book seems to be complete (e.g. without embarrassing gaps), some very exciting questions in connection with strong means have not or barely been touched upon until now (one of them is the saturation problem). It is the reviewer's sincere hope that László Leindler's work will stimulate interest in some of these problems. V. Totik (Szeged) Model-Theoretic Logic, Edited by J. Bairwise and S. Feferman (Perspectives in Mathematical Logic), XVIII+ 893 pages, Springer-Verlag, New York—Berlin—Heidelberg—Tokyo, 1986. This is the second monograph in the Perspectives series where Bairwise acts as an editor, between the two he was the editor of the successful Handbook of Mathematical Logic. He and S. Feferman are among those mathematicians who considerably contributed to the flourishing of abstract model theory in the 1970's. The present monograph is research-oriented, the expositions in it reflect intensive present-day investigations. "The aim ... would be to give an entry into the field for anyone sufficiently equipped in general model theory and set theory, and thereby to bring them closer to the frontiers of research". Accordingly, several open problems are mentioned and a bibliography of over a thousand items can serve as a reference for the experts and to-be-experts in the field. The book is divided into six parts: 1. Introduction, Basic Theory and Examples (written by Bairwise, Ebbinghaus, Flum). 2. Finitary Languages with Additional Quantifiers (Kaufmann, Schmerl, Mundici, Baudisch, Seese, Tuschik, Weese). 3. Infinitary Languages (Nadel, Dickmann, Kolaitis, Eklof). 4. Second-Order Logic (Baldwin, Gurevich). 5. Logics of Topology and Analysis (Keisler, Ziegler, Steinhorn), and 6. Advanced Topics in Abstract Model Theory (Váánánen, Makowsky, Mundici). V. Totik (Szeged) Bernt Oksendal, Stochastic Differential Equations. An Introduction with Applications (Universitext), XIII+205 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. "Unfortunately most of the literature about stochastic differential equations seems to place so much emphasis on rigor and completeness that it scares the nonexperts away. These notes are an attempt to approach the subject from the nonexpert point of new: Not knowing anything ... about a subject to start with, what would I like to know first of all? My answer would be: 1) In what situations does the subject arise? 2) What are its essential features? 3) What are the applications and the connections to other fields?" The author, a lucid mind with a fine pedagogical instinct, has written a splendid text that achieves his aims set forward above. He starts out by stating six problems in the introduction in which stochastic differential equations play an essential role in the solution. Then, while developing stochastic calculus, he frequently returns to these problems and variants thereof and to many other problems to show how the theory works and to motivate the next step in the theoretical development. Needless to say, he restricts himself to stochastic integration with respect to Brownian motion. He is not hesitant to give some basic results without proof in order to leave room for "some more basic applications". The chapter headings are the following: Introduction, Some mathematical preliminaries, Itö integrals, Stochastic integrals and the Itö formula, Stochastic differential equations, The filtering problem, Diffusions, Applications to partial differential equations, Application to optimal stopping, Application to stochastic control. There are two appendices on the normal Bibliographie 441 distribution and on conditional expectations, a bibliography of 71 items, a list of notation, and a subject index. It can be an ideal text for a graduate course, but it is also recommended to analysts (in particular, those working in differential equations and deterministic dynamical systems and control) who wish to learn quickly what stochastic differential equations are all about. Sándor Csörgő (Szeged) Ordinary and Partial Differential Equations (Proceedings, Dundee 1984), Edited by B. D. Sleeman and R. J. Jarvis (Lecture Notes in Mathematics, 1151), XIV+357 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. These proceedings contain one half of the lectures delivered at the eighth International Conference on Ordinary and Partial Differential Equations which was held at the University of Dundee, Scotland, June 25—29, 1984. The 36 lectures show a very wide spectrum. However, it is common in the articles that the authors investigate nonlinear differential equations, some of which are in fact concrete models of systems or processeses in the real world. The following main directions can be recognized among the themes. Many articles investigate the asymptotic behaviour (stability, oscillation etc.) of solutions of nonlinear second, third and n-th order ordinary differential equations. Differential equations with delays are treated, too. Special attention is paid to periodic problems both for ordinary and partial differential equations (e.g. the probleme of the existence of a periodic solution of prescribed period for Hamiltonian systems is studied). Stability and bifurcation problems are also considered for equations of several types. The applications give a very valuable part of the proceedings. The reader can find interesting (mostly biological) models such as a hydrodynamical model of the sea hare's propulsive mechanism, models for a myelinated nerve axon, vector models for infectious diseases and multidimensional reaction-convection diffusion equations. The collections can be recommended to those wishing to get a snapshot of the theory and applications of non-linear differential equations. L. Hatvani (Szeged) Richard S. Pierce, Associative Algebras (Graduate Texts in Mathematics, Vol. 88) SpringerVerlag, New York—Heidelberg—Berlin, 1982. The study of associative algebras has long been, and still is, an area of active research which draws inspiration from and applies tools of many other branches of mathematics such as group theory, field theory, algebraic number theory, algebraic geometry, homological algebra, and category theory. The purpose of this book is twofold: to treat the classical results on associative algebras more deeply than most student-oriented books do, and at the same time to bring the reader to the frontier of active research by discussing some important new advances. The emphasis is put on algebras that are finite dimensional over a field. The highlights of the classical part include the characterization of semisimple modules, the Wedderburn(—Artin) Structure Theorem for semisimple algebras, Maschke's Theorem, the Jacobson radical, the Krull—Schmidt Theorem, the structure and classification of projective modules over Artinian algebras (Chapters 1 through 6), the Wedderburn—Malcev Principal Theorem, Jacobson's Density Theorem, the Jacobson—Bourbaki Theorem (Chapters 11—12), and, within a detailed, systematic study of central simple algebras and the Brauer group of a field (Chapters 13 through 20), the Cartan—Brauer—Hua Theorem, Wedderburn's theorem that all division algebras of degree 3 are cyclic, the classification of central simple algebras over algebraic number fields, 442 Bibliographie 442 and Tsen's Theorem. Among the more recent developments of the subject presented in the book are the theory of representations of algebras, including a proof of the first Brauer—Thrall Conjecture and an exposition of the representation theory of quivers (Chapters 7 and 8), and Amitsur's Theorem on the existence of finite dimensional central simple algebras that are not crossed products (Chapter 20). Together with these results the reader is acquainted with the most powerful tools of the theory of associative algebras: tensor product, homological methods, cohomology of algebras, Galois cohomology, valuation theory, and polynomial identities. Each of the twenty chapters ends with a note containing historical remarks and suggestions for further reading. In addition, every section is followed by a set of exercises; some of them are intended to help understanding the material, others call for working out details of proofs omitted in the text, and there are also exercises presenting important results which otherwise couldn't be included. This excellent book is warmly recommended to students as well as established mathematicians who are interested in associative algebras. For those wishing to read only parts of the text, the subject index and the list of symbols are of great help. Ágnes Szendrei (Szeged) D, Pollard, Convergence of Stochastic Processes. XIV+215 pages, Springer-Verlag, New York— Berlin—Heidelberg—Tokyo, 1984. Properties of empirical processes play an important role in mathematical statistics. Earlier results on this field, especially on the weak convergence of empirical measures can be found in the books of 1.1. Gikhman and A. V. Skorokhod (Introduction to the Theory of Random Processes, Saunders, 1969 (in Russian 1965)), K. R. Parthasarathy (Probability Measures on Metric Spaces, Academic Press, 1967) and P. Billingsley (Convergence of Probability Measures, Wiley, 1968). These books have become classics and have generated a lot of work in the area. Recently R. M. Dudley (A Course on Empirical Processes, Lecture Notes in Math. vol. 1097, Springer-Verlag, 1985) and P. Gaenssler (Empirical Processes, IMS Lecture Notes vol. 3, IMS, 1983) have summarized the newest results on this topic and the book under review is another addendum to the literature. These three monographs cover nearly the same area of the theory of stochastic processes. In Chapter I Pollard introduces notations of stochastic processes and empirical measures. Chapter II contains generalizations of the classical Glivenko—Cantelli theorem. He proves uniform convergence of empirical measures over classes of sets and classes of functions. The author gives a review on the weak convergence of probability measures on Euclidean and metric spaces in Chapters III and IV. Chapters V and VI deal with the weak convergence of empirical processes, properties of the limit processes and also contain some applications of the obtained results in mathematical statistics. Martingale central limit theorems are proven in Chapter VII and an application to the Kaplan—Meier (product-limit) estimator is sketched. Pollard writes in his Preface: "A more accurate title for this book might be: An Exposition of Selected Points of Empirical Process Theory, With Related Interesting Facts About Weak Convergence, and Applications to Mathematical Statistics." It is certainly true that it is nearly impossible to write a book on empirical processes which would cover all the interesting and important theorems on these processes and also their applications. However, I think a research monograph must contain at least an up-to-date and rich enough list of references, and this cannot be replaced by saying "according to the statistical folklore..." (cf., for example, page 99). This is completely useless for a reader and hence I doubt that Pollard's monograph can be used as a reference book. On the other hand, the interested reader can certainly find some material collected together which was mainly published only in research papers earlier. Lajos Horváth (Ottawa) Bibliographie 443 Probability in Banaeh Spaces V, Proceedings of the International Conference Held in Medford, USA, July 1984. Edited by A. Beck, R. Dudley, M. Hahn, J. Kuelbs and M. Marcus (Lecture Notes in Mathematics, 1153), VI+457 pages, Springer-Verlag, Berlin—Heidelberg—New York— Tokyo, 1985. The proceedings of the first four conferences on probability in Banach spaces have been published as Volumes 526,709,860, and 990in these Lecture Notes series. The present collection containes 25 articles, almost all of which are very high level research papers. 15 papers deal with limit theorems (the central limit theorem, empirical processes, large deviations, ratio limit theorems for sojourns and other weak theorems; the law of large numbers and of the iterated logarithm, almost sure convergence of martingale-related sequences and other strong theorems), the rest address various problems in sample path behaviour, representation questions, moment and other bounds, stable measures and infinite divisibility. The illustrious list of the authors may give an impression of the contents: de Acosta; Alexander; Austin, Bellow and Bouzar; Berman; Borell; Bourgain; Czado and Taqqu; Dudley; Fernique; Frangos and Sucheston; Giné and Hahn; Heinkel; Hoffman—J0rgensen; Jain; Jurek; Klass and Kuelbs; LePage and Schreiber; Marcus and Pisier; McConell; Rosinski and Woyczynski; Samur; Vatan; Weiner; Weron and Weron; and Zinn. Sándor Csörgő (Szeged) Murray H. Protter—Charles B. Morrey, Jr., Intermediate Calculus (Undergraduate Texts in Mathematics), X+648 pages, Springer-Verlag, New York—Berlin—Heidelberg—Tokyo, 1985. If you teach a course on analytic geometry and calculus at a college or university, your first task is to choose a text-book. This is not easy at all. The course usually consists of three semesters. Typically, the first two semesters cover plane analytic geometry and the calculus of functions of one variable, almost independently of the majors in the audience. The decision on the subjectmatter of the third semester (and of the fourth one, if any) requires more care. One must take into account the further study of the students: do they go on in mathematics or do they need the calculus only for applications? This book has been written to help the instructors in this decision by providing a high degree of flexibility in structuring the course. The first five chapters present the material of a standard third-semester course in calculus (the knowledge of plane analytic geometry and one-variable calculus are a prerequisite): 1. Analytic Geometry in Three Dimensions; 2. Vectors; 3. Infinite Series; 4. Partial Derivatives. Applications; 5. Multiple Integration. The further chapters give an opportunity for the instructor to include less traditional topics in the third semester and to design a fourth semester of analysis depending upon special needs: 6. Fourier Series; 7. Implicit Function Theorems. Jacobians; 8. Differentiation under the Integral Sign. Improper Integrals. The Gamma Function; 9. Vector Field Theory; 10. Green's and Stokes' Theorems. The main feature of the book is its flexibility. Of course, this can be meant in several ways. On the one hand, the chapters are independent of each other. On the other hand, within each chapter readers can find material of different levels. E.g. in Chapter 10 Green's theorem is established first for a simple domain (this results is adequate for most applications), but it is followed by Green's and Stokes' theorems for the general cases proved by using orientable surfaces and a partition of unity. ' , . . * The book is concluded with three appendices on matrices, determinants, on vectors in three dimensions, and on methods of integration. The sections contain many interesting problems (answers to the odd-numbered ones are available at the end of the book). This excellent text-book will be very useful both for instructors and students. L: Hatvani (Szeged) 444 Bibliographie 444 Representations of Lie Groups and Lie Algebras, Proceedings, Budapest 1971. Edited by A. A. Kirillov, 225 pages, Akadémiai Kiadó, Budapest, 1985. The present book contains the second part of the Proceedings of the Summer School on representation theory which was held at Budapest in 1971. The first part of the Proceedings was published by the Akadémiai Kiadó (edited by I. M. Gelfand) in 1975. The scientific program of the school was divided into two sections: advanced and beginner. Most of the lectures published here were read at the latter section but some of them are now rewritten or completed by new authors. A. A. Kirillov's introductory lecture gives a summary of the basic notions, results and methods in the representation theory of finite and compact groups. The article by B. L. Feigin and A. V. Zelevinsky makes the reader acquainted with the theory of contragradient Lie algebras and their representations. In his paper D. P. Zhelobenko dissusses the constructive description of Gelfand—Zetlin bases for classical Lie algebras gl(n, C), o(n, C), sp (n, C). The method presented here is very effective in obtaining explicit formulas of the representation theory. The lecture by S. Tanaka is devoted to an instructive example; explicit description of all irreducible representations of the group SI (2, F) where Fis a finite field. The survey by I. M. Gelfand, M. I. Graev and A. M. Vershik "Models of representations of current groups" deals with a class of infinite dimensional Lie groups which is of great importance for physical applications. The authors describe in detail several classical as well as new models of the representations of current groups. G. J. Olshansky's article "Unitary representations of the infinite symmetric group: a semigroup approach" is devoted to the representation theory of another type of the "big" groups. The last lecture by G. W. Mackey is addressed first of all to physicists. It explains how the imprimitivity theorem and the concept of induced representations play an important role in quantum mechanics. Most of the content of this book is accessible for beginners, but experts will also find some new and useful information in the articles published here. L. Gy. Fehér (Szeged) Representation Theory II, Proceedings, Ottawa, Carleton University, 1979, edited by V. Dlab and P. Gabriel (Lecture Notes in Mathematics, 832), XIV+673 pages, Springer-Verlag, Berlin— Heidelberg—New York, 1980. The first volume of these proceedings in two volumes contains reports from the "Workshop on the Present Trends in Representation Theory" held at Carleton University, 13—18 August, 1979. The present volume contains the majority of the lectures delivered at the second part of the meeting "The Second International Conference on Representations of Algebras" (13—25 August, 1979), but some papers which were not reported at the conference are also published here. These two volumes together (the first volume contains also an extensive bibliography of the publications in the field covering the period 1969—1979) provide the interested reader with a comprehensive survey on the modern results and research directions of the representation theory of algebras. The list of the authors contributed to this volume is: M. Auslander—I. Reiten, M. Auslander— S. O. Smalo, R. Bautista, K. Bongartz, S. Brenner—M. C. R. Butler, H. Brune, C. W. Curtis, E. C. Dade, V. Dlab—C. M. Ringel, P. Dowbor—C. M. Ringel—D. Simson, Ju. A. Drozd, E. L. Green, D. Happel—U. Preiser—C. M. Ringel, Y. Iwanaga—T. Wakamatsu, C. U. Jensen— H. Lenzing, V. C. KaC, H. Kupisch—E. Scherzler, P. Landrock, N. Marmaridis, R. Martinez-Villa, F. Okoh, W. Plesken, C. Riedtmann, K. W. Roggenkamp, E. Scherzler—J. Waschbüsch, D. Simson, H. Tachikawa, G. Todorov, J. Waschbüsch, K. Yamagata. L. Gy. Fehér (Szeged) Bibliographie 445 Rings and Geometry, Proceedings of the NATO Advanced Study Institute held at Istambul, Turkey, September 2—14, 1984. Edited by R. Kaya, P. Plaumann and K. Strambach (NATO ASI Series C: Mathematical and Physical Sciences, Vol. 160), XI+567 pages, D. Reidel Publishing Company, Dordrecht—Boston—Lancaster—Tokyo, 1985. This volume contains 11 lectures given at the summer school on Rings and Geometry. Until quite recently, when looking for applications of ring theory in geometry, we could mainly think of abstract algebraic geometry which can be formulated in the language of commutative algebra. Of course the connections between ring theory and geometry cannot be circumscribed only by the subject of algebraic geometry. There are some old and new areas in mathematics, highly developed in the last decades, which are the results of the interaction of ring theory and geometry. The editors write in the Preface: "It is the aim of these proceedings to give a unifying presentation of those geometrical applications of ring theory outside of algebraic geometry, and to show that they offer, a considerable wealth of beautiful ideas, too. Furthermore it becomes apparent that there are natural connections to many branches of modern mathematics, e.g. to the theory of (algebraic) groups and of Jordan algebras, and to combinatorics". The book consists of four parts. In the first one the non-commutative analogue of the function field of an algebraic variety and the generalization of classical objects of algebraic geometry to the case of non-commutative coordinate field are studied. (P. M. Cohn, Principles of non-commutative algebraic geometry; H. Havlicek, Application of results on generalized polynomial identities in Desarguesian projective spaces.) The second part is devoted to the study of topological, incidence-theoretical, algebraic and combinatorial properties of Hjelmslev planes. (J. W. Lorimer, A topological characterization of Hjelmslev's classical geometries, D. A. Drake—D. Jungnickel, Finite Hjelmslev planes and Klingenberg epimorphisms.) The third part contains the treatment of the theory of projective planes over rings "of stable rank 2". (J. R. Faulkner—J. C. Ferrar, Generalizing the Moufang plane; F. D. Veldkamp, Projective ring planes end their homomorphisms.) The authors of the papers in the fourth part study the possibility of the extension of the classical relations between projective geometry and linear algebra, investigate the structure of linear, orthogonal, symplectic and unitary groups and matrix rings over large classes of rings, the geometric structure of the units of alternative quadratic algebras and the coordinatization of lattice-geometry. (C. Bartolone—F. Bartolozzi, Topics in geometric algebra over rings; B. R. McDonald, Metric geometry over localglobal commutative rings, Linear mappings of matrix rings preserving invariants; H. Karzel—G. Kist, Kinematic algebras and their geometries; U. Brehm, Coordinatization of lattices.) An appendix describes some concepts of geometry indispensable for mathematics. (C. Arf, The advantage of geometric concepts in mathematics.) This book is warmly recommended to anybody interested in the interaction of algebra and geometry. It can be used as an up-to-date reference book "in that area of mathematics where the ring theory accuring outside of algebraic geometry is harmonically unified with geometry". Peter T. Nagy (Szeged) Murray Rosenblatt, Stationary Sequences and Random Fields, 258 pages, Birkhauser, Boston— Basel—Stuttgart, 1985. The first systematic book on time series analysis was "Statistical Analysis of Stationary Time Series" by Ulf Grenander and Murray Rosenblatt published in 1957 by Wiley. Since then a number of excellent monographs of the field have appeared reflecting the fast growth of knowledge. Now, 28 years after his first book, here is a second look of one of the foremost researchers of the 13 446 Bibliographie 446 topic. As he writes in the preface: "This book has a dual purpose. One of these is to present material which selectively will be appropriate for a quarter or semester course in time series analysis and which will cover both the finite parameter and the spectral approach. The second object is the presentation of topics of current research interest and some open questions". Chapter I presents basic results on the Fourier representation of the covariance function of a weakly stationary process and the harmonic analysis of the process itself, that is the Herglotz and Cramdr theorems. Chapter II formulates the problem of linear prediction, or linear mean square approximation, gives the basic relations between moments and cumulants, fully discusses the linear prediction problem for autoregressive and moving average (ARMA) processes, describes the Kalman—Bucy filter, and investigates the identifiability of the phase function of a non-Gaussian linear process (one of the several novelties of the book, to be fully taken up in Chapter VIII). Of particular interest to a probabilist is Chapter III. It first gives Gordin's device to obtain central limit theorems for partial sums of strictly stationary sequences from those for a martingale difference sequence, then this is used to prove asymptotic normality for general covariance estimators and quadratic forms including the periodogram under cumulant summability conditions. A nice discussion of strong mixing, one of the many important spiritual children of the author, is given together with a basic central limit theorem of the author for strongly mixing sequences. Exotic behaviour under long-range dependence is also discussed here. Chapter IV gives the estimation theory for ARMA schemes with new results, based partly on those in Chapter III, on asymptotic normality in which, besides strong mixing, only the finiteness of a few moments are assumed. Chapters V and VI deal with second and higher order cumulant spectral density estimation, respectively, assuming strong mixing and requiring again only the finiteness of a few moments in the asymptotic normality results. The brief Chapter VII is on kernel density and regression function estimates under "short range" dependence. The final Chapter VIII is on various questions of estimating the phase or transfer functions and moments of non-Gaussian linear processes and fields with the associated deconvolution problems. A short appendix gethers some facts of measure theory,' of Hilbert and Banach spaces and Banach algebras. Author and subject indices help the reader. The last sections of the chapters discuss how the results for sequences extend for fields, what are the difficulties, limitations, etc. There are Monte Carlo simulations for the comparison of the deconvolution procedures and various concrete applications involving turbolence and energy transfer are scattered through the book beginning with the fourth chapter. Occasional figures illustrate the text and the arising computational questions receive sensitive discussions. Each chapter ends with a se' of problems that can be given to students, followed by a set of notes providing further examples, explanations, references to and descriptions of the literature and many open problems for further research are discussed at some length. The text goes very smoothly, it is thoughtful, sympathetic and (sometimes overly) modest. You feel as if you would be inventing what you read and forget that you hear" everything from the horse's mouth. Both the mathematics and the discussion concentrates on the essence of the problem at hand, heuristics constitute an integral part of the matter, and unnecessary details are elegantly sidestepped. The main achievment of the book is, I think, that it can be read enjoyably and profitably on several different levels of understanding, with various backgrounds. Thus the author has considerably surpassed his "dual purpose". The reviewer was fortunate enough to have the opportunity of sitting in a course "Time Series Analysis" that Professor Rosenblatt gave for upper undergraduate and early graduate students in the spring quarter of 1985, at the University of California, San Diego, using the galley proofs of the present book. He covered most of the material in Chapters I, II, IV, and V, motivating the necessary results from Chapter III and from the elements of probability theory and Fourier analysis on heuristic grounds. (This is what he advises to do in his preface.) The course, attended besides Bibliographie 447 the 15—20 students by other senior guests with the Department of Mathematics and a few research * workers from some applied departments of UCSD, was a real success. The book will be inevitable for students, instructors, regular users, occasional appliers, and researchers of time series analysis as well. Sándor Csörgő (Szeged) James G. Simmonds, A Brief on Tensor Analysis, VIII+92 pages, Under-Graduate Texts in Mathematics, Springer-Verlag, New York—Heidelberg—Berlin, 1982. The book is divided into four chapters. The first chapter introduces the concept of vectors and defines the dot product and cross product of vectors. A second order tensor is defined as a linear operator that sends vectors into vectors. Chapter 2 is devoted to the description of tensors by using general bases and their dual bases and covariant and contravariant coordinates of vectors. Chapter 3 deals with the Newton law of motion, introduces moving frames and the Christoffel symbols. The last chapter presents a short glimpse into vector and tensor analysis, introducing the notions of a gradient operator, divergence and covariant derivatives. All the chapters end with a set of exercises. The book may serve as a text for first or second-year undergraduates. L. Gehir (Szeged) Gary A. Sod, Numerical Methods in Fluid Dynamics: Initial and Initial Boundary-Value Problems, IX+446 pages, Cambridge University Press, Cambridge—London—New York—New Rochelle— Melbourne—Sydney, 1985. In fact there is practically very little about fluid dynamics in this book, intended to provide the foundations for Volume II, which — according to the author's preface — will deal exclusively with the equations governing fluid motion. This volume is rather a text on numerical methods for solving partial differential equations and it is directed at graduate students. The book deals with the finite difference method, the other, not less powerful method of finite elements is not discussed. Nevertheless it is very useful for everyone, wishing to actually apply ¿he results of numerical analysis of partial differential equations in any field. The book consists of the following chapters: I. Introduction, II. Parabolic Equations, III. Hyperbolic Equations, IV. Hyperbolic Conservation Laws, V. Stability in the Presence of Boundaries. It is written from the physicist's and engineer's point of view, which does not mean that it would lack mathematical rigor. It is simply detailed enough to be comprehensible for the mathematically less trained reader. It emphasises the concepts and contains all the necessary definitions and theorems about convergence and stability, indispensable for those too who want only good recipes. Several methods for solving parabolic and hyperbolic equations are introduced and analysed, and the problem of boundaries is dealt thoroughly. The more sophisticated mathematical theorems and proofs are avoided, some of them are left to the 4 appendices. Reading the book, all the natural questions arising in the reader are answered by the author, except for one: Why this title? It certainly calls the attention of practitioners in the field of fluid dynamics, but one is afraid that the set of potential readers will unnecessarily be restricted. One can warmly recommend this book to anybody who just wants to find a good introduction to the finite difference method for solving parabolic and hyperbolic equations. M. G. Benedict (Szeged) 13* 448 Bibliographie 448 Edwin H. Spanier, Algebraic Topology, XTV+528 pages, Springer-Verlag,- New York—Heidelberg—Berlin, 1982. This is the second edition of the original text first published in 1966 by McGraw-Hill. It starts with an introductory part summarising the basic concepts of set theory, general topology and alge^ bra. The material is divided into three main parts each of which consists of three chapters. The first three chapters introduce the concepts of homotopy and the fundamental group and apply these in the study of covering spaces and polyhedras. The second three chapters are devoted to homology and cohomology theory. The general cohomology theory and duality in topological manifolds are studie here, too. For each new concept, applications are presented to illustrate its utility. In the last three chapters homotopy theory is studied; basic facts about homotopy groups are considered, some applications to obstruction theory are presented and in the last chapter some computations of homotopy groups of spheres can be found. No prior knowledge of algebraic topology is assumed but some faimiliarity of the reader in general topology and algebra is preassumed. L.Gehér (Szeged) Stability Problems for Stochastic Models, Proceedings of the 8th International Seminar Held in Uzhgorod, September 1984. Edited by V. V. Kalashnikov and V. M. Zolotarev (Lectures Notes in Mathematics, 1155), VI+447 pages, Springer-Verlag, Berlin—Heidelberg—New York— Tokyo, 1985. Although the 23 papers collected in this volume represent somewhat more diverse research activities than the 22 papers in the predecessor collection under the same title (Lecture Notes in Mathematics, 982), almost everything that I wrote about that one (these Acta, 47 (1984), page 260) is valid for the present proceedings. Characterization problems and related questions still constitute a strong topic in the volume, but there is a noticable shift towards limit theorems and convergence-rate problems. Sándor Csörgő (Szeged) Stochastic Space-Time Models and Limit Theorems. Edited by L. Arnold and P. Kotelenez (Mathematics and its Applications), XI+266 pages, D. Reidel Publishing Company, D o r d r e c h t Boston—Lancaster, 1985. This is the first volume of a new series launched by the D. Reidel Company. In his preface Series Editor M. Hazewinkel emphasizes "the unreasonable effectiveness of mathematics in science'' (to quote one of his six mottoes, this one due to E. Wigner) and outlines the aims of this new programme. .. , . The book presents the 13 invited papers presented at a workshop held at the University of Bremen, FRG, in November 1983, describing the state of the art of the mathematics of spacetime phenomena, a specific combination of the modern theory of stochastic processes and func? tional analysis. These widely applicable models describe motions which change with time : and are randomly distributed in space, and are usually given by stochastic differential equations. The first seven surveys (by Albaverio, Hoegh—Krohnand Holden; Da Prato; Dettweiler; Ichikawa; Kotelenez; Krée; and Ustunel) are devoted to the existence, uniqueness and, regularity problems of solutions of stochastic partial differential equations, and in general to stochastic analysis am) Markov processes in infinite dimensions. The other six papers (by-Van den Broeck; Grigelioni$ and Mikuleviöius; Metivier; Pardoux; Rost; and Zessin) deal with various limit theorems where stochastic processes describing a space-time model emerge as limits of sequences of stochastic processes on lattices or of positions of finitely many particles with several kinds of interaction. Bibliographie 449 An intelligent unifying introduction by Kotelenez puts the whole contents in a broad perspective and a subject index helps orientation. If the editors will be able to maintain the high level set by this very carefully compiled first volume, this series will no doubt be a success. Sándor Csörgő (Szeged) Symposium on Anomalies, Geometry and Topology, Proceedings, Chicago, United States, 1985. Edited by W. A. Bardeen and A. R. White, XVIII+ 558 pages, World Scientific, 1985. This book contains the proceedings of the Symposium on Anomalies, Geometry and Topology, which took place at the Argonne National Laboratory of the US and at the University of Chicago on March 28—30, 1985. The 56 papers published here report on the recent progress made in field theory and particle physics mostly by means of the application of sophisticated geometrical-topological methods and results. One of the main concerns pursued in the lectures is the new superstring physics—hopefully the right candidate to become a real "Theory of Everything". The other subject which dominated the talks is the mathematical structure of anomalies. Anomalies, originally appeared in perturbative calculations, are now related to properties of Dirac operators and to the connected index theorems of Atiyah and Singer, as well as to homotopy, cohomology and complex structure of manifolds in four and higher dimensions. The investigation of anomalies is an important part of the consistency analysis of quantum field theories. For example, anomaly cancellations played a crucial role in the recent breakthrough achieved in superstring theory. In addition to the main topics of the Symposium, anofnalies and superstrings, there were special sessions devoted tó charge fractionalization and compáctification issues and to the method of effective Lagrangians in various models. Beyond the mentioned ones, the book also contains articles concerning several subjects somehow related to the above. Just to give examples, there are papers addressed to the quantum mechanics of black holes, or dealing with the global structure of supermanifolds. Amongst the authors are M. F. Atiyah, M. Green, D. Gross, R. Jackiw, V. Kac, J. R. Schrieffer, J. Stasheff, G.'t Hooft, E. Witten, S. T. Yau, B. Zuminö and many other outstanding scientists. This list clearly proves how close is the connection between pure mathematics and theoretical physics these days. In conclusion, this collection of high level papers is warmly recommended to everybody interested in the exciting developments reported in it. L. Gy. Fehér (Szeged) Universal Algebra and Lattice Theory (Proceedings, Charleston 1984). Edited by S. D. Comer (Lecture Notes in Mathematics 1149), VI+282 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo,. 1985. . This volume contains research papers on universal algebra and lattice theory, mostly based on lectures presented at the conference in Charleston, 1984. "In keeping with the tradition set by its origin, it is notable that there are a number of papers that deal with connections between lattice theory and universal algebra and other areas of mathematics such as geometry, graph theory, group theory and logic." The list of the papers is as follows. M. E. Adams and D. M. Clark: Universal terms for pseudo-complemented distributive lattices and Hey ting algebras; H. Andréka, S. D. Comer and I. Németi: Clones of operations on relations; M. K. Bennett: Separation conditions on convexity lattices; A. Day: Some independence results in the co-ordinization of Arguesian lattices; Ph. Dwinger: Unary operations on completely distributive complete lattices; R. Freese: Connected components of the covering relation in free lat- 450 Bibliographie 450 tices; B. GanterandT. Ihringer: Varieties of linear subalgebra geometries; O. C. Garcia and W. Taylor: Generalized commutativity; A. M. W. Glass: The word and isomorphism problems in universal algebra; M. Haiman: Linear lattice proof theory: an overview; D. Higgs: Interpolation antichains in lattices; J. Jezek: Subdirectly irreducible and simple Boolean algebras with endomorphisms; E. W. Kiss: A note on varieties of graph algebras; G. F. McNuIty: How to construct finite algebras which are not finitely based; R. Maddux: Finite integral relation algebras; J. B. Nation: Some varieties of semidistributive lattices; D. Pigozzi and J. Sichler: Homomorphisms of partial and of complete Steiner triple systems and quasigroups; A. F. Pixley: Principal congruence formulas in arithmetical varieties; A. B. Romanowska and J. D. H. Smith: From affine to projective geometry via convexity; S. T. Tschantz: More conditions equivalent to congruence modularity. The book gives a good account on several directions of the current research, and it is warmly recommended to research workers interested in the subject. Gábor Czédli (Szeged) Vertex Operators in Mathematics and Physics, Proceedings, Berkeley, 1983. Edited by J. Lepowsky, S. Mandelstam and I. M. Singer (Mathematical Sciences Research Institute Publications, 3), XIV+482 pages, Springer-Verlag, New York—Berlin, Heidelberg—Tokyo, 1985. This volume includes proceedings from the Conference on Vertex Operators in Mathematics and Physics, held at the Mathematical Sciences Research Institute, Berkeley, November 10—17,1983. Among the subjects of highest current interest in physics and mathematics are the superstring, supergravity theories on the one hand and the theory of infinite dimensional Lie algebras on the other hand. In the last few years interesting connections have been found between the dual-string theory and the affine Kac—Moody algebras, through the use of vertex operators that originally appeared in the interaction Hamiltonians of the string models. The central role of the mentioned theories in contemporary mathematics and physics made it possible to explore interrelations between seemingly so remote topics as string models, number theory, sporadic groups, integrable systems, the Virasoro algebra and so on. To explore further connections — this was the purpose of the Conference. Most informatory for an expert can be the table of contents of the book under review, so we give it below. Section 1 — String models. S. Mandelstam: Introduction to string models and vertex operators; O. Alvarez: An introduction to Polyakov's string model; T. Curtright: Conformally invariant field theories in two dimensions. Section 2 — Lie algebra representations. P. Goddard and D. Ovive: Algebras, lattices and strings; J. Lepowsky and R. L. Wilson: Z-algebras and the Rogers—Ramanujan identities; J. Lepowski and M. Prime: Structure of the standard modules for the affine Lie algebra Af1* in the homogeneous picture; K. C. Misra: Standard representations of some affine Lie algebras; A. J. Feingold: Some applications of vertex operators to Kac—Moody algebras; M. Jimbo and T. Miwa: On a duality of branching coefficients. Section 3—The Monster. R. L. Griess: A brief introduction to finite simple groups; I. B. Frenkel, J. Lepowsky and A. Meurman: A Moonshine Module for the Monster. Section 4 — Integrable systems. M. Jimbo and T. Miwa: Monodromy, solitons and infinite dimensional Lie algebras; K. Ueno: The Riemann—Hilbert decomposition and the KP hierarchy; Ling-Lie Chau: Supersymmetric Yang—Mills fields as an integrable system and connections with other non-linear systems; Yong-Shi Wu and Mo-Lin Ge: Lax pairs, Riemann—Hilbert transforms and affine algebras for hidden symmetries in certain nonlinear field theories; L. Dolan: Massive Kaluza—Klein theories and bound states in Yang—Mills; I. Bars: Local charge algebras in quantum chiral models and gauge theories; B. Julia: Supergeometry and Kac—Moody algebras. Bibliographie 451 Section 5 — The Virasoro algebra. C. B. Thorn: A proof of the no-ghost theorem using the Kac determinant; D. Friedan, Zongan Qiu and S. Shenker: Conformal invariance, unitarity and two dimensional critical exponents; A. Rocha—Caridi: Vacuum vector representations of the Virasoro algebra; N. R. Wallach: Classical invariant theory and the Virasoro algebra. J. Lepowsky writes in the Introduction: "The excitement of discovering surprising connections between different disciplines has become a rule in the subject of this volume". There is no doubt that the present interaction between mathematicians and physicists continues and that this book will be very useful for all experts involved in it. L. Gy. Fehér (Szeged) M. Zamansky, Approximation des Fonctions (Travaux en Cours), V+91 pp., Hermann, Paris, 1985. A more appropriate title would be "Approximation of periodic functions" because Zamansky's small treatise is entirely devoted to periodic functions of a single or several variables. The author belongs to that prominent group of mathematicians who nursed the theory of harmonic approximation through its infancy and in this book he twisted again on the usual course of events, namely he provided us with a rather unconventional treatment of the subject. Today it is uncommon, though it may be refreshing, to put multipliers into the heart of the subject. The notations are also peculiar which may cause some headache for the expert who wants to use the book as a reference. Nevertheless, the topics covered are familiar and they provide an independent introduction to harmonic approximation in LP and C spaces. Both the book's strength and its weakness lies in its concise form. On the one hand this enables the author to consider several spaces and approximation methods simultaneously, on the other hand too general statements blur the necessary distinction between important and unimportant (methods, for example) and hide the differences between certain spaces (e.g. L1 and LP, p=-l) that play(d) so important role in mathematics. Very briefly the contents: Chapter 1: Approximation of functions of a single variable (Fourier series, moduli of smoothness, generalizations of Jackson's estimate and its converse, conjugate series, derivatives of functions, saturation with many examples); Chapter 2: Convolutions (equivalence of convolution processes, saturation, direct and converse theorems); Chapter 3: Multidimensional case. A 9 page historical account closes the book. V. Totik (Szeged) Livres reçus par la rédaction W. Ballmann—M. Gromov—V. Schroeder, Manifolds on nonpositive curvature (Progress in Mathematics, Vol. 61), IV+263 pages, Birkhäuser Verlag, Boston—Basel—Stuttgart, 1985. M. Barr—C. Wells, Toposes, triples and theories (Grundlehren der mathematischen Wissenschaften,. Bd. 278), XIII+345 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. DM 138,—. M. J. Beeson, Foundations of constructive mathematics. Metamathematical studies (Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Bd. 6), XXIII+466 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — DM 168,—. C. Camacho—A. Lins Neto, Geometrie theory of foliations, V+205 pages, Birkhäuser Verlag, Boston—Basel—Stuttgart, 1985. J. B. Conway, A course in functional analysis (Graduate Texts in Mathematics, Vol. 96), XIV+ 404 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — DM 118,—. Differential Geometric Methods in Mathematical Physics. Proceedings of an International Conference held at the Technical University of Clausthal, FRG, August 30—September 2, 1983. Edited by H.-D. Doebner, J.-D. Hennig (Lecture Notes in Mathematics, Vol. 1139), V I + 337 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — DM 51,50. B. A. Dubrovin—A. T. Fomenko—S. P. Novikov, Modern geometry — Methods and applications, Part 2: The geometry and topology of manifolds. Translated by R. G. Burns (Graduate Texts in Mathematics, Vol. 104), XV+430 pages, Springer-Verlag, Berlin—Heidelberg—New York— Tokyo, 1985. — DM 158,—. Dynamical Systems and Bifurcations. Proceedings of a Workshop held in Groningen, The Netherlands, April 16—20, 1984. Edited by B. L. J. Braaksma, H. W. Broer, F. Takens, V+129 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — DM 21,50. E. Grosswald, Representations of integers as sums of squares, XI+251 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — DM 148,—. W. R. Knorr, The ancient tradition of geometric problems, IX+411 pages, Birkhäuser Verlag, Boston—Basel—Stuttgart, 1986. H. König, Eigenvalue distribution of compact operators (Operator Theory: Advances and Applications, Vol. 16), 262 pages, Birkhäuser Verlag, Boston—Basel—Stuttgart, 1986. O. A. Ladyzhenskaya, The boundary value problems of mathematical physics. Translated from the Russian by J. Lohwater (Applied Mathematical Sciences, Vol. 49), XXX+322 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — DM 198,—. S. Lang, Complex analysis. 2nd edition (Graduate Texts in Mathematics, Vol. 103), XIV+367 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — DM 128,—. L. Leindler, Strong approximation by Fourier series, 210 pages, Akadémiai Kiadó, Budapest, 1985. J. Marsden—A. Weinstein, Calculus I, 2nd edition (Undergraduate Texts in Mathematics), X V + 385 pages, Springer-Verlag, Berlin—Heidelberg—Néw York—Tokyo, 1985. — DM 69,—. _ , Calculus II, 2nd edition (Undergraduate Texts in Mathematics), XV+345 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo," 1985. — DM 69,—. 454 Livres reçus par la rédaction , Calculus III, 2nd edition (Undergraduate Texts in Mathematics), XV+341 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — DM 69,—. Model-Theoretic Logics. Edited by J. Barwise, S. Feferman (Perspectives in Mathematical Logic), XVIII+895 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — D M 480,—. Nonlinear Analysis and Optimization. Proceedings of the International Conference held in Bologna, Italy, May 3—7, 1982. Edited by C. Vinti (Lecture Notes in Mathematics, Vol. 1107), V + 214 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1984. — D M 31,50. B. Oksendal, Stochastic differential equations. An introduction with applications (Universitext), XIII+205 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — D M 42,-: Orders and their Applications. Proceedings of a Conference held in Oberwolfach, West Germany, June 3—9, 1984. Edited by I. Reiner, K. W. Roggenkamp (Lecture Notes in Mathematics, Vol. 1142), X+306 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — DM 45,—. Ordinary and Partial Differential Equations. Proceedings of the Eighth Conference held at Dundee, Scotland, June 25—29, 1984. Edited by B. D. Sleeman, R. J. Jarvis (Lecture Notes in Mathematics, Vol. 1151), XIV+357 pages, Springer-Verlag, Berlin—Heidelberg—New York— Tokyo, 1985. — DM 51,50. Probability in Banach Spaces V. Edited by A. Beck, R. Dudley, M. Hahn, J. Knelbs and M. Marcus (Lecture Notes in Mathematics, Vol. 1153), VI+460 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — DM 64,—. M. H. Protter—C. B. Morrey, Intermediate calculus. 2nd edition (Undergraduate Texts in Mathematics), X+650 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — DM 128,—. Recursion Theory Week. Proceedings of a Conference held in Oberwolfach, West Germany, April 15—21, 1984. Edited by H.-D. Ebbinghaus, G. H. Müller, G. E. Sacks (Lecture Notes in Mathematics, Vol. 1141), IX+418 pages, Springer-Verlag, Berlin—Heidelberg—New Y o r k Tokyo, 1985. — DM 57,—. Representations of Lie Groups and Lie Algebras. Edited by A. A. Kirillov, 225 pages, Akadémiai Kiadó, Budapest, 1985. M. Rosenblatt, Stationary sequences and random fields, 258 pages, Birkhäuser Verlag, Boston— Basel—Stuttgart, 1985. N. Z. Shor, Minimization methods for non-differentiable functions. Translated from the Russian by K. C. Kiwiel, A. Ruszczynski (Springer Series in Computational Mathematics, Vol. 3), VIII +162 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — D M 84,-. C. Smorynski, Self-reference and modal logic (Universitext), XII+333 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — DM 88,—. G. A. Sod, Numerical methods in fluid dynamics, IX+446 pages, Cambridge University Press, Cambridge—London—New York, 1985. — £ 30.00. F. H. Soon, Student's guide to calculus by J. Marsden and A. Weinstein, Vol. 1, XIV+312 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — DM 48,—. Stability Problems for Stochastic Models. Edited by V. V. Kalashnikov and V. M. Zolotarev (Lecture Notes in Mathematics, Vol. 1155), VI+450 pages, Springer-Verlag, Berlin—Heidelberg— New York—Tokyo, 1985. — DM 64,—. Stochastic Analysis and Applications. Proceedings of the International Conference held at Swansea, April 11—15, 1983. Edited by A. Truman, D. Williams (Lecture Notes in Mathematics, Vol. 455 Livres reçus par la rédaction 1095), V+199 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1984. — DM 31,50. A. Terras, Harmonie analysis on symmetric spaces and applications I, XV4-341 pages, SpringerVerlag, Berlin—Heidelberg—New York—Tokyo, 1985. — DM 138,—. Theoretical Approaches to Turbulence. Edited by D. L. Dwoyer, M. Y. Hussaini, R. G. Voigt (Applied Mathematical Sciences, Vol. 58), XII+373 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — DM 118,—. A. N. Tikhonov—A. B. Vasileva—A G. Sveshnikov, Differential equations. Translated from the Russian by A. B. Sossinskij (Springer Series in Soviet Mathematics), VIII+238 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — DM 98,—. Topics in the Theoretical Bases and Applications of Computer Science. Proceedings of the 4th Hungarian Computer Science Conference Gyôr, Hungary, July 8—10, 1985. Edited by M. Aratô, I. Kâtai, L. Varga, X + 514 pages, Akadémiai Kiadô, Budapest, 1986. Universal Algebra and Lattice Theory. Edited by S. D. Corner (Lecture Notes in Mathematics, Vol. 1149), VI+286 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — DM 38,50. R. L. Vaught, Set theory, X+141 pages, Birkhäuser Verlag, Boston—Basel—Stuttgart, 1985. Vertex Operators in Mathematics and Physics. Edited by J. Lepowski, S. Mandelstam, I. M. Singer (Mathematical Sciences Research Institute Publications, Vol. 3), XIV+482 pages, Springer-Verlag, Berlin—Heidelberg—New York—Tokyo, 1985. — DM 98,—. M. Zamansky, Approximation des fonctions, VII+93 pages, Hermann, Paris, 1985. — 160 F. TOMUS L—1986—50. KÖTET Apikian, S. V., On cell complexes generated by geodesies in the non-Euclidean elliptic plane Atzmon, A., Characterization of operators of class C0 and a formula for their minimal function . Bosznay, A. P.—Garay, B. M., On norms of projections Daróczy, Z.—Járai, A.—Kátai, I., Intervallfüllende Folgen und volladditive Funktionen . Davidson, K. R., The distance between unitary orbits of normal operators Dhompongsa, S., Uniform laws of the iterated logarithm for Lipschitz classes of functions.. Douglas, R, G.—Paulsen, V. I., Completely bounded maps and hypo-Dirichlet algebras... Dudek, J., Polynomial characterization of some idempotent algebras Garay, B. M., cf. Bosznay, A. P., Ginovian, M. S., On the asymptotic estimate of the maximum likelihood of parameters of the spectral density having zeros Huruya, T., Decompositions of completely bounded maps Járai, A., cf. Daróczy, Z.—Kátai, I., Kátai, 1., c f . Daróczy, Z.—Járai, A., 59—66 191—211 87—92 337—350 213—223 105—124 143—157 39—49 87—92 169—182 183—189 337—350 337—350 Körmendi, S., Canonical number systems in Q ( / T ) 351—357 Krasner, M., Abstract Galois theory and endotheory. I 253—286 Kristóf, J., C*-norms defined by positive linear forms 427—432 Leindler, L.—Tandori, K., On absolute summability of orthogonal series 99—104 Lengvárszky, Zs., A note on minimal clones 335—336 de León, M.—Salgado, M., Diagonal lifts of tensor fields to the frame bundle of second order 67—86 Loi, N. V.—Wiegandt, R., Involution algebras and the Anderson—Divinsky—Suliñsky property 5—14 Lamiste, Ü., Bäcklund's theorem and transformation for surfaces Ka in E„ 51—57 Malkowsky, E., Toeplitz-Kriterien für Klassen von Matrixabbildungen zwischen Räumen stark limitierbarer Folgen 125—131 Manó, V.—Skendzié, M.—Takaíi, A., On Stieltjes transform of distributions behaving as regularly varying functions 405—410 Mitrovié, D., Behavior of the extended Cauchy representation of distributions _ 397—403 Móricz, F., Orthonormal systems of polynomials in the divergence theorems for double orthogonal series : 367—380 Nöbaner, R., Rédei-Funktionen und ihre Anwendung in der Kryptographie 287—298 de Pagter, B., A note on integral operators 225—230 Pálfy, P. P., The arity of minimal clones 331—333 Pap, E., A generalization of a theorem óf Dieudonné for ¿-triangular set functions 159—167 Paulsen, V. I., cf. Douglas, R. G 143—157 Pollák, G., Some sufficient conditions for hereditarily finitely based varieties of semigroups 299—330 РгбЫе, P., Does a given subfield of characteristic zero imply any restriction to the endomorphism monoids of fields? Pntnam, C. R., A connection between the unitary dilation and the normal extension of a subnormal contraction Rempulska, L., Remarks on the strong summability of numerical and orthogonal series by some methods of Abel type Salgado, M., cf. de León, M Sallam, S., Error bounds for certain classes of quintic splines Sasvári, Z., On measurable function with a finite number of negative squares Skendiié, M., cf. Marié, V,—Takaíi, A Такай, A., cf. Marié, V,—Skendiié, M., Tandon, K., cf. Leindler, L Totik, V.—Vincze, I., On relations of coefficient conditions Ulyanov, V. V., Normal approximation for sums of nonidentically distributed random variables in Hilbert s p a c e s . . . : Varma, A. К., Birkhoff quadrature formulas based on Tchebycheff nodes Vincze, I., cf. Totik, V Висков, О. В., Представление полиномов Лагерра Wiegandt, R., cf. Loi, N. V., 15—38 421—425 391—396 67—86 133—142 359—363 405—410 405—410 99—104 93—98 411—419 381—390 93—98 365—366 5—14 Bibliographie Advances in Probability Theory: Limit Theorems and Related Topics. — Asymptotic Analysis II — Surveys and New Trends. — J. P. Aubin—A. Celldma, Differential Inclusions. — M. J. Beeson, Foundations of Constructive Mathematics, Mathematical Studies. — G. W. Bluman, Problem Book for First Year Calculus. — K- W. Chang—F. A. Howes, Nonlinear Singular Perturbation Phenomena: Theory and Applications. — Convex Analysis and Optimization. — J. B. Conway, A Course in Functional Analysis. — J. B. Conway, Functions of One Complex Variable. — J. Diestel, Sequences and Series in Banach Spaces Differential Geometry and Complex Analysis. — H. E. Edwards, Galois Theory. — L. Euler, Elements of A l g e b r a — L. R. Foulds, Combinatorial Optimization for Undergraduates. — D . S. Freed—K. K. Uhlenbeck, Instantons and FourManifolds. — J. K . Hale—L. T. Magalhaes—W. M. Oliva, An Introduction to Infinite Dimensional Dynamical Systems: Geometric -Theory. — InfiniteDimensional Systems. — D . Kletzing, Structure and Representation of Q-Groups. — M. A. Krasnosel'skiI—P. P. ZabreIko, Geometrical Methods of Nonlinear Analysis. — Lie Group Representations 111. — Linear and Complex Analysis Problem Book. — D . H. Luecking—L. A. Rubel, Complex Analysis: A Functional Analysis Approach—B. Malgrange, Lectures on the Theory of Functions of Several Complex Variables. — J. Marsden—A. Weinstein, Calculus I—II—M. — T. Matolcsi, A Concept of Mathematical Physics: Models for Space-Time V. A. Morozov, Methods for Solving Incorrectly Posed Problems J. D . Murray, Asymptotic Analysis— Nonlinear Analysis and Optimization— Y. Okuyama, Absolute Summability of Fourier Series and Orthogonal S e r i e s — D . P. Parent, • Exercises in Number Theory- — Probability Theory on Vector Spaces HI. — R. Remmert, Funktiontheorie I — R. A. Rosenbaum—G. P. Johnson, Calculus: Basic Concepts and Applications. — Yu. A. Rozanov, Markov Random Fields. — N. Z. Shor, Minimization Methods for Non-Differentiable Functions. — E. Solomon, Games Programming. — D . W. Stroock, An Introduction to the Theory of Large Deviations. — N. M. Swerdlow—O. Neugebauer, Mathematical Astronomy in Copernicus's De Revolutionibus. — A. N. Tikhonov— A. B. Vasil'eva—A.G. Sveshnikov, Differential Equations. — V. S. Varadarajan, Lie Groups, Lie Algebras and their Representations. — S. Watanabe, Lectures on Stochastic Differential Equations and Malliavin Calculus— A. Weil, Number Theory: An Approach through History; From Hammurapi to Legendre. 231—252 M. Barr—C. W e l l s , Toposes, Triples and Theories— K. L. Bowles—S. D. Franklin— D . J. Volper, Problem Solving Using UCSD Pascal. — Differential Geometric Methods in Mathematical Physics. — Dynamical Systems and Bifurcations. — E. Grosswald, Representations of Integers as Sums of Squares. — E. Hecke, Lectures on the Theory of Algebraic Numbers. — D . Henry, Geometric Theory of Semilinear Parabolic Equations. — E. Horowitz, Fundamentals of Programming Languages. — O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics. — S. Lang, Complex Analysis. — L. Leindler, Strong Approximation by Fourier Series. — Model-Theoretic Logic. — B. Oksendal, Stochastic Differential Equations. — Ordinary and Partial Differential Equations. — R . S. Pierce, Associative Algebras. — D . P o l l a r d , Convergence of Stochastic Processes Probability in Banach Spaces V M. H. Procter—C. B. Morrey, Jr., Intermediate Calculus. — Representations of Lie Groups and Lie Algebras. — Representation Theory II. — Rings and Geometry. — M. Rosenblatt, Stationary Sequences and Random Fields. — J. G. Simmonds, A Brief on Tensor Analysis G. A. Sod, Numerical Methods in Fluid D y n a m i c s — E. H. Spanier, Algebraic Topology. — Stability Problems for Stochastic Models. — Stochastic Space — Time Models and Limit Theorems. — Symposium on Anomalies, Geometry and Topology. — Universal Algebra and Lattice Theory. — Vertex Operators in Mathematics and Physics. — M. Zamansky, Approximation des Fonctions 433—451 Livres reçus par la rédaction 453—455 ACTA SCIENTIARUM MATHEMATICARUM LIST OF PAPERS IN THE ALPHABETICAL ORDER OF THE NAMES OF AUTHORS TOM. 1 (1922)—TOM. 50 (1986) A Tom. Year Page Abdalla, S. M. and Szűcs, J., On an ergodic type theorem for von Neumann algebras 36 (1974), 167—172 Aczél, J., Zur Charakterisierung nomographisch einfach darstellbarer Funktionen durch Differential- und Funktionalgleichungen 12 A (1950), 73—80 On some sequences defined by recurrence 13 (1949/50), 134—139 Einige aus Funktionalgleichungen zweier Veränderlichen ableitbare Differentialgleichungen 13 (1949/50), 179—189 Über die Gleichheit der Polynomfunktionen auf Ringen 21 (1960), 105—107 Aczél, J. und Fenyő, I., Über die Theorie der Mittelwerte 11 (1946/48), 239—245 Ádám, A., A theorem on algebraic operators in the most general sense . . . 18 (1957), 205—206 Zur Theorie der Wahrheitsfunktionen 21(1960), 47—52 Über die monotone Superposition der Wahrheitsfunktionen 23 (1962), 18—37 Ádám, A. and P o l l á k , G., On the congruences of finitely generated free semigroups 31(1970), 259—278 Adams, M. E. and Sichler, J., Disjoint sublattices of lattices 46(1983), 77—83 Adeniran, T. M., Some absolute topological properties under monotone unions 32(1971), 221—222 Adhikary, D. N., see Kishore, N. Aghdam, A. M., On the strong nilstufe of rank two torsion free groups . . 49 (1985), 53—61 Agmon, S., see Mandelbrojt, S. Ahmad, K., see Jain, P. K . Ahmad, K., Jain, P. K. and Maskey, S. M., A note on boundedly complete decomposition of a Banach space 44 (1982), 365—-369 Alexits, G., Über den Grad der Annäherung durch die Cesàroschen Mittel der Fourierreihe 3 (1927), 32—37 Sur la convergence des séries lacunaires 11 (1946/48), 251—253 Sur la convergence et la sommabilité presque partout des séries de polynomes orthogonaux 12 B (1950), 223—225 Sur la convergence des séries orthonormales lacunaires 13 (1949/50), 14—17 Sur la convergence d'une classe de séries orthonormales 13(1949/50), 18—20 Eine Bemerkung zur starken Summierbarkeit der Orthogonalreihen 16 (1955), 127—129 Sur la convergence et la sommabilité des séries orthogonales lacunaires 18(1957), 179—188 Une contribution à la théorie constructive des fonctions 19 (1958), 149—157 Über die Konvergenz fast überall der Orthogonalreihen bei jeder Anordnung ihrer Glieder 19(1958), 158—161 Einige Beiträge zur Approximationstheorie 26(1965), 211—224 1 Alexits, G., On the characterization of classes of functions by their best linear approximation On the convergence of function series Alexits, G. and Knapowski, S., A note on the best approximation by linear forms of functions Alexits, G. und Krâldc, D., Über die Bedeutung der strukturellen Eigenschaften einer Funktion für die Konvergenz ihrer Orthogonalentwicklungen Über die Approximation im starken Sinne Alextts, G. and Sharma, A., The influence of Lebesgue functions on the convergence and summability of function series Alexits, G- and Sunouchi, Gen-Ichiro, Characterization of classes of functions by polynomial approximation Aumov, S. A. and Joô, I., On the Riesz-summability of eigenfunction expansions On the convergence of eigenfunction expansions in Я ' - n o r m Amemya, I. and Ando, T., Convergence of random products of contractions in Hilbert space Amemya, I. and Halperin, I., Complemented modular lattices derived from nonassociative rings Anderson, J., Bunce, J. W, Deddens, J. A. and Williams, J. P., C*-algebras and derivation ranges .^nderson, W. N. and Schreiber, M., The infimum of two projections . . . Ando, T., On pair of commutative contractions — Matrices of normal extensions of subnormal operators Truncated moment problems Operators with a norm condition Structure of operators with numerical radius one Lebesgue-type decomposition of positive operators An inequality between symmetric function means of positive operators see Amemiya, I. Ando, T., Ceauçescu, Z. and Foiaç, С., On intertwining dilations. П. Apikian, S. V., On cell complexes generated by geodesies in non-Euclidean elliptic planes Apostol, С., Products of contractions in Hilbert space Apostol, С., Foia§, C. and Voiculescu, D., Strongly reductive operators are normal Arany, D., Note sur «Le troisième problème de jeu» Intégration de deux équations aux différences finies linéaires à deux variables Aratô, M., Round-off error propagation in the integration of ordinary differential equations by one-step methods Parameter estimation and Kaiman filtering in noisy background.. Arestov, V. V., see Арестов, В. В. Arov, D. Z; see Аров, Д. 3. Arsene, Gr. et Zsidô, L., Une propriété de type de Darboux dans les algèbres de von Neumann 2 29 (1968), 34 (1973), 107—114 1—9 27 (1966), 49—54 18 (1957), 26(1965), 131—139 93—101 33 (1972), 1—10 31 (1970), 1—7 45 (1983), 48 (1985), 5—18 5—12 26 (1965), 239—244 20 (1959), 181—201 40(1978), 33 (1972), 24 (1963), 24 (1963), 31 (1970), 33(1972), 34(1973), 38 (1976), 211—227 165—168 88—90 91—96 319—334 169—178 11—15 253—260 45(1983), 19—22 39(1977), 3—14 50(1986), 33 (1972), 59—66 91—94 38(1976), 261—263 2 (1924/26), 39—42 10(1941/43), 42—47 45 (1983), 48(1985), 23—31 13—23 30(1969), 195—198 Asatiani, V. O. and Chanturia, Z. A., The modulus of variation of a function and the Banach indicatrix Askey, R., Smoothness conditions for Fourier series with monotone coefficients ATKINSON, F. V., On relatively regular operators Atzmon, A., Characterization of operators of class C 0 and a formula for their minimal function Aumann, G., Über eine Ungleichung der Wahrscheinlichkeitsrechnung . . . Aupetit, B. and Zemánek, J., On zeros of analytic multivalued functions Azoff, E. A. and Davis, Ch., On distances between unitary orbits of selfadjoint operators 45 (1983), 51—66 28 (1967), 167—172 15(1953/54), 38—56 50(1986), 191—211 13 (1949/50), 163—168 46 (1983), 311—316 47 (1984), 419-439 B Baker, I. N., On some results of A. Rényi and C. Rényi concerning periodic entire functions 27 (1966), The value distribution of composite entire functions 32 (1971), Baker, I. N. and Liverpool, L. S. O., The value distribution of entire functions of order at most one 41 (1979), Baker, J. A., D'Alembert's functional equation in Banach algebras 32 (1971), Bakhshetsyan, A. V., see EaxmeiwH, A. B. Baldwin, J. T. and Berman, J., Definable principal congruence relations: Kith and kin 44 (1982), Bandelt, H. J., Toleranzrelationen als Galoisverbindungen 46 (1983), Bansal, R. and Yadav, B. S., On systems of TV-variable weighted shifts . . 47 (1984), Barbu, V., On local properties of pseudo-differential operators 30 (1969), Barnes, B. A., On thin operators relative to an ideal in a von Neumann algebra.... 38(1976), Barria, J. and Bruzual, R., On approximation by unitary operators 43 (1981), Bauer, M., Über ein Problem von Dedekind 1 (1922/23), Über die Erweiterung eines algebraischen Zahlkörpers durch Henselsche Grenzwerte 1 (1922/23), Bemerkungen zur Theorie der Differente 1 (1922/23), Zur Theorie der algebraischen Körper 2 (1924/26), Bemerkung zur Algebra 4 (1928/29), Elementare Bemerkungen über identische Kongruenzen • 6 (1932/34), Über die alternierende Gruppe 6 (1932/34), Bemerkungen zum Hensel—Oreschen Hauptsatze 8 (1936/37), Zur Theorie der Kreiskörper 9 (1938/40), Über zusammengesetzte relativ Galoissche Zahlkörper 9 (1938/40), Über die Zusammensetzung algebraischer Zahlkörper 9 (1938/40), Bauer, M. und Tschebotaröw, N., /j-adi scher Beweis des zweiten Hauptsatzes von Herrn Ore 4 (1928/29), Baumgartner, K., Über charakteristische Eigenschaften der Divisionsringe 27(1966), Baumslag, G., Kovács, L. G. and Neumann, B. H., On products of normal subgroups 26(1965), Beaumont, R. A. and Pierce, R. S., Subrings of Algebraic Number Fields 22 (1961), M* 197—200 87—90 3—14 225—234 255—270 55—58 93—99 263—270 265—274 239—242 14—17 74—79 195—198 69—71 244—245 46—48 222—223 64—67 110—112 206—211 212—217 56—57 229—231 145—148 202—216 3 Beaumont, R. A. and Wisner, R. J., Rings with additive group which is a tor sion-free group of rank two 20 (1959), Bekes, R. A., A convolution theorem and a remark on uniformly closed Fourier algebras 38 (1976), Benado, M., Sur une propriété d'interpolation remarquable dans la théorie des ensembles partiellement ordonnés 22(1961), Berberian, S. K., A note on operators whose spectrum is a spectral set 27 (1966), Produit de convolution des mesures opératorielles 40 (1978), Bercovici, H., Jordan model for some operators 38 (1976), Co-Fredholm operators. I 41 (1979), Co-Fredholm operators. II 42 (1980), On the Jordan model of C 0 operators. II 42 (1980), Bercovici, H-, Foiaç, C , Kérchy, L. and Sz.-Nagy, B., Compléments à l'étude des opérateurs de classe C0. IV 41 (1979), Bercovici, H., Foiaç, C. et Sz.-Nagy, B., Compléments à l'étude des opérateurs de classe C 0 . ffl 37 (1975), Reflexive and hyper-reflexive operators of class C 0 43 (1981), Bercovici, H-, Foia?, C., Pearcy, C. M. and Sz.-Nagy, B., Functional models and extended spectral dominance 43 (1981), Factoring compact operator-valued functions 48 (1985), Bercovici, H. and Kérchy, L., Quasisimilarity and properties of the commutant of Cu contractions 45 (1983), Bercovici, H. and Voiculescu, D., Tensor operations on characteristic functions of C0 contractions 39 (1977), Berens, H. and Westphal, U., A Cauchy problem for a generalized wave equation 29(1968), Berger, C- A. and Stampfli, J. G., Norm relations and skew dilations . . . 28 (1967), Berman, J., see Baldwin, J. T. BernshteIn, S. N., see BepHnrrefiH, C. H. Berwald, L., Elementare Sätze über die Abgrenzung der Wurzeln einer algebraischen Gleichung 6 (1932/34), B k y a l i s , A. P., see Bhksjihc, A. II. Birkenhead, R., Sauer, N. and Stone, M. G., The algebraic representation of semigroups and lattices; representing lattice extensions... 43 (1981), Birkhof?, G. D., A remark on the dynamical rôle of Poincaré's last geometric theorem 4(1928/29), Blair, W. D., Quotient rings of algebras which are module finite and projective 36(1974), Blum, J. R., Ergodic sequences of integers 46 (1983), Blum, J. R., Eisenberg, B. and Hahn, L.-S., Ergodic theory and the measure of sets in the Bohr group 34(1973), Boas, R. P., Fourier series with a sequence of positive coefficients 12 B (1950), Bochner, S., Über Faktorenfolgen für Fouriersche Reihen 4 (1928/29), Bochner, S. and Chandrasekharan, K., Lattice points and Fourier expansions 12 B (1950), Bogdanovió, S-, Bands of power joined semigroups 44 (1982), Bognár, J., Operator conjugation with respect to symmetric and skewsymmetric forms ; . . 31 (1970), 4 105—116 3—6 1—5 201—203 3—8 275—279 15—27 3—42 43—56 29—31 313—322 5—13 243—254 25—3667—74 205—231 93—106 191—196 209—221 255—261 6—11 265—266 243—247 17—24 35—37 125—129 1—15 3—4 69—73 Bognár, J., Star-algebras induced by non-degenerate inner products A proof of the spectral theorem for /-positive operators Bognár, J. and Krámli, A., Operators of the form C*C in indefinite inner product spaces Bohr, H., Über einen Satz von J. Pál On limit periodic functions of infinitely many variables Bojadziev, Hr., A note on a paper of S. Watanabe Borsuk, К., On the imbedding of л-dimensional sets in 2/i-dimensional absolute retracts Bosznay, A. P. and Garay, В. M., ON norms of projections Bouldin, Я-, The convex structure of the set of positive approximants for a given operator — Essential spectrum for a Banach space operator Compact approximants Bouldin, R. H. and Rogers, D . D., Normal dilations and operator approximations Boyd, D. W., The spectrum of the Cesàro operator Boyd, P. V-, Spectra of convolution operators Brehmer, S. Über vertauschbare Kontraktionen des Hilbertschen Raumes Brelot, M., Familles de Perron et problème de Dirichlet Remarque sur le prolongement fonctionnel linéaire et le problème de Dirichlet BrodskiI, M. S., see Бродский, M. Ш. Brodskiî, S. D . and Kogalovskű, S. R., see Бродский, С. Д. и Когаловский, С. Д. Brodski!, V. M., see Бродский, В. M. Brown, A. and Douglas, R. G., On maximum theorems for analytic operator functions Brown, A., Halmos, P. R . and Shields, A. L., Cesàro operators Brown, A. and Pearcy, C., Compact restrictions of operators Compact restrictions of operators. II Bruck, R. H., Sums of normal endomorphisms. П Bruun, de N. G-, On unitary equivalence of unitary dilations of contractions in Hilbert space Bruzual, R., see Barria, J. Bunce, J. W., see Anderson, J. Burgess, J. P., On a set-mapping problem of Hajnal and Máté Burnham, J. T. and Goldberg, R. R-, The convolution theorems of Dieudonné Butzer, P. L. und Pawelke, S-, Ableitungen von trigonometrischen Approximationsprozessen Butzer, P. L., Scherer, K. and Westphal, U., On the Banach—Steinhaus theorem and approximation in locally convex spaces Butzer, P. L. and S c h u l z , D., The random martingale central limit theorem and weak law of large numbers with o-rates An extension of the Lindeberg—Trotter operator-theoretic approach to limit theorems for dependent random variables. I 39 (1977), 45 (1983), 29(1968), 7 (1934/35), 12 В (1950), 46 (1983), 15—26 75—80 19—30 129—135 145—149 303—304 12 A (1950), 112—116 50 (1986), 87—92 37 (1975), 41 (1979), 44(1982), 177—190 33—37 5—11 39 (1977), 29 (1968), 35 (1973), 22 (1961), 9 (1938/40), 233—243 31—34 31—37 106—111 133—153 12 В (1950), 150—152 26(1965), 26 (1965), 32 (1971), 33 (1972), 22 (1961), 325—328 125—138 271—282 161—164 6—30 23(1962), 100—105 41 (1979), 283—288 36 (1974), 1—3 28 (1967), 173—184 34 (1973), 25—34 45 (1983), 81—94 48 (1985), 37—54 5 c Campbell, S. L., Subnormal operators with nontrivial quasinormal extensions Carathéodory, C., Über die Variationsrechnung bei mehrfachen Integralen G a r l i t z , L., A note on exponential sums Permutations in finite fields Cartan, H., Sur les transformations localement topologiques Cartan, H. and Deny, J., Le principe du maximum en théorie du potentiel et la notion de fonction surharmonique Cassels, J. W. S., On the representation of integers as the sums of distinct summands taken from a fixed set Ceau$escu, Z., On intertwining dilations see Ando, T. Ceauçescu, Z. and Foia§, C-, On intertwining dilations. V On intertwining dilations. V (Letter to the Editor) Cecchini, C. and Petz, D., Norm convergence of generalized martingales in £ p -spaces over von Neumann algebras Ceder, J. G., On representing functions by Darboux functions Chajda, I., A Mal'cev characterization of tolerance regularity Tolerance Hamiltonian varieties of algebras Tolerance trivial algebras and varieties Chandran, V. R. and Lakser, H., Distributive lattices whose prime ideals are principal Chandrasekharan, K., see Bochner, S. Chanturia, Z. A., see Asatiani, V. O. Chapman, K. B. and Pigno, L., The range of the transform of certain parts of a measure Chatterjee, S., see Yadav, B. S. Chiang, Tse-Pei, A theorem on the normalcy of completely continuous operators Chow, H. L., On minimal bi-ideals and minimal quasi-ideals in compact semigroups Chung, L. O. and Luh, Jiang, Scalar central elements in an algebra over a principal ideal domain Ciesielski, Z., Approximation by polynomials and extension of Parseval's identity for Legendre polynomials to the V case Cioränescu, I. and Zsidô, L., Analytic generators for one-parameter cosine families Clancey, K. F., Completeness of eigenfunctions of seminormal operators. Clancey, K. and Moore, HI, B., Operators of class C0(N) and transivite algebras ' C l a r k , D. M. and Krauss, P. H., Topological quasi varieties C l a r k , D. N., On models for noncontractions Cohen, E., Some sets of integers related to the M r e e integers Remark on a set of integers — and Davis, K. J., Elementary estimates for certain types of integers 6 37 (1975), 4 (1928/29), 21 (1960), 24(1963), 6 (1932/34), 191—193 193—216 135—143 196—203 85—104 12 A (1950), 81—100 21(1960), 38 (1976), 111—124 281—290 40 (1978), 41(1979), 9—32 457—459 48 (1985), 26 (1965), 42 (1980), 44(1982), 46 (1983), 55—63 283—288 229—232 13—16 35—40 39(1977), 245—245 44 (1982), 17—21 14 (1951/52), 188—196 39 (1977), 29—30 41 (1979), 289—293 48 (1985), 65—70 45 (1983), 39 (1977), 95—109 31—37 36(1974), 47 (1984), 36 (1974), 22 (1961), 25(1964), 215—218 3—39 5—16 223—233 179—180 31 (1970), 363—371 Cohen, L. W., On differentiation 38 (1976), Connes, A., Periodic automorphisms of the hyperfinite factor of type NX 39 (1977), Cooper, J. L. B., Translation invariant transformations of integration spaces 34(1973), Coquet, J., Sur certaines suites pseudo-aléatoires 40 (1978), Corduneanu, C., Sur la stabilité conditionnelle par rapport aux perturbations permanentes 19(1958), Corradi, K. A., A note on finite graphs 25 (1964), A remark on the theory of multiplicative functions 28 (1967), Corradi, K. A. and Hermann, P. Z., On the product of certain permutable subgroups 48(1985), Corradi, K. A. and Kátai, I., On multiplicative characters 28 (1967), An example in the theory of Fourier series 28 (1967), C o t l a r , M. and Panzone, R., On almost orthogonal operators in LPspaces 19 (1958), Csákány, B., Characterizations of regular varieties 31 (1970), Varieties of affine modules 37 (1975), Varieties in which congruences and subalgebras are amicable 37 (1975), On affine spaces over prime fields 37 (1975), Conditions involving universally quantified function variables . . . 38(1976), Three-element groupoids with minimal clones 45(1983), Completeness in coalgebras 48 (1985), see HaKaKb, B. Csákány, B. and Gavalcová, T., Finite homogeneous algebras. I 42 (1980), Csákány, B. and Megyesi, L., Varieties of idempotent medial quasigroups 37(1975), Csákány, B. and Schmidt, E. T., Translations of regular algebras 31 (1970), Csáki, E. and Révész, P., A combinatorial proof of a theorem of P. Lévy on the local time 45(1983), Csáki, E. and Vincze, I., On some combinatorial relations concerning the symmetric random walk 24(1963), Császár, Á., Sur les nombres de Lipschitz approximatifs 12 B (1950), Sur les fonctions internes, non monotones 13 (1949/50), A polyhedron without diagonals 13 (1949/50), Sur la structure des ensembles de niveau des fonctions réelles à deux variables 15 (1953/54), Sur une généralisation de la notion de dérivée 16 (1955), Semigroups of continuous functions 45 (1983), Csernyák, L. and Leindler, L., Über die Divergenz der Partialsummen von Orthogonalreihen 27 (1966), 239—251 39—66 35—52 229—235 229—237 169—171 83—92 71—74 71—76 77—82 165—171 187—189 3—10 25—31 33—36 7—11 111—117 75—84 57—65 17—23 157—160 119—129 231—235 211—214 48—50 140—142 183—202 137—159 131—140 55—62 Csillag, P., Über die Verteilung iterierter Summen von positiven Nullfolgen mod 1 4 (1928/29), 151—154 Über die gleichmäßige Verteilung nichtganzer positiver Potenzen mod 1 5 (1930/32), 13—18 Eine Bemerkung zur Auflösung der eingeschachtelten Rekursion 11 (1946/48), 169—173 Csörgő, M. and Csörgő, S., On weak convergence of randomly selected partial sums 34 (1973), 53—60 7 Csörgő, M. and Révész, P., On the stability of the local time of a symmetric random walk Csörgő, S., On weak convergence of the empirical process with random sample size On an asymptotic expansion for the von Mises <b® statistic Rates of uniform convergence for the empirical characteristic function see Csörgő, M. Csörgő, S. and Horváth, L., On random censorship from the right Csörgő, S.and Toitk, V., On how long interval is the empirical characteristic function uniformly consistent? Curzio, M., Classification of finite minimal non-metacyclic groups Czédli, G., On the lattice of congruence varieties of locally equational classes A Mal'cev type condition for the semi-distributivity of congruence lattices Factor lattices by tolerances Czédli, G. and Lenkehegyi, A., On classes of ordered algebras and quasiorder distributivity 48 (1985), 85—96 36(1974), 38(1976), 17—26 45—67 48(1985), 97—102 44 (1982), 23—34 45 (1983), 48 (1985), 141—149 289—295 41(1979), 39-45 43(1981), 44 (1982), 267—272 35—42 46 (1983), 41—54 49 (1985), 143—149 46 (1983), 381—388 22 (1961), 31—41 50(1986), 50 (1986), 29 (1968), 19 (1958), 29 (1968), 31 (1970), 31 (1970), 337—350 .213—223 225—246 172—187 69—86 75—86 301—318 32(1971), 127—139 27 (1966), 93—96 28 (1967), 9—20 28 (1967), 31 (1970), 1—8 335—338 D Daboussi, H. and Delange, H., On a class of multiplicative functions . . . Dancs, S., Hegedűs, M. and Medvegyev, P., A general ordering and fixed-point principle in complete metric space Daróczy, Z., Notwendige und hinreichende Bedingungen für die Existenz von nichtkonstanten Lösungen linearer Funktionalgleichungen . . . Daróczy, Z., Járai, A. and Kátai, I., Intervallfüllende Folgen und volladditive Funktionen Davidson, K. R., The distance between unitary orbits of normal operators Dauns, J. and Hofmann, K. H., Nilpotent groups and automorphisms . . Davis, C , Separation of two linear subspaces Davis, Ch., The shell of a Hilbert-space operator /-unitary dilation of a general operator The shell of a Hilbert-space operator. II see Azoff, E. A. Davis, Ch. and Foia$, G , Operators with bounded characteristic function and their /-dilation Davis, K. J., see Cohen, E. Dawson, D. F., Semigroups having left or right zeroid elements Deckard, D., Complete sets of unitary invariants for compact and traceclass operators Deckard, D. and Pearcv, C., On rootless operators and operators without logarithms Deddens, J. A., Unitary dilations and coisometric extensions see Anderson, J. Delange, H., see Daboussi, H. 8 Delanohe, R., On minimal quasi-ideals and minimal bi-ideals in compact semigroups Demlovâ, M., Goralödc, P. and К о ш е к , V., Inner injective transextensions of semigroups Dénes, J., On a problem of L. Fuchs Dénes, P., Beweis einer Vandiver'schen Vermutung bezüglich des zweiten Falles des letzten Fermat'schen Satzes Über die Kummerschen logarithmischen Hilfsfunktionen Deny, J., see Cartan, H. Dhompongsa, S., Uniform laws of the iterated logarithm for Lipschitz classes of functions Dickmeis, W. and Nessel, R. J., Classical approximation processes in connection with Lax equivalence theorems with orders Dickmeis, W. and van Wickeren, E., Steckin-type estimates for locally divisible multipliers in Banach spaces Dieudonné, J., Deux exemples singuliers d'équations différentielles Dinculeanu, N., On regular vector measures Ditzian, Z., Rate of approximation of linear processes Dixmier, J., Les moyennes invariantes dans les semi-groupes et leurs applications Sur un théorème d'Harish-Chandra Sur les bases orthonormales dans les espaces préhilbertiens Cohomologie des algèbres de Lie nilpotentes Points séparés dans le spectre d'une C*-algèbre Série de Poincaré et système de paramètres pour les invariants des formes binaires Dlab, V., A note on powers of A group Dolaptschuew, В., Über projektive Kegelschnittsysteme Dorninger, D. and Länger, H., A formula for the solution of the difference equation xn+l=ax\ + bxn + c Douglas, R. G., On the operator equation S*XT=X and related topics see Brown, A. Douglas, R. G. and Helton, J. W., Inner dilations of analytic matrix functions and Darlington synthesis Douglas, R. G. and Paulsen, V. I., Completely bounded maps and hypoDirichlet algebras 36(1974), 267—269 44 (1982), 23 (1962), 215—237 237—241 14 (1951/52), 197—202 15 (1953/54), 115—125 50 (1986), 105—124 40 (1978), 33—48 47 (1984), 169—18812 В (1950), 38—48 24 (1963), 236—243 48 (1985) 103—128 12 A (1950), 14 (1951/52), 15 (1953/54), 16 (1955), 22(1961), 213—227 145—156 29—30 246—250 115—128 45 (1983), 151—160 25 (1964), 177—178 11 (1946/48), 17—18 47(1984), 30 (1969), 487—489 19—32 34 (1973), 61—67 50(1986), 143—157 Douglas, R. G. and Pearcy, С., A characterization of thin operators 29 (1968), Dowker, Y. N., A new proof of the general ergodic theorem 12 В (1950), Doyle, P. H., Cellularity of a suspension arc 27(1966), On sets which contain sum sets 42 (1980), 295—298 162—166 251—251 233—235 Dressler, R. E. and Pigno, L., Modification sets and transforms of discrete measures 38(1976), Small sum sets and the Faber gap condition 47 (1984), 13—16 233—237 Duda, J., Mal'cev conditions for regular and weakly regular subalgebras of the square 46(1983), 29—34 Dudek, J., Polynomial characterization of some idempotent algebras D u g g a l , B. P., Near normality of a class of transforms 50 (1986), 40 (1978), 39—49 237—242 9 Dunford, N., Resolutions of the identity for commutative £*-algebras of operators An individual ergodic theorem for non-commutative transformations Durszt, E., On the numerical range of normal operators On unitary ^-dilations of operators On the spectrum of unitary ^-dilations On the unitary part of an operator on Hilbert space Factorization of operators in C„ classes Eigenvectors of unitary ^-dilations On contractive ^-dilations Contractions as restricted shifts Dvoretzky, A., Erdôs, P. and Kakutani, S., Double points of paths of Brownian motion in n-space Dwars, M. and Strecker, R., On homomorphic images of normal complexes in varieties of semigroups Dzhamirzaev, A. A., see ^acamnp3aeb, A. A. 12 B (1950), 51—56 14 (1951/52), 25 (1964), 27 (1966), 28(1967), 31 (1970), 37 (1975), 39 (1977), 45(1983), 48(1985), 1—4 262—265 247—250 299—304 87—89 195—199 247—250 161—163 129—134 12 B (1950), 75—81 49(1985), 89—91 33 (1972), 39 (1977), 35 (1973), 349—352 251—254 187—194 E < Eckstein, G., Sur les opérateurs de classe ê a On the spectrum of contractions of class C, Eckstein, G. and RÂcz, A., Weighted shifts of class Ce Egervâry, E., On a maximum-minimum problem and its connection with the roots of equations On a generalisation of a theorem of Kakeya On orthocentric simplexes A remark on the length of the circle and on the exponential function On the mapping of the unit-circle by polynomials On a property of the projector matrices and its application to the canonical representation of matrix functions On a lemma of Stieltjes on matrices On the contractive linear transformations of «-dimensional vector space On hypermatrices whose blocks are commutable in pairs and their application in lattice-dynamics Eilhauer, R-, see Weinert, H. J. Eisenberg, B., see Blum, J. R. E l l i s , D., On immediate inclusion in partially ordered sets and the construction of homology groups for metric lattices Embry, M. R., A connection between commutativity and separation of spectra of operators A generalization of the Halmos—Bram criterion for subnormality Embry—Wardrop, M., Weighted translation semi-groups with operator weights Endl, K., Beitrag zur Theorie der starken Summierbarkeit mit einer Anwendung auf Orthonormalreihen 10 1(1922/23), 39—45 5 (1930/32), 78—82 9 (1938/40), 218—226 11 (1946/48), 114—118 12 B (1950), 226—230 15 (1953/54), 1—6 15 (1953/54), 99—103 15 (1953/54), 178—182 15 (1953/54), 211—222 14 (1951/52), 169—173 32(1971), 35 (1973), 255—259 61—64 46(1983), 249—260 43 (1981), 27—35 Erdélyi, I., Unbounded operators with spectral decomposition properties Erdős, P., Beweis eines Satzes von Tschebyschef An extremum-problem concerning trigonometric polynomials Some theorems and remarks on interpolation On some applications of Bran's method On a problem of Sidon in additive number theory see Dvoretzky, A. Erdős, P. and Fodor, G., Some remarks on set theory. V Some remarks on set theory. VI Erdős, P., Fodor, G- and Hajnal, A., On the structure of inner set mappings Erdős, P. and Hajnal, A., Some remarks on set theory. VII Erdős, P., Hajnal, A. and Máté, A., Chain conditions on set mappings and free sets E r d ő s , P . a n d K á t a i , I., O n t h e s u m £ d^n) On the concentration of distribution of additive functions Erdős, P. und Obláth, R., Über diophantische Gleichungen der Form «l=xp±yF und n\±m\=x" Erdős, P. and Sárközy, A., On products of integers. II On the number of prime factors of integers Erdős, P. und Szekeres, G., Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem É s k , Z., Homomorphically complete classes of automata with respect to the a 3 -product EusncB, D. J., Non-summable partial sums of orthogonal series Evans, G., An elliptic system corresponding to Poisson's equation Evans, R., On N consecutive integers in an arithmetic progression 42 (1980), 5 (1930/32), 9 (1938/40), 12 A (1950), 13(1949/50), IS (1953/54), 67—70 194—198 113—115 11—17 57—63 255—259 17 (1956), 18 (1957), 250—260 243—260 20 (1959), 21 (I960), 81—90 154—163 34(1973), 69—79 30 (1969), 313—324 41 (1979), 295—305 8 (1936/37),241—255 40 (1978), 243—259 42 (1980), 237—246 7(1934/35), 95—102 48(1985), 135—141 23 (1962), 222—226 6 (1932/34), 27—33 33(1972), 295—296 F Fabrici, I., On invertible elements in compact semigroups Farkas, M., Attractors of systems close to autonomous ones Fáry, I., On straight line representation of planar graphs Sur certaines inégalités géométriques Favard, J., Sur le problème traité par MM. G. Szekeres et B. de Sz. Nagy Remarques sur l'approximation des fonctions continues Fáy, Gy., Transitivity of implication in orthomodular lattices Fehér, J., On multiplicative functions that are ^-additive Feigelstock, Sh., On the nilstufe of homogeneous groups The nilstufe of rank two torsion free groups Extensions of partial multiplications and polynomial identities on abelian groups On modules over Dedekind rings Fejér, L., Über die Positivität von Summen, die nach trigonometrischen oder Legendreschen Funktionen fortschreiten (Erste Mitteilung) Über die Grenzen dér Abschnitte gewisser Potenzreihen 30 (1969), 44 (1982), 11 (1946/48), 12 A (1950), 9 (1938/40), 12 A (1950), 28 (1967), 49(1985), 36 (1974), 36 (1974), 271—275 329—334 229—233 117—124 258—260 101—104 267—270 151—155 27—28 29—32 38 (1976), 39 (1977), 17—20 225—263 2 (1924/26), 75—86 4 (1928/29), 4—24 11 Fejér, L., Über einige Identitäten der Interpolationstheorie und ihre Anwendung zur Bestimmung kleinster Maxima 5 (1930/32), 145—153 Untersuchungen über Potenzreihen mit mehrfach monotoner Koeffizientenfolge 8(1936/37), 89—115 Fejes, L., Einige Extremaleigenschaften des Kreisbogens bezüglich der Annäherung durch Polygone 10 (1941/43), 164—173 Fejes, L-, see Fejes Tóth, L. Fejes Tóth, L., Über die Fouriersche Reihe der Abkühlung 11 (1946/48), 28—36 Eine Bemerkung über die Bedeckung der Ebene durch Eibereiche mit Mittelpunkt 11 (1946/48), 93—95 On ellipsoids circumscribed and inscribed to polyhedra 11 (1946/48), 225—228 Some packing and covering theorems 12 A (1950), 62—67 Fekete, M., Über Zwischenwerte bei komplexen Polynomen 1 (1922/23), 98—100 Über Faktorenfolgen, welche die „Klasse" einer Fourierschen Reihe unverändert lassen 1 (1922/23), 148—166 Zur Theorie der konformen Abbildung 3 (1927), 25—31 Über Wertverteilung bei rationalen Funktionen einer komplexen Veränderlichen 4 (1928/29), 234—243 Über den transfmiten Durchmesser von linearen Punktmengen 5 (1930/32), 19—22 Feldheim, E., Une loi-limite du calcul des probabilités 8 (1936/37), 55—63 Fel'dman, I. A., see Фельдман, И. A. Feldman, J., On the functional calculus of an operator measure 23 (1962), 268—271 Feldman, L., On a characterization of the classical orthogonal polynomials 17(1956), 129—138 F e l l e r , W., Über das Gesetz dergroßen Zahlen 8 (1936/37), 191—201 Felsch, V., Über Untergruppen mit ausgezeichneten Repräsentantensystemen 33 (1972), 59—67 Fenyő, I. und Aczél, J., Über die Theorie der Mittelwerte 11 (1946/48), 239—245 Fenyő, I., see Fenyő, St. Fenyő, St., Über den Mischalgorithmus der Mittelwerte 13 (1949/50), 36—42 Fernandez, D. L., On the duality of interpolation spaces of several Banach spaces 44 (1982), 43—51 Fialkow, L. A., A note on non-quasitriangular operators 36 (1974), 209—214 A note on quasisimilarity of operators 39 (1977), 67—85 Weighted shifts quasisimilar to quasinilpotent operators 42 (1980), 71—79 Spectral properties of elementary operators 45 (1983), 269—282 Fichtner, K., Distributivity and modularity in varieties of algebras 33(1972), 343—348 Fillmore, P. A., Sums of operators with square zero 28 (1967), 285—288 Fillmore, A., Stamppli, J. G. and Williams, J. P-, On the essential numerical range, the essential spectrum, and a problem of Halmos 33 (1972), 179—192 Finet," C., Espaces de James généralisés et espaces de type E.S.A 49 (1985), 365—385 Fodor, G-, Proof of A conjecture of P. Erdős 14 (1951/52), 219—227 An assertion which in equivalent to the generalized continuum hypothesis 15(1953/54), 77—78 On a problem in set theory 15 (1953/54), 240—242 Generalisation of a theorem of Alexandroff and Urysohn 16(1955), 204—206 Some results concerning a problem in set theory 16(1955), 232—240 Eine Bemerkung zur Theorie der regressiven Funktionen 17(1956), 139—202 Über transfinite Funktionen. I 21 (1960), 343—345 12 Fodor, G., Über transfinite Funktionen. II 22(1961), Über transfinite Funktionen. i n 22 (1961), Equivalence of a problem of set theory to a hypothesis concerning the powers of cardinal numbers 24 (1963), An application of the theory of regressive functions 24 (1963), On stationary sets and regressive functions 27(1966), On a process of inaccessible cardinals. 1 27(1966), On a process of inaccessible cardinals. II 27 (1966), On a process concerning inaccessible cardinals. Ill 28 (1967), Principal sequences and stationary sets 34 (1973), see Erdôs, P. Fodor, G. and Maté, A., On the structure of set mappings and the existence of free sets 26(1965), Cardinals inaccessible with respect to a function defined on pairs of cardinals 30(1969), Some results concerning regressive functions 30 (1969), Foguel, S. R., Convergence of random products of Markov transition functions 29(1968), Foiaç, C , Sur certains théorèmes de J. von Neumann concernant les ensembles spectraux 18(1957), On strongly continuous semigroups of spectral operators in Hilbert space 19(1958), Décompositions intégrales des families spectrales et semi-spectrales en opérateurs qui sortent de l'espace hilbertien 20(1959), Factorisations étranges 34(1973), Foia§, C , see Ando, T. see Apostol, C. see Bercovici, H. see Ceaujescu, Z. see Davis, Ch. see S z - N a g y , B. see Szűcs, J. Foia§, C. and Frazho, A. E., A note on unitary dilation theory and state spaces 289—295 296—300 152—156 255—257 105—110 111—124 129—140 197—200 81—84 1—8 107—112 247—254 35—38 15—20 188—191 117—155 85—89 45(1983), 165—175 Foia§, C. und Gehér, L., Über die Weyische Vertauschungsrelation 24 (1963), Foia5, C., Gehér, L. and Sz.-Nagy, B., On the permutability of quantum 97—102 mechanics Foiaç, C. et Kovács, I., Une caractérisation nouvelle des algèbres de von Neumann finies Foia§, C. et Lions, J. L., Sur certains théorèmes d'interpolation Foiaç, C., Pearcy, C a r l and Sz.-Nagy, B., The functional model of a contraction and the space L 1 Contractions with spectral radius one and invariant subspaces... Fong, Che-Kao, On reductive operator algebras R On the essential maximal numerical range Fong, C. K., Nordgren, E. A., Radjabalipour, M., Radjavi, H. and Rosent h a l , P., Extensions of Lomonosov's invariant subspace theorem Frank, András, Kernel systems of directed graphs 2 1 (1960), 78—89 23 (1962), 22 (1961), 274—278 269—282 42(1980), 43(1981), 39 (1977), 41 (1979), 201—204 273—280 87—91 307—315 41 (1979), 41 (1979), 55—62 63—76 13 Frank, Andrâs, Covering branchings Frazho, A. E., see Foiaç, C. Infinite-dimensional Jordan models and Smith McMillan forms. II On uniqueness and the Lifting Theorem Fréchet, M., Sur les ensembles compacts de fonctions de carrés sommables Freud, G., Ein Zusammenhang zwischen den Funktionenklassen Lip a und Lip (ß, p) Über einseitige Approximation durch Polynome. I Berichtigung zur Arbeit „Über einen Zusammenhang zwischen den Funktionenklassen Lip a und Lip (ß,p)-" Eine Ungleichung für Tschebyscheffsche Approximationspolynome Approximation of continuous functions on compact metric space by linear methods Über das Rieszsche Eindeutigkeitskriterium des Momentenproblems On an extremum problem for polynomials On the greatest zero of an orthogonal polynomial. I On the greatest zero of an orthogonal polynomial. II Freud, G. und Névai, G. P., Über einseitige Approximation durch Polynome. m Freud, G. und Szabados, J., Über einseitige Approximation durch Polynome. H Fridli, S-, Ivanov, V. and Simon, P., Representation of functions in the space ç>(L) by Vilenkin series Fridli, S. and Schipp, F., On the everywhere divergence of Vilenkin— Fourier series Fried, E., Über als echte Quotientenkörper darstellbare Körper Representation of partially ordered groups On a characterization of ordered algebraic systems Equational classes which cover the class of distributive lattices A note on congruence extension property •Fried, E. and Grätzer, G., On automorphisms of the subalgebra lattice induced by automorphisms of the algebra Fried, E. and P ä l f y , P. P., On a problem of Baldwin and Berman Fried, E. and Pixley, A. F., The dual discriminator function in universal algebra Fried, E., and Sichler, J., On automorphism groups of subalgebras of a universal algebra Fröhlich, A., A prime decomposition symbol for certain non Abelian number fields Frostman, O., La méthode de variation de Gauss et les fonctions sousharmoniques : Sur les majorantes harmoniques d'une fonction sousharmonique Sur le balayage des masses Fryer, K. D . and Halperin, I., The von Neumann coordinatization theorem for complemented modular lattices F u c h s , L., O n quasi-primary ideals 14 41 (1979), 77—81 46 (1983), 49(1985), 317—321 353—355 8 (1936/37), 11&-126 15 (1953/54), 260—260 16 (1955), 12—28 16(1955), 19(1958), 28—28 162—164 26 (1965), 9—14 27(1966), 32(1971), 34 (1973), 36 (1974), 77—80 287—296 91—97 49—54 35 (1973), 65—72 31 (1970), 59—67 48 (1985), 143—154 48(1985), 15 (1953/54), 26(1965), 31 (1970), 37 (1975), 40 (1978), 155—162 143—144 15—18 233—244 37—40 261—263 40 (1978), 49 (1985), 49—52 101—106 41 (1979), 83—100 40(1978), 265—270 21 (1960), 229—248 8 (1936/37), 149—159 8 (1936/37), 202—204 9 (1938/40), 43—51 17 (1956), 203—249 11 (1946/48), 174—183 Fuchs, L., The meet-decomposition of elements in lattice-ordered semigroups The extension of the notion of "relatively prime" A remark on the Jacobson radical Rédeian skew product of operator groups On a new type of radical Über das Tensorprodukt von Torsionsgruppen On quasi nil groups On the ordering of quotient rings and quotient semigroups On group homomorphic images of partially ordered semigroups On partially ordered algebras. II On a useful lemma for abelian groups Fuchs, L., Kertész, A. and Szele, T., On abelian groups whose subgroups are endomorphic images Fuchs, L. and Szele, T., t On Artinian rings Fuchs, W. H. J. and Gross, F., Generalization of a theorem of A. and C. Rényi on periodic functions Furuta, T., Some theorems on unitary ^-dilations of Sz.-Nagy and Foia§ Convexoid operators and generalized growth conditions associated with unitary e-dilations of Sz.-Nagy and Foia? On the polar decomposition of an operator 12 A (1950), 13 (1949/50), 14 (1951/52), 14 (1951/52), 16 (1955), 18(1957), 18 (1957), 22 (1961), 25 (1964), 26 (1965), 17 (1956), 105—111 43^7 167—168 228—238 43—53 29—32 33—43 42—45 139—142 35—42 134—138 16 (1955), 17 (1956), 77—88 30—40 32 (1971), 33 (1972), 83—86 119—122 40 (1978), 46(1983), 53—61 261—268 G G á l , I. S-, A theorem on convex curves G a l l a i , T., und Milgram, A. N., Verallgemeinerung eines graphentheoretischen Satzes von Rédei Ganea, T., Du prolongement des représentations locales des groupes topologiques On the Prüfer manifold and a problem of Alexandroff and Hopf Garay, B. M., see Bosznay, A. P. Gardner, L. T., Uniformly closed Fourier algebras Note Gaçpar, D., On operator representations of function algebras On a certain class of representations of function algebras Gasper, G- and Trebels, W., A Hausdorff—Young type inequality and necessary multiplier conditions for Jacobi expansions Gavalcová, T., see Csákány, B. Gawronski, W. and Stadtmüller, U-, Linear combinations of iterated generalized Bernstein functions with an application to density estimation Gécseg, F., On complete systems of automata On certain classes of ^ - s t r u c t u r e s On subdirect representations of finite commutative unoids On products of abstract automata On a representation of deterministic frontier-to-root tree transformations 11 (1946/48), 167—168 21 (1960), 181—186 14(1951/52), 115—124 15 (1953/54), 231—235 33(1972), 37 (1975), 31 (1970), 33 (1972), 211—216 194—194 339—346 95—99 42 (1980), 247—255 47(1984), 30(1969), 31 (1970), 36 (1974), 38 (1976), 205—221 295—300 191—195 33—38 21—43 45(1983), 177—187 15 •Gécseg, F., Metrie equivalence of tree automata 48(1985), see Teier, 4>. Gécseg, F. and Székely, S., On equational classes of unoids 34 (1973), Gehér, L., Über Fortsetzungs- und Approximationsprobleme für stetige Abbildungen von metrischen Räumen 20 (1959), On completely continuous and uniformly bounded operators in l " spaces 26(1965), On a theorem of L. Takács 29(1968), Uniform embedding of a metric space in Hilbert space 33 (1972), see Foia?, C. G e l l e r t , L., see Wiener, N. Georgakis, C., On the uniform convergence of Fourier transforms on groups 31 (1970), •Gergely, E., Über die Variation von Doppelintegralen mit variierender Begrenzungslinie 2 (1924/26), Gerstmann, H., n-Distributivgesetze 46 (1983), Ghatage, P., Power-bounded operators with invertible characteristic function 37 (1975), Gilfeather, F., On the Suzuki structure theory for non self-adjoint operators on space Hilbert 32 (1971), Weighted bilateral shifts of class C 01 32 (1971); Gilmer, R. and Heinzer, W., On Jónsson modules over a commutative ring 46(1983), Gilmer, R., Lea, R. and O'Malley, M., Rings whose proper subrings have property P 33(1972), Ginovian, M. S., On the asymptotic estimate of the maximum likelihood of parameters of the spectral density having zeros 50 (1986), Goffman, C., On the approximate limits of a real function 23(1962), Gohberg, I., see Tox6epr H. L(. Gohberg, I. and Rodman, L., Analytic operator valued functions with prescribed local data 45 (1983), Goldberg, R. R., Characterization of some classes of measures 27 (1966), see Burnham, J. T. Goldberg, R. R. and Simon, A. B., The Riemann—Lebesgue theorem on groups 27(1966), Goodrich, R. K., The spectral theorem for real Hilbert space 33 (1972), Goralcik, P., see Demlová, M. Görlich, E., Nessel, R. J. and Trebels, W., Bernstein-type inequalities for families of multiplier operators in Banach spaces with Cesäro decompositions. I. General theory 34 (1973), Bernstein-type inequalities for families of multiplier operators in Banach spaces with Cesaro decompositions, n . Applications 36 (1974), G o u l d , M., Rectangular bands in universal algebra: Two applications... 44 (1982), Graham, C C , Maximal ideals and discontinuous characters 36 (1974), Grätzer, G., On the class of subdirect powers of a finite algebra 25(1964), see Fried, E. G r ä t z e r , G. and Huhn, A. P., Amalgamated free product of lattices. I. The common refinement property 44 (1982), 16 163—171 99—101 48—66 31—34 163—166 25—27 359—362 139—146 99—113 201—204 239—249 251—254 3—15 69—75 169—182 76—78 189—199 157—161 35—40 123—127 121—130 39—48 271—279 233—238 160—168 53—66 Grätzer, G. and Huhn, A. P., Amalgamated free product of lattices, HI. Free generating sets Grätzer, G., Lakser, H. and Quackenbush, R. W., On the lattice of quasivarieties of distributive lattices with pseudocomplementation Grätzer, G. and Schmidt, E. T., On the Jordan—Dedekind chain condition On ideal theory for lattices On inaccessible and minimal congruence relations. I Characterizations of congruence lattices of abstract algebras Greenlee, W. M., On fractional powers of operators in Hilbert space Gretsky, N. E. and U h l Jr., J. J., Carleman and Korotkov operators on Banach spaces G r i l l e t , M. P., A semiring whose Green's relations do not commute Gross, F., see Fuchs, W. H. J. Grosschmid, L., Transformatio formarum quadraticarum Weierstrassiana Grossmann, M., Das vollständige Fokalsystem einer ebenen algebraischen Kurve Grünwald, G., Über Divergenzerscheinungen der Lagrangeschen Interpolationspolynome Über die Summabilität der Fourierschen Reihe Eine Bemerkung zu meiner Arbeit „Über die Summabilität der Fourierschen Reihe" On a theorem of S. Bernstein Grünwald, G. und Turän, P., Über den Blochschen Satz Grynaeus, E., Sur la théorie des groupes 47(1984), 265—275 42(1980), 257—263 18 (1957), 19(1958), 21 (1960), 24 (1963), 36 (1974), 52—56 82—92 337—342 34—59 55—61 43(1981), 31 (1970), 207—218 161—166 6 (1932/34), 105—135 2 (1924/26), 178—181 7 (1934/35), 207—221 10 (1941/43), 55—63 10 (1941/43), 105—108 10 (1941/43), 185—187 8 (1936/37), 236—240 4 (1928/29), 227—233 Gumm, H. P., Congruence-equalities and Mal'cev conditions in regular equational classes 39 (1977), Gupta, D. K. and Komal, B. S., Characterizations and invariant subspaces of composition operators 46(1983), Normal composition operators - 4 7 (1984), Gupta, D . K., Sinoh, R. K. and Kumar, A., Compact and HilbertSchmidt composition operators on weighted sequence spaces 43(1981), Gupta, D. P., Degree of approximation by Cesàro means of Fourier— Laguerre expansions 32(1971), Gustafson, K., The R K N G (Rellich, Kato, Sz.-Nagy, Gustafson) perturbation theorem for linear operators in Hilbert and Banach space 45(1983), Gustafson, K. and Zwahlen, B., On the cosine of unbounded operators 30 (1969), On operator radii 36 (1974), Gyires, B., Über vertauschbare Matrizen 12 A (1950), The mixture of probability distribution functions by absolutely continuous weight functions 48 (1985), 265—272 283—286 445—448 117—122 255—259 201—211 33—34 63—68 143—145 173—186 H Haar, A., Über eine Verallgemeinerung des Du Bois Reymond'schen Lemma's. Über die Konvergenz von Funktionenfolgen Über lineare Ungleichungen 15 1 (1922/23), 33—38 1 (1922/23), 167—179 2(1924/26), 1—14 17 HAAR, A., Über reguläre Variationsprobleme. Zur Charakteristikentheorie Über die Gruppencharaktere gewisser unendlichen Gruppen 3(1927), 224—234 4 (1928/29), 103—114 5 (1930/32), 172—186 HAÂZ, I. B. U n e généralisation du théorème de Simmons HADWIGER, H., Neue Integralrelationen f ü r Eikörperpaare 17 (1956), 41—44 13 (1949/50), 252—257 HADIIÉ, O., On the admissibility of topological vector spaces 42 (1980), 81—85 HAHN, L.-S-, see BLUM, J . R . HAJNAL, A . , s e e ERDÖS, P . HAJÔS, G-, Ein neuer Beweis eines Satzes von Minkowski 6 (1932/34), Zum Mengerschen Graphensatz 7 (1934/35), Translation of figures between lattice points 12 A (1950), HALASZ, G-, Remarks to a paper of D. Gaier on gap theorems 28 (1967), HALMOS, P. R., Commutativity and spectral properties of normal operators 12 B (1950), Numerical ranges and normal dilations 25 (1964), Quasitriangular operators 29 (1968), Limits of shifts 34(1973), 224—225 44—47 246—253 311—322 153—156 1—5 283—294 131—139 s e e BROWN, A . HALPERIN, I., Von Neumann's arithmetics of continuous rings The product of projection operators Sz.-Nagy—Brehmer dilations Elementary divisors in von Neumann rings Von Neumann's coordinatization theorem 23 (1962), 23 (1962), 23 (1962), 24 (1963), 46(1983), 1—17 96 —99 279—289 1—19 213—218 HALPERIN, I. and AMEMIYA, I., Complemented modular lattices derived from nonassociative rings 20 (1959), HANCOCK, V. R., Commutative Schreier semigroup extension of a group 25 (1964), 181—201 129—134 HARRISON, K . J., Strongly reductive operators 37 (1975), 205—212 HARTMAN, S. and MARCZEWSKI, E., On the convergence in measure 12 A (1950), 125—131 see FRYER, K . D . HASAN, S., s e e ZAINI, S . Z . A . HASEGAWA, Y., Integrability theorems for Jacobi series and Parseval's formulae 37(1975), HASSE, H., Über den algebraischen Funktionenkörper der Fermatschen Gleichung 13 (1949/50), HATVANI, L., On the stability of the zero solution of certain second order nonlinear differential equations 32 (1971), On the strong stability by Lyapunov's direct method .37 (1975), Attractivity theorems for nonautonomous systems of differential equations 40 (1978), On partial asymptotic stability and instability. I 45(1983), On partial asymptotic stability and instability. II 46 (1983), Onpartialasymptoticstabilityandinstability.nl 49(1985), HATVANI, L. and TERJÉKI, J., Stability properties of the equilibrium under the influence of unbounded damping 48 (1985), HAUPT, O., Über die ebenen Bogen der linearen Ordnung Drei 13 (1949/50), HAUSCHILD, K. und POLLAK, GY., Über ein Problem von L. Rédei 26 (1965), HEGEDÜS, J., On the problem of the choice of first approximants in a twosided iteration method 39(1977), 18 213—240 195—207 1—9 241—251 271—283 219—231 143—156 157—167 187—200 153—162 231—232 273—289 HEGEDŰS, J., see Ковач, Ю . И. HEGEDŰS, М., New generalization of Banach's contraction principle 42 (1980), 87—89 HEINIG, G., see Хайниг, Г. HEINS, М., Concerning the uniqueness lemma for absolutely continuous functions 39 (1977), 93—94 s e e DANCS, S . HEINZER, W . , s e e GILMER, R . HELD, D . , O n abelian subgroups of a n infinite 2-group 27 (1966), HELTON, J. W., Operators unitary in an indefinite metric and linear fractional transformations 32(1971), 97—98 261—266 see DOUGLAS, R . G . HERMAN, R . H., Some remarks on expectations 31 (1970), 125—128 HERRERO, D . A . , O n t h e i n v a r i a n t s u b s p a c e l a t t i c e 1+co* 35(1973), 217—223 On the invariant subspace lattice 1 +co* (Corrigendum) Universal quasinilpotent operators Quasisimilar operators with different spectra HERRMANN, C , Affine algebras in congruence modular varieties A parameter for subdirectly irreducible modular lattices with four generators HESS, P., A remark on the cosine of linear operators HEWITT, E., A new proof of Plancherel's theorem for locally compact Abelian groups HILDEBRANDT, S., Numerischer Wertebereich und normale Dilatationen . . HILLE, E., On the differentiability of semi-group operators On a class of adjoint functional equations Second order Briot—Bouquet differential equations 37(1975), 38(1976), 41(1979), 41(1979), 253—254 291—300 101—118 119—125 43(1981), 32 (1971), 169—179 267—269 HERMANN, P . Z . , see CORRÁDI, К . 24 (1963), 219—227 26 (1965), 187—190 12 В (1950), 19—24 34 (1973), 141—161 40(1978), 63—72 HING TONG, see LORCH, E . R . HIVELY, G. A., Wiener—Hopf operators induced by multipliers 37(1975), 63—77 HOFMANN, К . H . , see DAUNS, J . HOLBROOK, J. A. R., On the power-bounded operators of Sz.-Nagy and Foia? 29(1968), Operators similar to contractions 34 (1973), 299—312 163—168 HOLLAND, A . S . В . , SAHNEY, В. N . a n d TZÍMBALARÍO, J . , O n d e g r e e o f approximation of a class of functions by means of Fourier series 38 (1976), HOOVER, Т. В., Hyperinvariant subspaces for л-normal operators 32 (1971), HORVÁTH, J., The behavior of the Riesz representation theorem with respect to order and topology J 45 (1983), HORVÁTH, L., On empirical Prékopa processes .42 (1980), Empirical kernel transforms of parameter-estimated empirical processes 48(1985), 69—72 109—119 233—238 265—274 201—213 see CSÖRGŐ, S . HÖSSJER, G., Über die Randwerte beschränkter Funktionen Hosszú, M., On the functional equation of transitivity A generalization of the functional equation and distributivity Notes on vanishing polynomials Über eine Verallgemeinerung der Distributivitätsgleichung 5 (1930/32), 15 (1953/54), 20 (1959), 21 (1960), 26 (1965), 55—55 203—208 67—80 108—110 103—106 НОТТА, G . С . , see KJSHORE, N . 15* 19 Hsu, L. C , Concerning the numerical integration of periodic functions of several variables 20 (1959), HUE, T. T. and SZÁSZ, F., On the radical classes determined by regularities 43(1981), HUHN, A. P., Schwach distributive Verbände. I 230—233 131—139 33 (1972), 297—305 On the representation of distributive algebraic lattices. I 45 (1983), Schwach distributive Verbände. II 46 (1983), On non-modular «-distributive lattices: The decision problem for identities in finite «-distributive lattices 48(1985), 239—246 85—98 215—219 s e e GRÄTZER, G . HURUYA, T., Decompositions of completely bounded maps 50(1986), HUPPERT, B., Subnormale Untergruppen und p-Sylowgruppen 22 (1961), • 183—189 46—61 I ISKANDER, A. A., The radical in ring varieties 39 (1977), 291—301 Varieties of algebras as a lattice with an additional operation ISTRÁJESCU, V., A remark on a class of power-bounded operators in Hilbert space ITÖ, N., Remarks on factorizable groups On a theorem of L. Rédei and J. Szép concerning /»-groups On the factorizations of the linear fractional group LF{2, p")... On the number of isomorphic classes of nonnormal subgroups in a finite group On primitive permutation groups Über die Gruppen PSLn(q), die eine Untergruppe von Primzahlindex enthalten A theorem on factorizable groups 49(1985), 3—27 29(1968), 14(1951/52), 14 (1951/52), 15 (1953/54), 311—312 83—84 186—187 79—84' 16(1955), 16 (1955), 9—11 207—228 21 (1960), 33 (1972), 206—217 49—52 17(1956), 23(1962), 76—82 168—170 IZUMINO, S. and KATO, Y., The closure of invertible operators on a Hilbert space 49(1985), 321—327 see SZÉP, J . ITŐ, N. und SZÉP, J., Über nichtauflösbare endliche Gruppen Über die Quasinormalteiler von endlichen Gruppen IVANOV, V., see FRTOU, S. J JAFARIAN, A. A. and RADJAVI, H., Compact operator ranges and reductive algebras 40 (1978), 73—79 JAIN, P . K . , see AHMAD, K . JAIN, P. K. and AHMAD, K., Best approximation in Banach spaces with unconditional Schauder decompositions JAJTE, R., General theory of summability. I JAKUBÍK, J., On the Jordan—Dedekind chain condition Über Teilbünde der /-Gruppen Die Jordan—Dedekindsche Bedingung im direkten Produkt von geordneten Mengen Modular lattices of locally finite length 20 42 (1980), 26 (1965), 16 (1955), 23(1962), 275—276 107—116 266—269 249—254 24 (1963), 37 (1975), 20—23 79—82 JANAS, J., Note on ä theorem of Dieudonné JANKO, Z., Über das Rédeisehe schiefe Produkt vom Typ G o r Über das nicht ausgeartete Rédeisehe schiefe Produkt Gor Eine Bemerkung über die <P-Untergruppe endlicher Gruppen 47(1984), 21 (1960), 21 (1960), 23 (1962), 461—464 4—6 144—153 247—248 JÄRAI, A - , see DARÔCZY, Z . JARNÎK, V., Une remarque sur les approximations diophantiennes linéaires JESSEN, B., Über die Verallgemeinerungen des arithmetischen Mittels Über eine allgemeine Ungleichung zwischen Mittelwerten JEZEK, J. and KEPKA, T., Simple semimodules over commutative semirings Joô, I., A remark on convergence systems in measure — A simple proof for von Neumann's minimax theorem Upper estimates for thee igenfunctions of the Schrödinger operator Remarks to a paper of V. Komornik 12 B (1950), 82—86 5 (1930/32), 108—116 6 (1932/34), 67—79 45 (1983), 38 (1976), 42 (1980), 44 (1982), 47 (1984), 17—27 301—303 91—94 87—93 201—204 see ALIMOV, S. A . Joô, I. and KOMORNIK, V., On the equiconvergence of expansions by Riesz bases formed by eigenfunctions of the Schrödinger operator 46 (1983), Joô, I. and STACHÔ, L. L., TWO remarks on pointwise periodic topological mappings 46 (1983), Joô, I. and Tandori, K., A remark on convergence of orthogonal series . . 38 (1976), 357—375 377—379 305—309 JORDAN, CH., O n t h e M o n t m o r t - M o i v r e P r o b l e m 1 (1922/23), 1 4 4 — 1 4 7 Sur un cas généralisé de la probabilité des épreuves répétées Sur des polynomes analogues aux polynomes de Bernoulli et sur des formules de sommation analogues à celle de MacLaurin— Euler Le théorème de probabilité de Poincaré, généralisé au cas de plusieurs variables indépendantes Sur l'approximation d'une fonction à plusieurs variables Remarques sur la loi des erreurs Complément au théorème de Simmons sur les probabilités JUHÂSZ, R., Systems of equations over semigroups JULIA, G-, Remarques sur « la meilleure approximation en moyenne » et sur le problème de Dirichlet JÜRGENSEN, H., Zur Charakterisierung von Vereinigungserweiterungen von Halbgruppen 3 (1927), 193—210 4 (1928/29), 130—150 7 (1934/35), 103—111 8 (1936/37), 205—225 10 (1941/43), 112—133 11 (1946/48), 19—27 31 (1970), 253—257 4 (1928/29), 217—226 38(1976), 73—78 K KAHANE, J.-P., Sur la structure circulaire des ensembles de points limites des sommes partielles d'une série de Taylor 45(1983), KAISER, H. K., Über das Interpolationsproblem in nichtkommutativen Ringen 36 (1974), KAISER, H. K., and MÀRKI, L-, Remarks on a paper of L. Szabô and A. Szendrei 42 (1980), 247—251 271—273 95—98 KAKUTANI, S., see DVORETZKY, A . KALMÂR, L., Zur Theorie der abstrakten Spiele Über die Abschätzung der Reihen 4 (1928/29), 65—85 Koeffizientensumme Dirichletscher 4 (1928/29), 155—181 21 KALMÁR, L . , E i n e B e m e r k u n g z u r E n t s c h e i d u n g s t h e o r i e Über die mittlere Anzahl der Produktdarstellungen der Zahlen. (Erste Mitteilung.) Ein Beitrag zum Entscheidungsproblem Ein Beweis des Ruffini—Abelschen Satzes Über einen Löwenheimschen Satz Über die Axiomatisierbarkeit des Aussagenkalküls On the possibility of definition by recursion Another proof of the Gödel—Rosser incompletability theorem. 4 (1928/29), 2 4 8 — 2 5 2 5 (1930/32), 5 (1930/32), 6 (1932/34), 7 (1934/35), 7 (1934/35), 9 (1938/40), 12 A (1950), 95—107 222—236 59—60 112—121 222—243 227—232 39—43 41 (1979), 33 (1972), 317--325 307--314 30 (1969), 27 (1966), 277--284 1--16 41 (1979), 29 (1968), 29 (1968), 127--132 199--206 207--212 29 (1968), 30 (1969), 30 (1969), 33 (1972), 39 (1977), 44 (1982), 45 (1983), 47 (1984), 271--282 99--106' 305--311 81—89 319--328 299--305 253--260 85--92 KÁTAI, I. and KOVÁCS, B., Kanonische Zahlensysteme in der Theorie der 42 (1980), quadratischen algebraischen Zahlen Multiplicative functions with nearly integer values 48 (1985), KÁTAI, I. and SZABÓ, J., Canonical number systems for complex integers . 37 (1975), 99--107 221--233 255--260 KALOUJNINE, L . , see KRASNER, M . KAN, CHARN-HUEN, On Fong and Sucheston's mixing property of operators in a Hilbert space KAPP, K. M., Bi-ideals in associative rings and semi-groups KAPPE, W. P., Über gruppentheoretische Eigenschaften, die sich auf ¿-Produkte übertragen KARLJN, S., Generalized Bernstein inequalities KÁSZONYI, L., A characterization of binary geometries of types K(3) and K(4) KÁTAI, I-, O n t h e s u m £ <#(/(«)) On a classification of primes On oscillation of the number of primes in an arithmetical progression Some algorithms for the representation of natural numbers Some results and problems in the theory of additive functions On random multiplicative function Change of the sum of digits by multiplication Additive functions with regularity properties On arithmetic functions with regularity properties On additive functions satisfying a congruence s e e CORRADI, K . A . see DARÓCZY, Z . see ERDŐS, P. KATO, Y . , see IZUMDMO, S. KAUFMAN, R., A type of extension of Banach spaces A problem on lacunary series KELLER, O.-H., Darstellungen von Restklassen (mod ri) als Summen von zwei Quadraten KELLOGG, O. D., Some notes on the notion of capacity in potential theory 27 (1966), 29 (1968), 163--166 313--316 191--192 25(1964), 4 (1928/29),, 1-- 5 KEPKA, T . , s e e JEZEK, J . KÉRCHY, L., On C'0-operators with property (P) On p-weak contractions On the commutant of C u -contractions On invariant subspace lattices of Cii-contractions Injection-similar isometries 22 42 (1980), 42 (1980), 43(1981), 43 (1981), 44 (1982), 109--116 281--297 15--26 281--293 157--163 KÉRCHY, L., Approximation and quasisimilarity 48 (1985), 227—242 see BERCOVICI, H . KERÉKJÁRTÓ, B., AZ analysis és geometria topologiai alapjairól. (Sur les fondements topologiques de l'Analyse et de la Géométrie.) Remarques sur des propriétés topologiques Sur les familles de surfaces et de courbes Involutions et surfaces continues (Première communication) Involutions et surfaces continues (Deuxième communication) The plane translation theorem of Brouwer and the last geometric theorem of Poincaré Démonstration élémentaire du théorème de Jordan sur les courbes planes Über die fixpunktfreien Abbildungen der Ebene Topologische Charakterisierung der linearen Abbildungen Ergänzung zu meinem Aufsatz: Topologische Charakterisierung der linearen Abbildungen Über reguläre Abbildungen von Flächen auf sich Über die regulären Abbildungen des Torus Démonstration nouvelle d'un théorème de Klein et Poincaré Sur l'indice des transformations analytiques Bemerkung über reguläre Abbildungen von Flächen Sur les groupes transitifs de la droite 7 (1934/35), 58—59 7(1934/35), 65—75 7(1934/35), 76—84 7 (1934/35), 160—162 7 (1934/35), 163—172 7 (1934/35), 206—206 10 (1941/43), 21—35 KERLIN, E . a n d LAMBERT, A . , Strictly cyclic s h i f t s o n I* 3 5 (1973), KERTÉSZ, A., On a theorem of Kulikov and Dieudonné Systems of equations over modules Correction to my paper "Systems of equations over modules"... : On independent sets of elements in algebra Noethersche Ringe, die artinsch sind Eine neue Charakterisierung der halbeinfachen Ringe KERTÉSZ, A., FUCHS, L. and SZELE, T., On abelian groups whose subgroups are endomorphic images KERTÉSZ, A. and SZELE, T., On abelian groups every multiple of which is a direct summand Abelian groups every finitely generated subgroup of which is an endomorphic image KHAN, R. S., On power series with positive coefficients 15 (1953/54), 61—69 18(1957), 207—234 19 (1958), 251—252 21 (1960), 260—269 31 (1970), 219—221 34 (1973), 169—170 1 (1922/23), 2 (1924/26), 2 (1924/26), 3 (1927), 3 (1927), 46—54 157—161 162—166 49—67 242—249 4(1928/29), 86—102 5(1930/32), 56—59 6 (1932/34), 226—234 6 (1932/34), 235—262 16 (1955), 87—94 77—88 14 (1951/52), 157—166 15 (1953/54), 70—76 30 (1969), 255—257 KHARAZOV, D . F . , see X a p a 3 o a , J \ . <b. KHAZAL, R. R., Multiplicative periodicity in rings 41 (1979), Classes of universal algebras, their non-factors and periodic rings 43 (1981), KIM, Kl HANG and ROUSH, F. W., Counting additive spaces of sets 40 (1978), Quasi-varieties of binary relations 40 (1978), 133—136 295—299 81—87 89—91 KISHORE, N . a n d ADHIKARY, D . N . , I n d e p e n d e n c e of t h e c o n d i t i o n s of associativity in ternary operations 33 (1972), Dependence of associativity conditions for ternary operations . . . 40 (1978), KISHORE, N . a n d HOTTA, G . G , O n | # , / > „ | s u m m a b i l i t y f a c t o r s KISS, E. W., Term functions and subalgebras KTTTANEH, F., Some characterizations of self-adjoint operators • KLEE, V., The generation of affine hulls 3 1 (1970), : . 47 (1984), 47(1984), . 2 4 (1963), 275—284 285—290 9—12 303—306 441—444 60—81 23 KLUG, L., Einige Sätze über Kegelschnitte 1 (1922/23), Über konjugierte Kegelschnitt-tripel 2 (1924/26), KLUKOVITS, L., On commutative universal algebras 34 (1973), Hamiltonian varieties of universal algebras 37(1975), The independence of the distributivity conditions in groupoids . . 49 (1985), 187—194 167—177 171—174 11—15 93—100 KNAPOWSKI, S., s e e ALEXITS, G . KNOEBEL, A., The finite interpolation property for small sets of classical polynomials 44(1982), KOCHENDÖRFFER, R., Hallgruppen mit ausgezeichnetem Repräsentatensystem 21 (1960), KOEHLER, J., Some torsion free rank two groups 25 (1964), 287—297 218—223 186—190 KOGALOVSKÍ, S . R . , see BRODSKII, S . D . KOKSMA, J. F. and SALEM, R., Uniform distribution and Lebesgue integration 12 В (1950), 87—96 KOLLÁR, J., Automorphism groups of subalgebras; a concrete characterization 40(1978), 291—295 KOLYADA, V. I., see Коляда, В. И. KOMAL, В . S-, s e e GUPTA, D . К . KOMLÓS, J . a n d RÉVÉSZ, P . , R e m a r k t o a p a p e r of G a p o s h k i n 3 3 (1972), 237—241 KOMLÓSI, S., Mean ergodicity in G-semifinite von Neumann algebras KOMORNIK, V., On the Korovkin closure Lower estimates for the eigenfunctions of the Schrödinger operator : Upper estimates for the eigenfunctions of higher order of a linear differential operator Local upper estimates for the eigenfunctions of a linear differential operator Singular perturbations of singular systems see Joó, I. KÖNIG, D., Sur les rapports topologiques d'un problème d'analyse combinatoire Über eine Schlussweise aus dem Endlichen ins Unendliche Über trennende Knotenpunkte in Graphen (nebst Anwendungen auf Determinanten und Matrizen) KORÁNYI, Ä., Note on the theory of monotone operator functions On a theorem of Löwner and its connection with resolvents of selfadjoint transformations Я'-spaces on compact nilmanifolds 41 (1979), 43 (1981), 327—334 41—43 44(1982), 95—98 45 (1983), 261—271 48(1985), 49 (1985), 243—256 345—352 3 _ 2 (1924/26), 32—38 3 (1927), 121—130 5 (1930/32), 155—179 16 (1955), 241—245 17 (1956), 63—70 34 (1973), . 175—190 KÖRMENDI, S., Canonical number systems in ß(K2) 50(1986), KORVIN, G-, On a theorem of L. Rédei about complete oriented graphs 27 (1966), 351—357 99—104 KÓSA, A., On the homotopy type of some spaces occurring in the calculus of variations 45(1983), 273—277 KOUBEK, V., Sublattices of a distributive lattice 41 (1979), 137—150 47 (1984), 71—83 Subalgebra lattices, simplicity and s e e DEMLOVÁ, M . KOVACH, YU. I., see Ковач, Ю . И . KOVÁCS, В . , see KÁTAI, I . 24 rigidity KOVÁCS, I., Un complément à la théorie de 1'« intégration non commutative» Sur certains automorphismes des algèbres hilbertiennes Ergodic theorems for gages Dilation theory and one-parameter semigroups of contractions . . 21 (1960), 22 (1961), 24(1963), 45 (1983), 7—11 234—242 103—118 279—2101 48 (1985), 257—259' 3 8 (1976), 79—82 s e e FOIA§, C . KOVÁCS, I . a n d MCMILLEN, W . R . , O n t h e u n i t a r y r e p r e s e n t a t i o n s o f c o m - pact groups KOVÁCS, I . a n d MOCANU, G H . , U n i t a r y d i l a t i o n s a n d C * - a I g e b r a s KOVÁCS, I. and Szűcs, J., Ergodic type theorems in von Neumann algebras 27 (1966), A note on invariant linear forms on von Neumann algebras 30(1969), KOVÁCS, L. G., On the existence of Baur-soluble groups of arbitrary height 26 (1965), 233—246 35—38 143—144 see a n d NEUMANN, B . H . KOVÁCS, L. G. and NEUMANN, B. H., An embedding theorem for some countable groups KOVARIK, Z. V., Similarity and interpolation between projectors KŐVÁRY, T., Asymptotic values of entire functions of finite order with density conditions KRABBE, G. L., Integration with respect to operator-valued functions 26(1965), 39 (1977), 139—142 341—351 26 (1965), 22(1961), 233—238. 301—319' 50 (1986), 253—286 KRÁLIK, D . , s e e ALEXITS, G . KRÁMLI, A . , see BOGNÁR, J . KRASNER, M., Abstract Galois theory and endotheory. I KRASNER, M. et KALOUJNINE, L., Produit complet des groupes de permutations et problème d'extension de groupes. I Produit complet de groupes de permutations et problème d'extension de groupes. H Produit complet de groupes de permutations et problème d'extension de groupes, m 13 (1949/50), 208—230' 14(1951/52), 39—66 14 (1951/52), 69—82 KRAUSS, P . H . , see CLARK, D . M . KREÏN, M. G-, see KpefiH, M. T. KREÏN, M. G. und LANGER, H., Über die ß-Funktion eines ji-hermitischen Operators im Räume 17« Analytic matrix functions related to operators in the space IIx KRISTÓF, J., Ortholattis linéarisables C*-norms defined by positive linear forms KRISZTIN, T., On the convergence of solutions of functional differential equations Convergence of solutions of a nonlinear integrodifferential equation arising in compartmental systems KROÓ, A., On the unicity of best Chebyshev approximation of differentiable functions KROTOV, V. G., Note on the convergence of Fourier series in the spaces AZ KROTOV, V. G. and LEINDLER, L., On the strong summability of Fourier series and the classes fl" KÜHNE, R., Minimaxprinzipe für stark gedämpfte Scharen KULBACKA, M., Sur l'ensemble des points de l'asymétrie approximative 34(1973), 43(1981), 49 (1985), 50 (1986), 191—230» 181—205 387—395 427—432 43 (1981), 45—54 47 (1984), 471—485 47(1984), 41 (1979), 377—389 335—338- 40(1978), 40 (1978), 21 (1960), 93—98 93—98 90—95 ' KUMAR, A . , see GUPTA, D . K - 25 KUMAR, R . D . CH., s e e SINGH, R . K . KÜMMERER, B . a n d NAGEL, R . , M e a n e r g o d i c s e m i g r o u p s o n W * - a l g e b r a s 4 1 (1979), Kuo, C. T. and THOMPSON, R. C., Doubly stochastic, unitary, unimodular, and complex orthogonal power embeddings KUREPA, S., A cosine functional equation in Banach algebras KUROSH, A. G-, see Kypom, A. T. KÜRSCHAK, J., Über das identische Verschwinden der Variation Eine Verallgemeinerung von Moivres Problem in der Wahrscheinlichkeitsrechnung Rösselsprung auf dem unendlichen Schachbrette Eine Ergänzung zur Abhandlung von Herrn L. La Paz über Variationsprobleme, für welche die Extremalflächen Minimalflächen sind Die Irreduzibilität einer Determinante der analytischen Geometrie 44 (1982), 23(1962), 1 (1922/23), 151—159 345—357 255—267 6—13 1 (1922/23), 139—143 4 (1928/29), 12—13 5 (1930/32), 246—246 6 (1932/34), 21—26 KUZHEL', A . B . , s e e KyaceJU., A . B . KY, N. X., A Bohr type inequality on abstract normed linear spaces and its applications for special spaces 48(1985), On approximation by arbitrary systems in ¿'-spaces 49(1985),' 261—267 211—219 L LAITERER, YU., see r o x 6 e p r , H . I J . LAJOS, S., Generalized ideals in semigroups A criterion for Neumann regularity of normal semigroups A note on completely regular semigroups On semigroups which are semilattices of groups On (m, n)-ideals in regular duo semigroups Characterization of completely regular inverse semigroups A note on semilattices of groups Characterizations of completely regular elements in semigroups . . Contributions to the ideal theory of semigroups LAJOS, S. and SzAsz, F., Some characterizations of two-sided regular rings Bi-ideal in associative rings 22 (1961), 217—222 25 (1964), 172—173 28(1967), 261—265 30(1969), 133—136 31 (1970), 179—180 31 (1970), 229—231 33 (1972), 315—317 40 (1978), • 297—300 42(1980), 117—120 31 (1970), 223—228 32 (1971), 185—193 LAKSER, H . , s e e CHANDRAN, V . R LAKSER, H . , see GRÄTZER, G . LALLEMENT, G- and PETRICH, M-, A generalization of the Rees theorem in semigroups 30(1969), 113—132 LAMBERT, A . , s e e KERLIN, E . LÄNCZOS, K., Zur Anwendung des Variationsprinzips in der allgemeinen Relativitätstheorie 2 (1924/26), LANGER, H., Über eine Klasse nichtlinearer Eigenwertprobleme 35 (1973), Factorization of operator pencils 38 (1976), On measurable Hermitian indefinite functions with a finite number of negative squares 45(1983), 182—192 73—86 83—96 281—292 see K R Ö N , M . G . LANGER, H. und KREIN, M. G., Über die Q-Funktion eines s-hermitischen Operators im Räume IT* 34(1973), LANGER, H. and TEXTORIUS, B., Generalized resolvents of contractions . . . 44 (1982), 26 191—230 125—131 LA PAZ, L., Variation problems of which the extremals are minimal surfaces 5 (1930/32), 199—207 LASSER, R., Lacunarity with respect to orthogonal polynomial sequences 47 (1984), 391—403 LÂZÂR, D., Sur l'approximation des courbes convexes par des polygones 11 (1946/48), 129—132 LEA, R - , see GILMER, R . LEBOW, A. and SCHREIBER, M., Polynomials over groups and a theorem of Fejér and Riesz 44 (1982), LEE, A. and TÔTH, G., On variation of spaces of harmonic maps into spheres 46 (1983), 335—344 127—141 LEE SIN-MIN, On axiomatic characterization of ^ - s e m i r i n g s 337—343 32 (1971), Equational classes of rings generated by zero rings and Galois fields 37 (1975), VAN LEEUWEN, L. C , Über die zulässigen Ideale in Szépschen Ringerweiterungen 26(1965), On the endomorphism ring of direct sums of groups 28 (1967), Square extensions of finite rings 29(1968), Remarks on endomorphism rings of torsion free abelian groups 32 (1971), : — On p-pure subgroups of torsion-free cotorsion groups 35(1973), Rings with e as a radical element 38 (1976), Complements of radicals in the class of hereditarily artinian rings 39(1977), On questions of hereditariness of radicals 47(1984), LEIBOWITZ, G. M., Spectra of finite range Cesàro operators 35 (1973), LEINDLER, L., Ü b e r die orthogonalen Polynomsysteme Zur Frage der Approximation durch orthonormierte Polynomsysteme Über die absolute Summierbarkeit der Orthogonalreihen Über die starke Summierbarkeit der Orthogonalreihen Abschätzungen für die Partialsummen und für die (R, Â(n), l)Mittel allgemeiner Orthogonalreihen Über die Rieszschen Mittel allgemeiner Orthogonalreihen Über verschiedene Konvergenzarten trigonometrischer Reihen... Über Konvergenz- und Summationseigenschaften von Haarschen Reihen Über verschiedene Konvergenzarten der trigonometrischen Reihen. n (Die Entwicklung der Ableitungen) Über die Unverschärfbarkeit eines Satzes von Orlicz bezüglich vollständige Systeme Über verschiedene Konvergenzarten trigonometrischer Reihen. IH On the strong summability of orthogonal series On the absolute summability factors of Fourier series Corrigendum to the paper: On the strong summability of orthogonal series On summability of Fourier series Note on power series with positive coefficients On embedding of classes H " Generalization of inequalities of Hardy and Littlewood On the strong approximation of orthogonal series On some inequalities concerning series of positive terms On a certain converse of Holder's inequality. II 83—86 149—158 21—76 247—260 345—350 95—106 97—102 313—318 307—319 27—29 21 (1960), 19—46 22(1961), 22 (1961), 23(1962), 129—132 243—268 82—91 23 (1962), 24 (1963), 25(1964), 227—236 129—138 233—249 26(1965), 19—30 26(1965), 117—124 26(1965), 27 (1966), 27 (1966), 28(1967), 245—248 205—216 217—228 323—336 28 (1967), 29(1968), 30 (1969), 31 (1970), 31 (1970), 32 (1971), 33(1972), 33(1972), 337—338 147—162 259—261 13—31 279—285 41—50 11—14 217—223 27 LEINDLER, L., On a generalization of Bernoulli's inequality On imbedding theorems Remarks on inequalities of series of positive terms On the strong approximation of orthogonal series Note on integral inequalities An integrability theorem for power series On the strong approximation of Fourier series Generalization of a converse of Holder's inequality Imbedding theorems and appstrongroximation Strong approximation and generalized Zygmund class On the absolute Riesz summability of orthogonal series Limit cases in the strong approximation of orthogonal series 33 (1972), 34(1973), 35 (1973), 37 (1975), 37(1975), 38 (1976), 38(1976), 38(1976), 43 (1981), 43 (1981), 46 (1983), 48 (1985), 225—230 231—244 107—110 87—94 261—262 103—105 317—324 107—112 55—64 301—309 203—209 269—284 47(1984), 39 (1977), 371—375 95—102 24 (1963), 228—230 43(1981), 311—319 45(1983), 293—304 50 (1986), 99^104 32(1971), 101—107 50 (1986), 335—336 see CSERNYÁK, L . see KROTOV, V . G . LEINDLER, L. and MEIR, A., Embedding theorems and strong approximation LEINDLER, L. and NÉMETH, J., An integrability theorem for power series LEINDLER, L. und PÁL, L. G-, Über die Konvergenz von Partialsummen der Orthogonalreihen LEINDLER, L. and SCHWINN, H., Über die absolute Summierbarkeit der Orthogonalreihen On the strong and extra strong approximation of orthogonal series LEINDLER, L. and TANDORI, К., On absolute summability of orthogonal series LENARD, A., Probabilistic version of Trotter's exponential product formula in Banach algebras LÄNGER, H . , see DORNINGER, D . LENGVÁRSZKY, Zs., A note on minimal clones LENGYEL, В., On the spectral theorem of selfadjoint operators 9 (1938/40), 174—186 LENKEHEGYI, A . , see CZÉDLI, G . LENSKI, W., On strong approximation by logarithmic means of Fourier series 48 (1985), DE LEON, M. and SALGADO, M., Diagonal lifts of tensor fields to the frame bundle of second order 50(1986), 285—295 67—86 LEONT'EV, A . F., see Леонтьев, А . Ф. LERAY, J., Valeurs propres et vecteurs propres d'un endomorphisme complètement continu d'un espace vectoriel à voisinages convexes 12 В (1950), LŒBERMAU, A., Finite type representation of finite symmetric groups 38 (1976), Entropy of states of a gage space 40(1978), LINDEN, H., Zur Symmetrisierung gewisser rationaler Eigenwertaufgaben 49 (1985), LINDNER, CH. С., Extending mutually orthogonal partial latin squares . . . 32 (1971), 177—186 113—114 99—105 357—364 283—285 LIONS, J . L . , see FOIA?, C . LIPKA, ST., Über die Abgrenzung der Wurzeln von algebraischen Gleichungen 3(1927), 73—80 Über asymptotische Entwicklungen der Mittag-Lefflerschen Funktion £•«(*) 3(1927), 211—223 Zur Theorie der algebraischen Gleichungen mit positiven Koeffizienten 5 (1930/32), 69—77 28 LIPKA, ST., ZU den Verallgemeinerungen des Rolleschen Satzes Über die Descartessche Zeichenregel Über den Zusammenhang zweier Sätze der Funktionentheorie . . . 6 (1932/43), 180—183 7 (1934/35), 177—185 8 (1936/37), 160—165 LIVERPOOL, L . S . O . , see BAKER, I . N . LIZORKIN, P . I., see JtoopjCHH, I I . H . LOI, N. V. and WIEOANDT, R., Involution algebras and the Anderson— Divinsky—Sulinski property 50 (1986), 5—14 LOPEZ JR., A. M., A Rees matrix semigroup over a semigroup and its maximal right quotient semigroup 43 (1981), 65—70 LORCH, E. R., Functions of self-adjoint transformations in Hilbert space 7 (1934/35), 36—146 Return to the self-adjoint transformation 12 B (1950), 137—144 Compactification, Baire functions, and Daniell integration 24(1963), 204—218 LORCH, E . R . and HING TONG, Compactness, metrizability, and Baire iso- morphism LORENTZ, R. A. H. and REJTÖ, P. A., Some integral operators of trace class LOSERT, V-, Uniformly distributed sequences on compact, separable, nonmetrizable groups LOSONCZI, L., Bestimmung aller nichtkonstanten Lösungen von linearen Funktionalgleichungen Über eine neue Klasse von Mittelwerten LovÄsz, L., Direct product in locally finite categories Selecting independent lines from a family of lines in a space Self-dual polytopes and the chromatic number of distance graphs on the sphere LovAsz, L. and MARX, M. L., A forbidden substructure characterization of Gauss codes LÖWIG, H., Komplexe euklidische Räume von beliebiger endlicher oder transfiniter Dimensionszahl LOY, R. J., A note on the preceding paper by J. B. Miller A note on the existence of derivations LUBIN, A., ./-symmetric canonical models 35(1973), 1—6 36(1974), 91—105 40(1978), 107—110 25 (1964), 32 (1971), 33 (1972), 42 (1980), 250—254 71—81 312—322 121—131 45(1983), 317—323 38(1976), 115—119 7(1934/35), 1—33 28 (1967), 233—236 30(1969), 89—92 38 (1976), 121—126 LUH, JIANG, see CHUNG, L . O . LUMER, G., Remarks on M-th roots of operators 25 (1964), •— Spectral operators, hermitian operators, and bounded groups 25 (1964), LUMISTE, Ü., Bäcklund's theorem and transformation for surfaces V2 in E„ 50 (1986), 72—74 75—85 51—57 M MAGYAR, Z., Conditions for hermiticity and for existence of an equivalent C*-norm MAKAI, E., Bounds for the principal frequency of a membrane and the torsional rigidity of a beam MALKOWSKY, E., Toeplitz-Kriterien für Matrizenklassen bei Räumen stark limitierbarer Folgen Toeplitz-Kriterien für Klassen von Matrixabbildungen zwischen Räumen stark limitierbarer Folgen 46 (1983), 305—310 20 (1959), 33—35 48(1985), 297—313 50 (1986), 125—131 29 MANDELBROJT, S. et AGMON, S-, Une généralisation du théorème tauberien de Wiener MANNA, N. С. and MUKHOPADHYAY, S. N., Dini derivatives of semicontinuous functions. I MARCINKIEWICZ, J., Quelques remarques sur l'interpolation Sur la divergence des polynomes d'interpolation Sur une propriété du mouvement brownien MARCUS, S-, Sur une classe de fonctions définies par des inégalités, introduite par M. .A. Császár La mesure de Jordan et l'intégrale de Riemann dans un espace mesuré topologique 12 В (1950), 167—176 30 (1969), 8 (1936/37), 8 (1936/37), 9 (1938/40), 93—98 127—130 131—135 77—87 19(1958), 192—218 20(1959), 156—163 50 (1986), 37 (1975), 405—410 95—102 MASON, D. M., The asymptotic distribution of generalized Rényi statistics 48 (1985), MÁTÉ, A., Additive Ideale und unabhängige Mengen 25 (1964), Regressive and divergent functions on ordered and well-ordered sets 33(1972), 315—323 149—159 MARCZEWSKI, E . , s e e HARTMAN, S . MARIÓ, V., SKENDZIÓ, M . a n d TAKACI, A . , O n Stieltjes t r a n s f o r m o f d i s - tributions behaving as regularly varying functions MÁRKI, L., On locally regular Rees matrix semigroups see KAISER, H . K . MARKUS, A - S-, s e e М а р к у с , A . C . MARX, M . L., see LOVÁSZ, L . MASKEY, S- M . , see AHMAD, К . 285—293 see ERDŐS, P . see FODOR, G . , MÁTÉ, Е . , O n A p r o b l e m o f P . E r d ő s 30(1969), see Szűcs, J. MATOLCSI, T., Representations of groups by automorphisms of objects in a category 36(1974), Tensor product of Hilbert lattices and free orthodistributive product of orthomodular lattices 37 (1975), MATSAEV, V. I., see Мацаев, В. И. 301—304 249—257 263—272 MAUCLAIRE, J . - L . , O n a p r o b l e m o f K á t a i 3 6 (1974), 205—207 Sur une conjecture de Kátai MAURER, I. GY., Über im Endomorphismenringe einer abelschen Gruppe definierte unendliche Reihen und Produkte MAZHAR, S. M., On I С, l| k summability factors of infinite series MAZHAR, S- M. and Т о л к , V., Approximation by modified Szász operators 36(1974), 275—279 23 (1962), 27 (1966), 171—174 67—70 49 (1985), 257—269 MCCARTHY, C. A. and STAMPFLI, J. G-, On one-parameter groups and semi-groups of operators in Hilbert space 25 (1964), MCCARTHY, P. J., Homomorphisms of certain commutative lattice ordered semigroups 27(1966), MCENNIS, B. W., Purely contractive analytic functions and characteristic functions of non-contractions 41 (1979), Models for operators with bounded characteristic function 43(1981), MCFADDEN, R., On homomorphisms of partially ordered semigroups 28 (1967), Homomorphisms of partially ordered semigroups onto g r o u p s . . . 28(1967), 30 6—11 63—66 161—172 71—90 241—249 251—254 MCLAUGHLIN, J. R., The Denjoy—Luzin theorem on trigonometric series 35 (1973), 123—126 MCMILLEN, W . R . , s e e KOVÁCS, I . MEDVEGYEV, P . , see DANCS, S . MEENAKSHI, K. N., Proximity structures in Boolean algebras 27 (1966), 85—92 MEGYESI, L . , s e e CSÁKÁNY, В . see Медеши, Л. MEGYESI, L. und POLLÁK, G., Über die Struktur der Hauptidealhalbgruppen. I 29 (1968), Über die Struktur der Hauptidealhalbgruppen. П 39 (1977), 261—270 103—108 MEIR, A . , s e e LEINDLER, L . MEN'SHOV, D . , see М е н ь ш о в , Д . MERGELYAN, S. N . , see М е р г е л я н , С . H . MICHALSKI, J., Amalgamated free products of и-groups On some special limits of л-groups MIGLIORINI, F. and SZÉP, J., On a special decomposition of regular semigroups MIKOLÁS, M., Sur un produit infini Farey series and their connection with the prime number problem. I Farey series and their connection with the prime number problem. П On a class of infinite products whose value can be expressed in closed form Construction des families de fonctions partout continues non dérivables Mellinsche Transformation und Orthogonalität bei C(s, и); Verallgemeinerung der Riemannschen Funktionalgleichung von £(j). . . A simple proof of the functional equation for the Riemann zetafunction and a formula of Hurwitz ' Über die Charakterisierung der Hurwitzschen Zetafunktion mittels Funktionalgleichungen 49 (1985), 49 (1985), 63—70 71—88 40(1978), 121—128 12 A (1950), 68—72 13 (1949/50), 93—117 14(1951/52), 5—21 16 (1955), 58—62 17 (1956), 49—62 17 (1956), 143—174 18(1957), 261—263 19 (1958), 247—250 MILGRAM, A . N . , s e e GALLAI, T . MH.LER, J. В., Homomorphisms, higher derivations, and derivations on associative algebras 28(1967), MILOVANOVIÓ, G. V. and MILOVANOVIÓ, I. Í-, Some discrete inequalities of Opial's type 47(1984), 221—232 413-^17 MILOVANOVIÓ, I. 2.., see MILOVANOVIÓ, G . V . MIRON, R., Techniques of Finsler geometry in the theory of vector bundles MISES, R., Die Grenzschichte in der Theorie der gewöhnlichen Differentialgleichungen MiTROVié, D., A new proof of the formulas involving the distributions S* and S~ Behavior of the extended Cauchy representation of distributions MITSCH, H., Derivations and translation on /-semigroups Derivations on /-semigroups and formal languages MLAK, W., Decompositions and extensions of operator valued representations of function algebras On convergence properties of operators of class 49 (1985), 12 В (1950), 119—129 29—34 31 (1970), 50 (1986), 40 (1978), 43 (1981), 291—294 397—403 301—308 91—104 30 (1969), 33 (1972), 181—193 353—354 31 MLAK, W., Operator inequalities and related dilations 34 (1973), 273—278 MOCANU, G H . , see K o v Á c s , I., MOELLER, J. W., The inner function in Rota's model 29 (1968), 87—90 MOGYORÓDI, J . , O n m i x i n g s e q u e n c e s o f c - a l g e b r a s 29(1968), 187—198 see MoflbopoflH, Ü. MOGYORÓDI, J. and MÓRI, T. F., Necessary and sufficient condition for the maximal inequality of convex Young functions MONTEL, P., Sur les zeros des polynomes associés ä un polynome MOÓR, A., Metrische Dualität der allgemeinen Räume Entwicklung einer Geometrie der allgemeinen metrischen Linienelementräume Über die kovariante Ableitung der Vektoren Erweiterung des Begriffs der Räume skalarer und konstanter Krümmung Über affine Finslerräume von skalarer Krümmung Über projektive Veränderung der Übertragung in Linienelementmannigfaltigkeiten Gleichung der autoparallelen Abweichung in n-dimensionalen Linienelementräumen Objektentheoretische Untersuchungen über die kovarianten Ableitungen in allgemeinen Linienelementenräumen Über die kovariante Ableitung der Vektoren in verallgemeinerten Linienelementräumen Finslerräume von identischer Torsion Untersuchungen über äquivalente Variationsprobleme von mehreren Veränderlichen Otsukische Übertragung mit rekurrentem Masstensor Über die Veränderung der Länge der Vektoren in Weyl—Otsukischen Räumen MOÓR, A. und PINTER, L., Über äquivalente Variationsprobleme von mehreren Veränderlichen 45 (1983), 325—332 r 12 B (1950), 131—136 16(1955), 171—196 17 (1956), 19(1958), 85—120 238—246 21 (1960), 22 (1961), 53—77 157—189 24(1963), 119—128 25(1964), 266—282 29 (1968), 177—186 31 (1970), 34(1973), 129—139 279—288 37(1975), 40 (1978), 323—330 129—142 41 (1979), 173—185 28(1967), 271—280 MOÓR, A. und Soós, GY., Über affinzusammenhängende Mannigfaltigkeiten von Hyperflächenelementen, insbesondere deren Äquivalenz 16 (1955), 29—42 MOÓR, A. und TÖRÖK, A., Über zwei Extremaleigenschaften des Kreisbogens und der Kugelfläche 15 (1953/54), 157—163 MOORE m . B., see CLANCEY, K . MOORE I I I , B . a n d NORDGREN, E . A . , O n q u a s i - e q u i v a l e n c e a n d quasi- similarity Remark on the Jordan model for contractions of class C0 MORDELL, L. J., The minimum of a binary cubic form MÓRicz, F., Über die Rieszsche Summation der Orthogonalreihen : — On the order of magnitude of the partial sums of rearranged Fourier series of square integrable functions Inequalities and theorems concerning strongly multiplicative systems On the r-summation of orthogonal series A note on the strong r-summation of orthogonal series 32 34(1973), 37 (1975), 13 (1949/50), 23 (1962), 311—316 307—312 69—76 92—95 28 (1967), 155—166 29(1968), 30 (1969), 30 (1969), 115—136 49—68 69—76 MÓRICZ, F., On the convergence of Fourier series in every arrangement of the terms The central limit theorem for multiplicative systems The order of magnitude of the Lebesgue functions and summability of function series On the convergence properties of weakly multiplicative systems Probability inequalities of exponential type and laws of the iterated logarithm Moment inequalities for the maximum of partial sums of random fields Multiparameter strong laws of large numbers. I (Second order moment restrictions) Multiparameter strong laws of large numbers. II (Higher order moment restrictions) A general moment inequality for the maximum of partial sums of single series On the a.e. convergence of multiple orthogonal series. I (Square and spherical partial sums) Extension of Banach's principle for multiple sequences of operators Onthe |C, aM/2,jS>l/2|-summability of double orthogonal series On the restricted convergence and (C, 1, l)-summability of double orthogonal series Orthonormal systems of polynomials in the divergence theorems for double orthogonal series MÓRICZ, F. and TANDORI, K., On a problem of summability of orthogonal series On the divergence of multiple orthogonal series '.. On the a.e. convergence of multiple orthogonal series. II MORSE, M., Bilinear functional over C X C MOSTOWSKI, A., Eine Verallgemeinerung eines Satzes von M. Deuring... MUHLY, P . s . , F u n c t i o n a l g e b r a s a n d flows 31 (1970), 31 (1970), 33—41 43—51 34(1973), 38 (1976), 289—296 127—144 38(1976), 325—341 39(1977), 353—366 40(1978), 143—156 41 (1979), 339—349 44 (1982), 67—75 44 (1982), 45 (1983), 48(1985), 77—86 333—345 325—338 49(1985), 221—233 50 (1986), 367—380 29 (1968), 42(1980), 47 (1984), 12 B (1950), 16 (1955), 331—350 133—142 349—369 41—48 197—203 3 5 (1973), 111—121 MUKHOPADHYAY, S. N., On a property of approximate derivatives 33 (1972), MUKHOPADHYAY, S. N. and MANNA, N. G , Dini derivatives of semicontinuous functions. I 30 (1969), MÜLLER, P. H., Zu einer Spektralbetrachtung von Atkinson und Sz.-Nagy 17 (1956), 207—210 MÜLLER, V., O n J o r d a n m o d e l s o f C 0 - c o n t r a c t i o n s 93—98 195—198 40(1978), 309—313 Jordan models and diagonalization of the characteristic function 43 (1981), MÜLLER, W. B., Differentiations-Kompositionsringe 40(1978), MYSIOR, A., A remark on Gehér's theorem 40 (1978), 321—332 157—161 315—316 N NAGEL, R . , s e e KÜMMERER, B . NAGELL, T., Les points exceptionnels sur les cubiques NAGY, B., On cosine operator functions in Banach spaces Spectral mapping theorems for semigroups of operators A local spectral theorem for closed operators 16 21 (1960), 36 (1974), 38 (1976), 48 (1985), 173—180 281—289 343—351 339—350 33 NAGY, Р. Т., On the affine umbilical hypersurfaces On the theory of Finsler connections especially their equivalence On the indicatrix of orbits of 1-parameter subgroups in a homogeneous space Non-horizontal geodesies of a Riemannian submersion Geodesies of a principal bundle with Kaluza—Klein metric NAIMARK, M. A., On commuting unitary operators in spaces with indefinite metric On unitary group representation in spaces with indefinite metric NAKANO, H., On unitary dilations of bounded operators NAKATA, S., On the divergence of rearranged Fourier series of square integrable functions 36 (1974), 37 (1975), 107—109 331—338 41 (1979), 45 (1983), 48 (1985), 351—356 347—355 351—359 24(1963), 26(1965), 22 (1961), 177—189 201—210 286—288 32(1971), 59—70 NECKERMANN, L. and RUNCK, P. O., Über Approximationseigenschaften differenzierter Hermitescher Interpolationspolynome mit Jacobischen Abszissen 48 (1985), NÉMETH, J., Generalizations of the Hardy—Littlewood inequality — 361—373 32 (1971), 295—299 Generalizations of the Hardy—LittlewoodinequaIity.il 35(1973), Note on an embedding theorem 38(1976), Necessary and sufficient conditions for imbedding of classes of functions 40 (1978), Embedding theorems and strong approximation 48(1985), 127—134 353—358 317—326 375—378 s e e LEINDLER, L . NESSEL, R . J . , s e e DICKMEIS, W . NESSEL, R . J . , GÖRLICH, E . a n d TREBELS, W . , B e r n s t e i n - t y p e i n e q u a l i t i e s for families of multiplier operators in Banach space with Cesäro decompositions. I. General theory 34 (1973), 121—130 NESSEL, R . J. and VAN WICKEREN, E., O n the comparison of multiplier pro- cesses in Banach spaces NEUGEBAUER, С . J . , A t h e o r e m o n d e r i v a t i v e s 48(1985), 379—394 2 3 (1962), 79—81 2 1 (1960), 197—205 NEUMANN, В . H . , see BAUMSLAG, G . see KovÁcs, L. NEUMANN, В . H . a n d NEUMANN, H . , O n l i n k e d p r o d u c t s o f g r o u p s NEUMANN, H . , see NEUMANN, В . H . NEUMANN, J., Zur Einführung der transfiniten Zahlen Zur Prüferschen Theorie der idealen Zahlen 1 (1922/23), 199—208 2 (1924/26), 193—227 NÉVAI, G . P . , see FREUD, G . NEVANLINNA, R., Über die Anwendung einer Klasse von Integralgleichungen für Existenzbeweise in der Potentialtheorie — Über die Metrisierung der affinen Geometrie NIEDERREITER, H., Permutation polynomials in several variables On a paper of Blum, Eisenberg, and Hahn concerning ergodic theory and the distribution of sequences in the Bohr group NIELSEN, J., Einige Sätze über topologische Flächenabbildungen NIEMINEN, J., Derivations and translations on lattices The lattice of translations on a alttice NKISHIN, E. M., see Никишин, E. M. NKOL'sKd, S. M., see Никольский, С. M. 34 12 A (1950), 146—160 34 (1973), 297—300 33 (1972), 53—58 37 (1975), 7 (1934/35), 38 (1976), 39(1977), 103—108 200—205 359—363 109—113 K., Characterization of Lebesgue-type decomposition of positive : operators NÖBAUER, R., Rédei-Funktionen und ihre Anwendung in der Kryptographie NÖBAUER, W., Einige Bemerkungen über die Tschirnhaussche Transformation von Polynomidealen N o l l a u , V., Über Potenzen von linearen Operatoren in Banachschen Räumen — Über den Logarithmus abgeschlossener Operatoren in Banachschen Räumen NORDGREN, E. A., On quasi-equivalence of matrices over H°° The ring N* is not adequate NiSHio, see FONG, C 42(1980), 143—152 50(1986), 287—298 23(1962), 242—246 28(1967), 107—122 30 (1969), 34 (1973), 36 (1974), 161—174 301—310 203—204 39(1977), 115—119 30(1969), 23 (1962), 175—179 67—75 K. see MOORE, B . NORDGREN, E . A . , RADJABALIPOUR, M . , RADJAVI, H . a n d ROSENTHAL, P., Algebras intertwining compact operators NORDGREN, E . A . , RADJAVI, H . a n d ROSENTHAL, P., O n d e n s i t y of t r a n s i - tive algebras NUNKE, R. J., Slender groups O OBLAIH, R., Ein Beitrag zur Theorie der geometrischen Konstruktionen 14 (1951/52), 101—102 see ERDŐS,,P. OBRECHKOFF, N., Sur quelques propriétés des dérivées des fonctions d'une variable réelle 12 B (1950), 231—235 OKADA, M . a n d YABUTA, K . , A n i n e q u a l i t y f o r f u n c t i o n s 3 8 (1976), 145—148 OLSEN, C. L., Thin operators in a von Neumann algebra 35 (1973), Correction to "Thin Operators in a von Neumann Algebra" 36 (1974), OLUBUMMO, A., (0, /4)-semigroups on LP(G) commuting with translations are (C0) 46(1983), 211—216 377—378 323—328 O'MALLEY, M . , see GILMER, R . ONNEWEER, C. W., Differentiability for Rademacher series on groups 39 (1977), 121—128 ORE, Ö., Ein Problem von Dedekind 2 (1924/26), 15—17 Verallgemeinerung des vorstehenden Satzes von Herrn Bauer 2(1924/26), 72—74 OSTROWSKI, A., Über die Bedeutung der Jensenschen Formel für einige Fragen der komplexen Funktionentheorie 1 (1922/23), 80—87 ÔTA, S., On a representation of aC*alg ebra in a Lorentz algebra 39 (1977), 129—133 ÖZER, O., On lightly compact spaces A note on multifunctions 46(1983), 115—119 46(1983), 121—125 50(1986), 225—230 P DE PAGTER, B . , A n o t e o n integral o p e r a t o r s PÁL, J., Zur Topologie der Ebene PÁL, L. G-, On general multiplication of infinite series 1 (1922/23), 226—239 29 (1968), 317—330 31 (1970), 53—58 see LEINDLER, L . Pál, L. G. and Scihfp, F., On Haar and Schauder series 16» 35 PÄLES, ZS., Ingham—Jessen's inequality for deviation means 49 (1985), 131—142 PÄLFY, P. P., The arity of minimal clones 50 (1986), 331—333 PAP, E., A generalization of a theorem of Dieudonne for nonadditive set functions 50(1986), PARK, S. and RHOADES, B. E., Some general fixed point theorems 42 (1980), 159—167 299—304 see FRIED, E . PANZONE, R . , s e e COTLAR, M . PASTIJN, F . , U n i f o r m l a t t i c e s 4 2 (1980), 305—311 . . 4 4 (1982), 239—253 39(1977), 135—138 PAWELKE, S., Ein Satz vom Jacksonschen Typ für algebraische Polynome 33 (1972), 323—336 PASTIJN, F . a n d ROMANOWSKA, A . , I d e m p o t e n t d i s t r i b u t i v e s e m i r i n g s . I PATIL, D. J., Mean ergodic theorem in reflexive spaces PAULSEN, V. I., see DOUGLAS, R . G . s e e BUTZER, P . L . PAZDERSKI, G. und PROHASKA, L., Über die Existenz normaler Supplemente in endlichen Gruppen 36 (1974), PEAK, I., Über gewisse spezielle kompatible Klasseneinteilungen von Halbgruppen 21 (1960), see neaK, M. 239—247 346—349 PEARCY, C . , see BERCOVICI, H . see BROWN, A . see DECKARD, D . see DOUGLAS, R . G . see FOIA§, C . PEETRE, J., On an interpolation theorem of Foia? and Lions On interpolation functions On interpolation of Lp spaces with weight function Oninterpolationfunctions.il On interpolation functions. Ill PELIGRAD, C , Invariant subspaces of von Neumann algebras PELIGRAD, C. and ZSIDÖ, L., A Riesz decomposition theorem in (^-algebras PEPIS, J., Beiträge zur Reduktionstheorie des logischen Entscheidungsproblems... PERRON, O., Neuer Beweis zweier klassischer Sätze über Diophantische Approximationen PERSSON, L. E., An exact description of Lorentz spaces PETER, R., Contribution to recursive number theory Zum Begriff der reellen Zahl PETRICH, M., Homomorphisms of a semigroup onto normal bands The centroid of a semigroup 25 (1964), 27 (1966), 28 (1967), 29(1968), 30 (1969), 37 (1975), 255—261 167—171 61—70 91—92 235—239 273—277 34 (1973), 317—322 8(1936/37), 7—41 12 B (1950), 46 (1983), 9 (1938/40), 12 A (1950), 27 (1966), 35(1974), 125—130 177—198 233—238 239—245 185—196 135—154 see LALLEMENT, G . PETRICH, M. and REILLY, N. R., ¿'-unitary covers and varieties of inverse semigroups 46(1983), PETZ, D., On center-valued states of von Neumann algebras 43(1981), Ergodic theorems in von Neumann algebras 46 (1983), 59—72 219—228 329—343 s e e CECCHINI, C . PIERCE, R . S., s e e BEAUMONT, R . A . PIETSCH, A., /„-faktorisierbare Operatoren in Banachräumen 36 31 (1970), 117—123 PIGNO, L . , s e e CHAPMAN, K . B . s e e DRESSLER, R . E . PINTÉR, L . , see MOÓR, A . . PKLEY, A . F . , see FRIED, E . POLJAK, S. and TURZÍK, D., Some equivalent formulations of the intersection problem of finitely generated classes of graphs POLLÁK, G., Über die Struktur kommutativer Hauptidealringe Bemerkungen zur Holomorphentheorie der Ringe On the consequences of permutation identities On hereditarily finitely based varieties of semigroups Some sufficient conditions for hereditarily finitely based varieties of semigroups 41 (1979), 22(1961), 25 (1964), 34 (1973), 37 (1975), 357—364 62—74 181—185 323—333 339—348 50(1986), 299—330 47(1984), 2 (1924/26), 12 B (1950), 14 (1951/52), 18 (1957), 32 (1971), 55—59 129—133 199—203 144—144 23—28 335—343 34(1973), 301—316 26(1965), 30 (1969), 159—162 285—288 50 (1986), 17 (1956), 38(1976), 44 (1982), 15 (1953/54), 15 (1953/54), 16 (1955), 15—38 190—194 149—152 133—135 145—148 149—156 103—121 35(1973), 36(1974), 37(1975), 155—160 111—118 109—113 50 (1986), 421—425 see ÁDÁM, A . s e e HAUSCHILD, K . s e e M EGYESI, L . s e e noJiJiax, T . POLLÁK, GY. and STEINFELD, 0-, Characterizations of some classes of semigroups PÓLYA, G-, Über eine geometrische Darstellung der Fareyschen Reihe Remarks on power series Remarks on power series. (Rectification.) PRÉKOPA, A., On the compound Poisson distribution On logarithmic concave measures and functions Logarithmic concave measures with application to stochastic programming PROHASKA, L., Über die Existenz normaler Komplemente zu gewissen Halbgruppen Über Supplemente in endlichen Gruppen s e e PAZDERSKI, G . PRÖHLE, P., Does a given subfield of characteristic zero imply any restriction to the endomorphism monoids of fields? PrÁK, V., Eine Bemerkung zur Jordanschen Normalform von Matrizen An inclusion theorem for normal operators PuczYLOWSKi, E. R., A note on hereditary radicals PUKÁNSZKY, L., On a theorem of Mautner The theorem of Radon—Nikodym in operator-rings On the theory of quasi-unitary algebras PULTR, A., Isomorphism types of objects in categories determined by numbers of morphisms PUTNAM, C. R., Normal extension of subnormal operators Dissipative 7-self-adjoint operators and associated/-isometries... A connection between the unitary dilation and the normal extension of a subnormal contraction 37 Q QUACKENBUSH, R . W . , s e e GRÄTZER, G . QUINKERT, R., Über Schreiersche Gruppenerweiterungen und ihre Kommutatorgruppen : . . . 40(1978), Korrektur und Ergänzung zu meiner Arbeit 43 (1981), 327—345 105—106 R RÄcz, A., Sur les transformations de classe %><, dan* l'espace de Hilbert 28 (1967), 305—310 see ECKSTEIN, G . RADEMACHER, H., Die Reziprozitätsformel für Dedekindsche Summen... ' 12 B (1950), RADJABALIPOUR, M . , see FONG, C . K . 57—60 , s e e NORDGREN, E . RADJAVI, H., On minimal invariant manifolds and density of operator alge- • bras 47(1984), 113—115 see FONG, C . K . see JAFARIAN, A . A . see NORDGREN, E . A . RADJAVI, H. and ROSENTHAL, P., Hyperinvariant subspaces for spectral and n-normal operators RADÔ, T., Zur Theorie der mehrdeutigen konformen Abbildungen Bemerkung zu einem Unitätssatze der konformen Abbildung Sur la représentation conforme de domaines variables Über die Fundamentalabbildung schlichter Gebiete Über die konformen Abbildungen schlichter Gebiete Über den Begriff der Riemannschen Fläche Bemerkung über die Differentialgleichungen zweidimensionaler Variationsprobleme Geometrische Betrachtungen über zweidimensionale reguläre Variationsprobleme Sur l'aire des surfaces courbes Contributions to the Theory of Minimal Surfaces RADÔ, T . a n d YOUNGS, J . W . T . , O n u p p e r s e m i - c o n t i n u o u s c o l l e c t i o n s 32 (1971), 1 1922/23), 1 (1922/23), 1 (1922/23), 1 (1922/23), 2 (1924/26), 2 (1924/26), . 2 (1924/26), 121—126 55—64 101—103 180—186 240—251 47—60 101—121 147—156 2 (1924/26), 228—253 3 (1927), 131—169 6 (1932/34), 1—20 9 (1938/40), 2 3 9 — 2 4 3 RADOS, G., Ein Satz über Kongruenzen höheren Grades 2 (1924/26), 1—5 • Die quadratischen Reste zusammengesetzter Moduln 3 (1927), 1—6 Über die Dichtigkeit der Primzahlen einer arithmetischen Progression 5(1930/32), 90—94 Über zyklische orthogonale Substitutionen 9 (1938/40), 103—109 Über die Unabhängigkeit der Bedingungsgleichungen zwischen den Koeffizienten unitärer Substitutionen 9 (1938/40), 201—205 RAJAGOPAL, C. T., A series associated with Dirichlet's series 11 (1946/48), 201—206 RAJAGOPALAN, M., Fourier transform in locally compact groups 25 (1964), 86—89 RAKOWSKI, Z . M . , A c h a r a c t e r i z a t i o n o f c o m p a c t n e s s 4 3 (1981), 107—108 RAM, B., Integrability of Rees—Stanojevié sums 42 (1980), RAPCSAK, A., Theorie der Bahnen in Linienelementmannigfaltigkeiten und eine Verallgemeinerung ihrer affinen Theorie 16(1955), Metrische Charakterisierung der Finslerschen Räume mit verschwindender projektiver Krümmung 18 (1957), 153—155 38 251—265 192—204 RÉDEI, L . , E i n n e u e r Beweis d e s q u a d r a t i s c h e n R e z i p r o c i t ä t s s a t z e s : • Ein kombinatorischer Satz Über den Fundamentalsatz der Abelschen Gruppen von endlicher Ordnung i Zur Gaußischen Theorie der Reduktion binärer quadratischer Formen Bemerkung zu einer Arbeit von R. Fueter über die Klassenkörpertheorie Über einige merkwürdige Polynome in endlichen Körpern mit zahlentheoretischen Beziehungen Zur Theorie der Gleichungen in endlichen Körpern Über eindeutig umkehrbare Polynome in endlichen Körpern Über die Gleichungen dritten und vierten Grades in endlichen Körpern Bemerkung zu meiner Arbeit „Über die Gleichungen dritten und vierten Grades in endlichen Körpern" Elementarer Beweis und Verallgemeinerung einer Reziprozitätsformel von Dedekind Vereinfachter Beweis des Satzes von Minkowski—Hajós Über die Wertverteilung des Jacobischen Symbols Die Verallgemeinerung der Schreierschen Erweiterungstheorie... Die Existenz eines ungeraden quadratischen Nichtrestes mod p im Intervall 1, S~p Über die Ringe mit gegebenem Modul Äquivalent der Sätze von Kronecker—Hensel und von Szekeres für die Ideale des Polynomringes einer Unbestimmten über einem kommutativen Hauptidealring mit Primzerlegung Über die algebraischzahlentheoretische Verallgemeinerung eines elementarzahlentheoretischen Satzes von Zsigmondy Eine Bemerkung über die endlichen einstufig nichtkommutativen Gruppen Ein spezieller Diskriminantensatz über Polynome Die einstufig nichtregulären Ringe Über die quadratischen Zahlkörper mit Primzerlegung Ein Überdeckungssatz für endliche abelsche Gruppen im Zusammenhang mit dem Hauptsatz von Hajós Einige Teilbarkeitskriterien 1 (1922/23), 134—138 7 (1934/35), 39^3 10(1941/43), 109—111 10 (1941/43), 134—140 11 (1946/48), 37—38 11 (1946/48), 39—54 11 (1946/48), 63—70 11 (1946/48), 85—92 11(1946/48), 96—105 11 (1946/48), 184—190 12 B (1950), 13(1949/50), 13 (1949/50), 14 (1951/52), 236—239 21—35 242—246 252—273 15(1953/54), 12—19 15 (1953/54), 251—254 17 (1956), 198—202 19(1958), 98—126 19(1958), 20 (1959), 20(1959), 21 (1960), 127—128 234—237 238—244 1—3 26 (1965), 34(1973), 55—62 345—348 see SZÉP, J . RÉDEI, L . u n d STEINFELD, O . , G e g e n s e i t i g e S c h r e i e r s c h e Gruppenerweite- rungen 15 (1953/54), 243—250 RÉDEI, L. und STOHR, A., Über ein spezielles schiefes Produkt in der Gruppentheorie 15(1953/54), 7—11 RÉDEI, L . u n d SZELE, T . , D i e R i n g e „ e r s t e n R a n g e s " 1 2 A (1950), RÉDEI, L. und SZÉP, J., Verallgemeinerung der Theorie des Gruppenproduktes von Zappa—Casadio 16(1955), RÉDEI, L. und WEINERT, H. J., Ein Gleichverteilungssatz für Systeme homogener Linearformen 27 (1966), Verallgemeinerung eines Satzes über homogene Linearformen . . . 27 (1966), 18—29 165—170 41-^4 45—48 39 RÉDEI, L . B., An identity f o r Laguerre polynomials 37(1975), 115—116 RHCHARDT, H., Eine Aufspaltung von Windung und Krümmung in affin zusammenhängenden Räumen 21 (1960), 300—308 REUXY, N . R . , see PETRICH, M . REJTŐ, P . A . , see LORENTZ, R . A . H . REMPULSKA, L., Remarks on the strong summability of numerical and orthogonal series by some methods of Abel type VON RENTELN, M., Every subring R of N with A(D)<zR is not adequate RÉNYI, A., On a Tauberian theorem of O. Szász Integral formulae in the theory of convex curves Remarque à la note précédente On the geometry of conformai mapping On the measure of equidistribution of point sets A remark on the theorem of Simmons On random generating elements of a finite Boolean algebra On certain representations of real numbers and on sequences of equivalent events RÉVÉSZ, P., A convergence theorem of orthogonal series A new law of the iterated logarithm for multiplicative systems... 50 (1986), 39 (1977), 11 (1946/48), 11 (1946/48), 11 (1946/48), 12 B (1950), 13 (1949/50), 18 (1957), 22 (1961), 391—396 139—140 119—123 158—166 253—253 215—222 77—92 21—22 75—81 26(1965), 27 (1966), 34 (1973), 63—74 . 253—260 349—358 32 (1971), 43 (1981), 91—100 333—345 44 (1982), 359—364 47(1984), 465-^70 40(1978), 347—369 28(1967), 289—298 47(1984), 147—167 s e e CSÁKI, E . see Csörgő, M. see KOMLÓS, J . RHOADES, B. E., Spectra of some HausdorfiF operators Generalized Hausdorff matrices bounded on l" and c see PARK, S . RHOADES, B. E. and SHARMA, N. K., Spectral results for some Hausdorff matrices RHODIUS, A., Über numerische Wertebereiche und Spektralwertabschätzungen RICHMOND, B. and SZEKERES, G-, The Taylor coefficients of certain infinite products RICKERT, Y. Y., Positive definite contraction valued functions on locally compact abelian groups RIES, S. and STENS, R. L., A unified approach to fundamental theorems of approximation by sequences of linear operators and their dual versions RIESZ, F., Über subharmonische Funktionen und ihre Rolle in der Funktionentheorie und in der Potentialtheorie Sur le théorème de M. Egoroff et sur les opérations fonctionnelles linéaires Sur les valeurs moyennes du module des fonctions harmoniques et des fonctions analytiques Sur les suites de fonctions analytiques Sur la formule d'inversion de Fourier Sur la convergence en moyenne (Première communication) Sur la convergence en moyenne (Seconde communication) Über die linearen Transformationen des komplexen Hilbertschen Raumes 40 1 (1922/23), 87—100 2(1924/26), 18—26 2 (1924/26), 2 (1924/26), 3 (1927), 4 (1928/29), 4 (1928/29), 27—32 88—97 235—241 58—64 182—185 5(1930/32), 23—54 * RŒSZ, F., Sur l'existence de la dérivée des fonctions monotones et sur quelques problèmes qui s'y rattachent Über Sätze von Stone und Bochner Zur Theorie des Hilbertschen Raumes Sur les fonctions des transformations hermitiennes dans l'espace de Hilbert Sur le théorème de Jordan Sur la théorie ergodique des espaces abstraits Another proof of the mean ergodic theorem Rectification au travail «Sur la théorie ergodique des espaces abstraits » On a recent generalisation of G. D. Birkhoff's ergodic theorem RIESZ, F. und SZ.-NAGY, B., Über Kontraktionen des Hilbertschen Raumes RIESZ, M., Über die Summierbarkeit durch typische Mittel Sur la sommation des séries de Fourier Sur un théorème de la moyenne et ses applications Sur le problème des moments et le théorème de Parseval correspondant Sur les ensembles compacts de fonctions sommables Intégrales de Riemann—Liouville et potentiels Rectification au travail «Intégrales de Riemann—Liouville et potentiels» Remarque sur les fonctions holomorphes RINDLER, H., Uniformly distributed sequences in quotient groups ROCKENBAUER, M., On normal subgroups of semigroups with identity 5 (1930/32), 208—221 6 (1932/34), 184—198: 7 (1934/35), 34—38 7 (1934/35), 147—159 9 (1938/40), 154—162 10 (1941/43), 1—20 10 (1941/43), 75—76 10 (1941/43), 11 (1946/48), 10 (1041/43), 1 (1922/23), 2 (1924/26), 2 (1924/26), 141—141 193—200 202—205 18—31 104—113 114—126- 2 (1924/26), 209—225 6 (1932/34), 136—142 9 (1938/40), 1—42 9(1938)/40, 116—118 12 A (1950), 53—56 38 (1976), 153—156 39 (1977), 403—406 RODMAN, L . , see GOHBERG, I . ROGERS, D. D., Approximation by unitary and essentially unitary operators 39(1977), 141—151 4 3 (1981), 109—115 see BOULDIN, R . H . ROGERS, D . A . a n d WARD, J . D . , C „ - m i n i m a l p o s i t i v e a p p r o x i m a n t s ROGOSINSKI, W. W. and SZEGŐ, G. Extremum problems for nonnegative sine polynomials 12 B (1950), 112—124 ROMANOWSKA, A . , see PASTDN, F . ROSA, B. DE LA, A radical class which is fully determined by a lattice isomorphism 33(1972), 337—341 ROSENBERG, I. G-, Functionally complete algebras in congruence distributive varieties ' 43(1981), 347—352 ROSENBERG, I. G. and SZENDREI, Á., Submaximal clones with a prime order automorphism 49(1985), 29—48 ROSENOER, S., Note on operators of class C 0 (l) 46(1983), ROSENTHAL, E. J., A Jordan form for certain infinite-dimensional operators 41 (1979), 287—293 365—374 ROSENTHAL, P., see FONG, C . K . see NORDGREN, E . see RADJAVI, H . ROUSH, F . W . , see KIM, K I HANG ROVNYAK, J., The Hilbert matrix as a singular integral operator 31 (1970), 347—350 41 t RUDEANU, S., Logical dependence of certain chain conditions in lattice theory 25(1964), 209—217 16(1955), 160—164 Russu, G. I-, see Pyccy, T. H. RUZSA, I-, Ein axiomatischer Aufbau eines Systems der deontischen Logik 26 (1965), 253—268 RÜHS, F., Über ein spezielles Redeisches schiefes Produkt in der Gruppentheorie RUNCK, P . O . , see NECKERMANN, L . S SACHS, H., Einfacher Beweis des Frobeniusschen Fundamentalsatzes der Gruppentheorie für den Fall eines quadratfreien Exponenten 21 (1960), 309—310 SAHNEY, B . N . . see HOLLAND, A . S. B . SAITO, K., Automorphism groups of von Neumann algebras and ergodic type theorems 36(1974), SATTO, T., A theorem on boundary spectra 33 (1972), SAKS, S-, Sur l'aire des surfaces z=f(x, Y) 3 (1927), Sur une inégalité de la théorie des fonctions. 4 (1928/29), On Subharmonic functions 5 (1930/32), 119—130 101—104 170—176 51—55 187—193 SALEM, R . , see KOKSMA, J . F . SALGADO, M . , see DE LEON, M . SALINAS, N., Operators with essentially disconnected spectrum Ideals of commutators of compact operators Subnormal limits of nilpotent operators SALLAM, S-, Error bounds for certain classes of quintic splines S ANDIK, M. D., see Caanre, M. fl. SARASON, D., On spectral sets having connected complement On products of Toeplitz operators 33 (1972), 36 (1974), 37(1975), 50 (1986), 193—205 131—144 117—124 133—142 26 (1965), 35 (1973), 289—300 7—12 SASVÁRI, Z., On measurable functions with a finite number of negative squares 50 (1986), 359—363 SÁRKÖZY, A . , see ERDŐS, P . SAUER, N . , see BIRKENHEAD, R . SAUER, N. and STONE, M. G., Endomorphism and subalgebra structure; A concrete characterization The algebraic representation of semigroups and lattices; representing subsemigroups SCHAAR, G., Über ein spezielles dreifaches schiefes Produkt SCHAUDER, J., Über die Umkehrimg eines Satzes aus der Variationsrechnung SCHEIN, B. M., Bands of monoids 39(1977), 397—402 42(1980), 25 (1964), 313—323 143—148 4 (1928/29), 38—50 36 (1974), 145—154 SCHERER, K . , see BUTZER, P . L . SCHINZEL, A . et SZEKERES, G . , S u r u n p r o b l è m e d e M . P a u l E r d ő s 2 0 (1959), 221—229 SCHIPP, F., Über die Grössenordnung der Partialsummen der Entwicklung integrierbarer Funktionen nach W-Systemen Über die starke Summation von Walsh—Fourierreihen Über die Konvergenz von Reihen nach Produktsystemen On a generalization of the concept of orthogonality On a Paley-type inequality 28 (1967), 30 (1969), 35 (1973), 37 (1975), 45 (1983), 123—134 77—88 13—16 279—285 357—364 42 SCHIPP, F . , see FRIDLI, S. see PÁL, L . G . SCHMIDT, E. T., Universale Algebren mit gegebenen Automorphismengruppen und Unteralgebrenverbänden Über reguläre Mannigfaltigkeiten On /¡-permutable equational classes Remarks on finitely projected modular lattices The ideal lattice of a distributive lattice with 0 is the congruence lattice of a lattice 24 (1963), 31 (1970), 33 (1972), 41 (1979), 251—254 197—201 29—30 187—190 43 (1981), 153—168 47(1984), 131—146 31 (1970), 351—358 s e e CSÁKÁNY, B . s e e GRÄTZER, G . SCHMUDOEN, K., On commuting unbounded self-adjoint operators. I SCHNABL, R., Zum globalen Saturationsproblem der Folge der Bernsteinoperatoren SCHOENBERG, I. J., On Pólya frequency functions. H: Variationdiminishing integral operators of the convolution type SCHÖNBERGER, T., Ein Beweis des Petersenschen Graphensatzes SCHREIBER, M., Semi-Carleman operators see ANDERSON, W . N . 12 B (1950), 97—106 7(1934/35), 51—57 24 (1963), 82—87 . . . . . . . see LEBOW, A . SCHÜLER, L., Über die notwendigen Bedingungen beim zweidimensionalen Variationsproblem einfachster Art 5 (1930/32), 154—167 SCHULZ, D . , see BUTZER, P . L . SCHWARZ, ST., On a type of universal forms in discretely valued fields An elementary semigroup theorem and a congruence relation of Rédei Semigroups in which every proper subideal is a group On the index of imprimitivity of a nonnegative matrix A note on small categories with zero SCHWEITZER, M., Sur les produits infinis et le théorème d'Abel SCHWINN, H., On rate of approximation by orthogonal series On approximation by Euler means of orthogonal series 17 (1956), 19(1958), 21 (1960), 28 (1967), 35 (1973), 11 (1946/48), 48 (1985), 49 (1985), 5—29 1-4 125—134 185—190 161—164 139—146 417—430 283—294 s e e LEINDLER, L . SEBESTYÉN, Z., A weakening of the definition of C*-algebras 35 (1973), 17—20 On extendibility of *-representations from *-ideals — Moment theorems for operators on Hilbert space Moment problem for dilatable semigroups of operators On ranges of adjoint operators in Hilbert space r Restrictions of positive operators Moment theorems for operators on Hilbert space. II An elementary minimax theorem SEEGER A. and TREBELS, W., Some Fourier multiplier criteria for anisotropic fTUO-spaces SEGAL, I. E., The class of functions which are absolutely convergent Fourier transforms 40(1978), 44 (1982), 45 (1983), 46 (1983), 46 (1983), 47 (1984), 47 (1984), 169—174 165—171 365—376 295—298 299—301 101—106 457—459 48(1985), 431-^441 SEIBT, H., Z u r Quadratbildung von Polynomen 26 (1965), 163—170 Erweiterung von Halbgruppen durch wiederholte Quotienten-bildung. I 30 (1969), 137—156 12 B (1950), 157—161 43 SEIBT, H., Erweiterung von Halbgruppen durch wiederholte Quotientenbildung. H 35 (1973), SERRE, J . - P . , S u r u n t h é o r è m e d e T . Szele 195—206 1 3 (1949/50), 1 9 0 — 1 9 1 SHARMA, A . , s e e ALEXITS, G . SHARMA, N. K., Hausdorff operators 35 (1973), 165—167 SHARMA, S. D., Compact and Hilbert—Schmidt composition operators on Hardy spaces of the upper half-plane 46 (1983), SHENGWANG, W., On the spectral residuum of closed operators 47(1984), SHIELDS, A. L., On Möbius bounded operators 40 (1978), 197—202 117—129 371—374 s e e RHOADES, B . E . s e e BROWN, A . SICHLER, J . , s e e ADAMS, M . E . see FRIED, E . SIDON, S., Über die Fourier-Koeffizienten einer stetigen Funktion von beschränkter Schwankung Bemerkungen über Fourier- und Potenzreihen Eine Bemerkung über die Mittelwerte der Potenzreihen Über die Fourier-Konstanten der Funktionen der Klasse Lp für p>\ Über lakunäre trigonometrische Reihen Über Potenzreihen mit monotoner Koeffizientenfolge Über orthogonale Entwicklungen SIERPIIÍSKI, W., Sur une fonction non mesurable, partout presque symétrique Sur quelques conséquences d'une proposition de M. Lusin Solution de l'équation c o i = V pour les nombres ordinaux 1 (1922/23), 43—46 7 (1934/35), 85—94 7 (1934/35), 173—174 7 (1934/35), 8 (1936/37), 9 (1938/40), 10 (1941/43), 8 (1936/37), 9 (1938/40), 12 B (1950), 175—176 53—54 244—246 206—253 1—6 69—76 49—50 SIMON, A . B . , see GOLDBERG, R . R . SIMON, L., On approximation of the solutions of quasi-linear elliptic equations in R" 47 (1984), 239—247 SIMON, P . , see FRIDLI, P . SINGER, I., Caractérisation des éléments de meilleure approximation dans un espace de Banach quelconque 17 (1956), SINGH, R. K. and KUMAR, R. D. CH., Compact weighted composition operators on L*(X) 49 (1985), 181—189 339—344 see GUPTA, D . K . SJÖDIN, T., A generalization of a theorem of G. Freud on the differentiability of functions 49(1985), 271—281 SKENDZIÓ, M . , see MARIÉ, V . SKOLEM, TH., Ein Satz über Zählausdrücke Über die Zurückführbarkeit einiger durch Rekursionen definierter Relationen auf „arithmetische" SKORNJAKOV, L. A., Unary algebras with regular endomorphism monoids SÓLYI, A., Über Funktionen, die ein endliches Dirichletsches Integral haben Über das Haarsche Lemma in der Variationsrechnung und seine Anwendungen 7 (1934/35), 193—199 8(1936/37), 73—88 40 (1978), 375—381 10 (1941/43), 48—54 11 (1946/48), 1—16 Soós, GY., see MOÓR, A. SOUROUR, A. R., On groups and semigroups of spectral operators on a Banach space 36(1974), A note on integral operators 41 (1979), 44 291—294 375—379 SRIBALA, S., On ^ - o r d e r e d inverse semigroups STACHÖ, L., Über ein Problem für Kreisscheibenfamilien S T A C H Ö , L. L., On the volume function of parallel sets On curvature measures A short proof of the fact that biholomorphic automorphisms of the unit ball in certain Lp spaces are linear Minimax theorems beyond topological vector spaces A projection principle concerning biholomorphic automorphisms see Joö, I. STACHÖ, T., Operationskalkül von Heaviside und Laplacesche Transformation 35 (1973), 26 (1965), 207—210 273—282 38(1976), 365—374 39 (1977), 191—207 39 (1977), 42(1980), 44 (1982), 381—383 157—164 99—124 3 (1927), 107—120 STADTMÜLLER, U . , see GAWRONSKI, W . STAMPFLI, J . G . , see BERGER, C . A . S s e e FILLMORE, P . A . s e e MCCARTHY, C . A . STECHKIN, S. B . , see C T e i K H H , C . B . STEINER, A., Quadratisch integrierbare Hochpaßfunktionen 36 (1974), 295—304 STEINFELD, O., Über die Quasiideale von Ringen 17 (1956), 170—180 18(1957), 22(1961), 235—242 82—84 22(1961), 23 (1962), 24 (1963), 28(1967), 31(1970), 32 (1971), 136—149 175—175 190—195 135—146 203—218 327—331 Über die Quasiideale von Halbgruppen mit eigentlichem Suschkewitsch-Kern Die einstufig nichtregulären bzw. nichtprimen Ringe Verbandstheoretische Betrachtung gewisser idealtheoretischer Fragen Errata Über Semiringe mit multiplikativer Kürzungsregel On a generalization of completely 0-simple semigroups Über Gruppoid-Verbände. 1 Über die regulären duo-Elemente in Gruppoid Verbänden see POLLÄK, G Y . s e e REDEI, L . STENS, R . L . , see RIES, S. STERN, M., On radicals in lattices 38 (1976), — On derivations in generalized matroid lattices 44 (1982), SUNGL, V., Eine Kennzeichnung der endlichen einfachen Gruppe der Ordnung 604 800 37(1975), STÖHR, A., Eine Formel für gewisse symmetrische Polynome 15 (1953/54), 157—164 281—286 125—141 209—210 s e e REDEI, L . STONE, M. G., Subalgebra and automorphism structure in universal algebras ; a concrete characterization 33 (1972), 45—48 s e e BIRKENHEAD, R . s e e SALIER, N . STONE, M. H., Algebraic formulation of the problem of measure 12 B (1950), STRÄTILÄ, S., O n the tensor product of weights o n W'*-algebras 41 (1979), STRÄHLÄ, S. and ZSIDÖ, L., A spectral characterization of the maximal ideal in factors 36(1974), STRATTON, A. E. and WEBB, M. C , Type sets and nilpotent multiplications 41 (1979), 69—74 385—390 155—160 209—213 STRECKER, R . , see DWARS, M . 45 STROMMER, J., Ein elementarer Beweis der Kreisaxiome der hyperbolischen Geometrie STROTH, G., A characterization of 3 STUTE, W., On tightness of random sequences Suciu, L, Analytic relations between functional models for contractions... 22 (1961), 41(1979), 49 (1985), 34 (1973), 190—195 215—219 397—400 359—365 SULLIVAN, R . P . , P a r t i a l t r a n s l a t i o n s o f s e m i g r o u p s 4 1 (1979), 221—225 SUNOUCHI, G., On the strong summability of orthogonal series Fourier effective methods of summation 27 (1966), 36 (1974), 71—76 161—166 SURÁNYI, J., On the solvability of systems of linear inequalities 16 (1955), Über zerteilte Parallelogramme 22 (1961), SUZUKI, N., The algebraic structure of non self-adjoint operators 27 (1966), SZABADOS, J., On the convergence of Hermite—Fejér interpolation based on the roots of the Legendre polynomials 34 (1973), 92—102 85—90 173—184 see ALEXITS, G . 367—370 see FREUD, G . SZABADOS, J. and VARGA, R . S., On the convergence of complex interpolating polynomials. H 45 (1983), SZABADOS, J. and VÉRTESI, P. On the almost everywhere divergence of Lagrange interpolation on infinite interval 48 (1985), 377—380 443—450 SZABÓ, J . , see KÁTAI, I . SZABÓ, L., Characterization of some related semigroups of universal algebras Concrete representation of related structures of universal algebras. 1 Basic permutation groups on infinite sets SZABÓ, L. and SZENDREI, Á. Almost all algebras with triply transitive automorphism groups are functionally complete 37 (1975), 143—147 40 (1978), 47 (1984), 175—184 61—70 41 (1979), 391—402 SZABÓ, Z. I., Ein Finslerscher Raum ist gerade dann von skalarer Krümmung, wenn seine Weyische Projektivkrümmung verschwindet . . . 39 (1977), • Classification and construction of complete hypersurfaces satisfying R(X,Y)R=0 47(1984), SZALAY, I., On orthogonal trigonometric polynomials 163—168 321—348 37 (1975), 287—292 On the generalized absolute Cesäro summability of double orthogonal series 38(1985), 451—458 Szisz, D., Stability and law of large numbers for sums of a random number of random variables 33(1972), 269—274 SZÁSZ, F., Über Gruppen, deren sämtliche nicht-triviale Potenzen zyklische Untergruppen der Gruppe sind Die Ringe mit lauter isomorphen nichttrivialen endlich erzeugbaren Unterringen Bemerkung zu meiner Arbeit „Über Gruppen, deren sämtliche nichttriviale Potenzen zyklische Untergruppen der Gruppe sind" Die Halbgruppen, deren endlich erzeugte echte Teilhalbgruppen Hauptrechtsideale sind Einige Kriterien f ü r die Existenz des Einselementes in einem Ring Simultane Lösung eines halbgruppentheoretischen und eines ringtheoretischen Problems 46 17 (1956), 83—84 22 (1961), 196—201 23 (1962), 64—66 25(1964), 28 (1967), 135—138 31^-38 30 (1969), 289—294 SZÁSZ, F., Reduktion eines Problems bezüglich der Brown—McCoyschen Radikalringe On minimal biideals of rings Über das im Operatorring enthaltene allgemeine Radikal eines Untermoduls..... ; Ringe in welchen jedes Element ein Linksmultiplikator ist see HUE, T . T . 31 (1970), 32(1971), 167—172 333—336 34(1973), 38 (1976), 371—376 165—166 see LAJOS, S. SZÁSZ, G., On the structure of semi-modular lattices of infinite length Die Unabhängigkeit der Assoziativitätsbedingungen Über die Unabhängigkeit der Assoziativitätsbedingungen kommutativer multiplikativer Strukturen Generalization of a theorem of Birkhoff concerning maximal chains of a certain type of lattices On weakly complemented lattices Correction to my paper „Generalization of a theorem of Birkhoff Die Translationen der Halbverbände On relatively complemented lattices — On complemented lattices Note on complemented modular lattices of finite length Remarks to the theory of semi-modular lattices Über Halbgruppen, die ihre Ideale reproduzieren Derivations of lattices Decomposable elements and ideals in semigroups Unitary subsemigroups in commutative semigroups SZÁSZ, G. und SZENDREI, J., Über die Translationen der Halbverbände SZÁSZ, O., Über die Cesäroschen Mittel Fourierscher Reihen On the Gibbs' phenomenon for Euler means SZÁSZ, P., Neue Herleitung der hyperbolischen Trigonometrie in der Ebene Verwendung einer klassischen Konfiguration Johann Bolyai's bei der Herleitung der hyperbolischen Trigonometrie in der Ebene Neue Bestimmung des Parallelwinkels in der hyperbolischen Ebene mit den klassischen Hilfsmitteln Beweis der Hauptformel der hyperbolischen Trigonometrie unabhängig von der Stetigkeit Herleitung der hyperbolischen Trigonometrie in der Poincaréschen Halbebene Elementargeometrische Herstellung des Klein—Hilbertschen Kugelmodells des hyperbolischen Raumes On a mean-value theorem of Schwarz—Stieltjes On a theorem of L. Fejér concerning trigonometric interpolation SZEGŐ, G., Über die Tschebyscheffschen Polynome 14 (1951/52), 239—245' 15 (1953/54), 20—28 15 (1953/54), 130—142 16(1955), 16 (1955), 89—91 122—126 16 (1955), 17 (1956), 18(1957), 19(1958), 19 (1958), 21 (1960), 27(1966), 37(1975), 38 (1976), 38(1976), 18 (1957), 3 (1927), 12 B (1950), 12 A (1950), 270—270 166—169 48—51 77—81 224—228. 319—323 141—145 149—154 375—378379—381 44—47 38—48 107—11 44—52 14 (1951/52), 174—17» 14 (1951/52), 247—251. 15(1953/54), 57—601. 15 (1953/54), 126—129 16(1955), 19 (1958), 21 (1960), 2 (1924/26), 1—8 46—50 164—165 65—73 Zur Summation der Fourierschen Reihe 3 (1927), 17—24 Über die Laplacesche Reihe 4 (1928/29), 25—37 Zwei Extremalaufgaben über Abbildungen, die durch Polynome vermittelt sind 5 (1930/32), 237—245 see ROGOSINSKI, W . W . 47 SZÉKELY, L. A., Holiday numbers: sequences resembling to the Stirling numbers of second kind 48(1985), 459—467 SZÉKELY, S., s e e GÉCSEG, F . SZÉKELYHÍDI, L., Almost periodic functions and functional equations The stability of d'Alembert-type functional equations SZEKERES, G., Ein Problem über mehrere ebene Bereiche The asymptotic behaviour of the coefficients of certain power series On finite metabelian /»-groups with two generators 42 (1980), 165—169 44(1982), 313—320 6 (1932/34), 247—252 12 B (1950), 187—198 21 (1960), 270—291 s e e ERDŐS, P . see RICHMOND, B . s e e SCHINZEL, A . SZEKERES, G. und TÚRÁN, P., Über das zweite Hauptproblem der „Factorisatio Numerorum" 6 (1932/34), 143—154 SZELE, T., Ein Satz über die Struktur der endlichen Ringe 11 (1946/48), 246—250 Die Abelschen Gruppen ohne eigentliche Endomorphismen 13(1949/50), 54—56 s e e FUCHS, L . s e e KERTÉSZ, A . s e e RÉDEI, L . SZELE, T. and FUCHS, L., On Artinian rings SZELE, T. und SZÉLPÁL, I., Über drei wichtige Gruppen SZÉLPÁL, I., Die Abelschen Gruppen ohne eigentliche Homomorphismen Über Ringerweiterungen 17 (1956), 13 (1949/50), 13 (1949/50), 14 (1951/52), 30—40 192—194 51—53 113—114 38 (1976), 171—182 13 (1949/50), 19 (1958), 21 (1960), 34 (1973), 231—234 63—76 166—172 377—381 39 (1977), 44 (1982), 31(1970), 33 (1972), 36 (1974), 38 (1976), 367—389 185—213 141—156 137—151 323—344 383—398 43 (1981), 353—367 45 (1983), 49(1985), 33 (1972), 381—388 107—117 231—235 s e e SZELE, T . SZENDREI, Á., Idempotent reducts of abelian groups s e e ROSENBERG, I . s e e SZABÓ, L . :SZENDREI, J., On the extension of rings without divisors of zero Über eine allgemeine Ringkonstruktion durch schiefes Produkt . . Über die Szépschen Ringerweiterungen Über die Verallgemeinerung einer Erweiterung von Ringen s e e SZÁSZ, G . :SZENDREI, M. B., On an extension of semigroups Strong subband-parcelling extensions of orthodox semigroups . . . :SZENTHE, J., On immersion of locally bounded curvature A metric characterization of homogeneous Riemannian manifolds On the topological characterization of transitive Lie group actions Sur la connexion naturelle ä torsion nulle On the orbit structure of orthogonal actions with isotropy subgroups of maximal rank On symplectic actions of compact Lie groups with isotropy subgroups of maximal rank A reduction in case of compact Hamiltonian actions SZÉP, A., The non-orthogonal Menchoff—Rademacher theorem SZÉP, J., On the structure of groups which can be represented as the product of two sub-groups On factorisable, not simple groups On factorisable simple groups 48 I 12 A (1950), 57—61 13 (1949/50), 239—241 14 (1951/52), 22—22 SZÉP, J., Zur Theorie der endlichen einfachen Gruppen 14 (1951/52), —: Zur Theorie der einfachen Gruppen 14 (1951/52), Zur Theorie der faktorisierbaren Gruppen 16(1955), Über endliche Gruppen, die nur einen echten Normalteiler besitzen 17 (195©, Über eine neue Erweiterung von Ringen. I 19 (1958), Über eine neue Erweiterung von Ringen. II 20 (1959), • Über die Nichteinfachheit von faktorisierbaren Gruppen 21 (1960), see ITÔ, N. 111—112 246—246 54—57 45—48 51—62 202—214 247—250 see MIGLIORTNI, F . s e e RÉDEI, L . SZÉP, J., u n d ITÔ, N., Über die Faktorisation von G r u p p e n 16 (1955), SZÉP, J . u n d RÉDEI, L . , O n f a c t o r i s a b l e g r o u p s 1 3 (1949/50), 2 3 5 — 2 3 8 Eine Verallgemeinerung der Remakschen Zerlegung SZÉP, J. und ZAPPA, G., Über dreifaktorisierbare Gruppen. I SZIGETI, F., Multivariable composition of Sobol'ev functions SZILÁGYI, T., Generalization of the implicit function theorem and of Banach's open mapping theorem SZ.-NAGY, B., Über die Gesamtheit der charakteristischen Funktionen im Hilbertschen Funktionenraum Über ein geometrisches Extremalproblem Über Integralungleichungen zwischen einer Funktion und ihrer Ableitung Approximation der Funktionen durch die arithmetischen Mittel ihrer Fourierschen Reihen On uniformly bounded linear transformations in Hilbert space Une caractérisation affine de l'ensemble des fonctions positives dans l'espace £ a .' Méthodes de sommation des séries de Fourier. I —: Séries et intégrales de Fourier des fonctions monotones non bornées Méthodes de sommation des séries de Fourier. III Perturbations des transformations linéaires fermées Approximation properties of orthogonal expansions Sur les contractions de l'espace de Hilbert Transformations de l'espace de Hilbert, fonctions de type positif sur un groupe Ein Satz über Parallelverschiebungen konvexer Körper Remarks to the preceding paper of A. Korányi Sur les contractions de l'espace de Hilbert. H Note on sums of almost orthogonal operators Über Parallelmengen nichtkonvexer ebener Bereiche Bemerkungen zur vorstehenden Arbeit des Herrn S. Brehmer... Positive definite kernels generated by operator-valued analytic functions On a property of operators of class C0 Diagonalization of matrices over H°° IS (1953/54), 85—86 31 (1970), 173—178 48 (1985), 469—476 39 (1977), 229—231 391—396 8 (1936/37), 166—176 9 (1938/40), 253—257 10(1941/43), 64—74 11 (1946/48), 71—84 11 (1946/48), 152—157 12 A (1950), 228—238 12 B (1950), 204—210 13(1949/50), 13 (1949/50), 14 (1951/52), 15 (1953/54), 15 (1953/54), 118—133 247—251 125—137 31—37 87—92 15 (1953/54), 15 (1953/54), 17 (1956), 18 (1957), 18 (1957), 20 (1959), 22(1961), 104—114 169—177 71—75 1—14 189—191 36—47 112—114 26(1965), 36 (1974), 38 (1976), 191—192 219—220 223—238 see BERCOVICI, H . s e e FOIAÇ, C . 17 49 SZ.-NAGY, B., s e e RIESZ, F . SZ.-NAGY, B. et FOIAJ, C „ SUT les contractions de l'espace de Hilbert, M Une relation parmi ies vecteurs propres d'un opérateur de l'espace de Hilbert et de l'opérateur adjoint Sur les contractions de l'espace de Hilbert. IV Sur les contractions de l'espace de Hilbert. V. Translations bilatérales Sur les contractions de l'espace de Hilbert. VI. Calcul fonctionnel Remark to the preceding paper of J.Feldman Sur les contractions de l'espace de Hilbert. VII. Triangulations canoniques. Fonction minimum Sur les contractions de l'espace de Hilbert. VHI. Fonctions caractéristiques. Modèles fonctionnels Sur les contractions de l'espace de Hilbert. IX. Factorisations de la fonction caractéristique. Sous-espaces invariants Sur les contractions de l'espace de Hilbert. X. Contractions similaires à des transformations unitaires Corrections et compléments aux Contractions IX Sur les contractions de l'espace de Hilbert. XI. Transformations uniceUulaires On certain classes of power-bounded operators in Hilbert space Sur les contractions de l'espace de Hilbert. XII. Fonctions intérieures admettant des facteurs extérieurs Correction à la Note « Sur les contractions de l'espace de Hilbert. XI. Transformations unicellulaires » Forme triangulaire d'une contraction et factorisation de la fonction caractéristique Echelles continues de sous-espaces invariants Commutants de certains opérateurs Opérateurs sans multiplicité Modèle de Jordan pour une classe d'opérateurs de l'espace de Hilbert : Complément à l'étude des opérateurs de classe C0 Vecteurs cycliques et commutativité des commutants Compléments à l'étude des opérateurs de classe Q . H Accretive operators: Corrections Echelles continues de sous-espaces invariants. II On the structure of intertwining operators Jordan model for contractions of class C 0 An application of dilation theory to hyponormal operators Commutants and bicommutants of operators of class C0 Vecteurs cycliques et commutativité des commutants. II On injections, intertwining operators of class C0 The functional model of a contraction and the space L l IHà SZ.-NAGY, GY„ Die Lage der ^-Stellen eines Polynoms bezüglich seiner Nullstellen Über die allgemeinen Lemniskaten 50 19 (1958), 26—45 20 (1959), 21 (1960), 91—96 251—259 23(1962), 23 (1962), 23(1962), 106—129 130—167 272—273 25 (1964), 12—37 25 (1964), 38—71 25 (1964), 283—316 26 (1965), 26 (1965), 79—92 193—196 26 (1965), 27 (1966), 301—345 17—26 27 (1966), 27—34 27 (1966), 265—265 28(1967), 28 (1967), 29(1968), 30(1969), 201—212 213—220 1—18 1—18 31 (1970), 31 (1970), 32(1971), 33 (1972), 33(1972), 33(1972), 35(1973), 36(1974), 37(1975), 38 (1976), 39(1977), 40 (1978), 41 (1979), 91—115 287—296 177—183 113—116 117—118 355—356 225—254 305—321 155—159 311—315 169—174 163—167 403—410 11 (1946/48), 147—151 11 (1946/48), 207—224 SZ.-NAGY, G., Über die Lage der Doppelgeraden von gewissen Flächen gegebener geometrischer Ordnung i Totalreelle rationale Funktionen Merkwürdige Punktgruppen bei allgemeinen Lemniskaten Verallgemeinerung der Derivierten in der Geometrie der Polynome Über die Lage der kritischen Punkte rationaler Funktionen 11 (1946/48), 234—238 12 A (1950), 1—10 13 (1949/50), 1—13 13 (1949/50), 169—178 14 (1951/52), 179—185 see SZ.-NAGY, J. ( J u l i u s = G y u l a ) SZ.-NAGY, J., Über die Lage der Wurzeln von linearen Verknüpfungen algebraischer Gleichungen Über einen v. Staudt-schen Satz Über die irreduziblen ebenen Kurven von Maximalindex Über einen topologisçhen Satz Zur Topologie der geschlossenen Kurven auf der Sphäre Einige Sätze über ebene Elementarkurven Über die Lage der Nullstellen gewisser Maximal- und Extremalpolynome Über die Ovaloidschalen der Flächen vom Maximalindex Über die reellen Nullstellen des Derivierten eines Polynoms mit reellen Koeffizienten Über eine Zerlegung der ebenen Kurven vom Maximalindex Über die Zirkulation der ebenen Kurven vom Maximalindex Über die reellen Nullstellen gewisser Polynome mit Parametern Über konvexe Kurven und einschließende Kreisringe Szßcs, A., Sur la variation des intégrales triples et le théorème de Stokes . . . Sur les équations définissant une matrice en fonction algébrique d'une autre Szöcs, J., Diagonalization theorems for matrices over certain domains... On non-localizable measure spaces — Some weak-star ergodic theorems On G-finite »'»-algebras T 1 (1922/23), 2(1924/26), 3 (1927), 4 (1928/29), 5 (1930/32), 5(1930/32), 127—138 65—68 96—106 246—247 1—12 83—89 6(1932/34), 49—58 7 (1934/35), 244—248 8(1936/37), 8 (1936/37), 8 (1936/37), 10 (1941/43), 10 (1941/43), 3 (1927), 42—52 136—146 147—148 36—41 174—184 81—95 7(1934/35), 36 (1974), 37 (1975), 45 (1983), 48 (1985), 48—50 193—202 293—295 389—394 477—481 s e e ABDAIXA, S. M . see KovAcs, I. Szöcs, J., MÁTÉ, E. and FOIA§, C., Non-existence of unicellular operators on certain nonseparable Banach-spaces 31 (1970), 297—300 S z O s z , P . , see VINCZE, ST. « T TAFEL, W., VOIGT, J. and WEIDMANN, J., The singular sequence problem 40 (1978), 383—388 TAKACI, A . , see MARIÓ, V . TAKXCS, L„ On a linear transformation in the theory of probability •I— On an identity of Shih-Chieh Chu . . . ' -r-r: On some reccurrence equations in a Banach algebra — Random walk on a finite group TAKAHASHI, K., On the converse of the Fuglede—Putnam theorem TAMURA, T., Basic study of general products and homogeneous homomor; phisms. I 17» 33 (1972), 34(1973), 38(1976), 40(1983), 43 (1981), 15—24 383—391 399—416 395—408 123—125 33 (1972), 31-44 51 TANDORI, K., Über die Cesärosche Summierbarkeit der orthogonalen Reihen 14 (1951/52), Über die Konvergenz singulärer Integrale 15 (1953/54), Über die Divergenz der Fourierreihen 15 (1953/54), Über die starke Summation von Fourierreihen 16 (1955), Über orthogonale Reihen : 16 (1955), Über die orthogonalen Funktionen. I 18(1957), Über die orthogonalen Funktionen. II (Summation) 18 (1957), Über die orthogonalen Funktionen. lH (Lebesguesche Funktionen) 18 (1957), Über die orthogonalen Funktionen. IV 19 (1958), Über die orthogonalen Funktionen. V (Genaue Weyische Multiplikatorfolgen) 20 (1959), Über die orthogonalen Funktionen. VI (Eine genaue Bedingung für die starke Summation) 20(1959), Über die orthogonalen Funktionen. VII (Approximationssätze).. 20 (1959), Bemerkung zur Divergenz der trigonometrischen Reihen 20 (1959), Über die orthogonalen Funktionen. VIII (Eine notwendige Bedingung für die Konvergenz) 20 (1959), Bemerkung zu einem Satz von G. Alexits 21 (1960), Ein Summationssatz für Orthogonalreihen mit monotoner Koeffizientenfolge 21 (1960), Über die orthogonalen Funktionen. IX (Absolute Summation)... 21 (1960), Bemerkung zu einem Satz von A. N. Kolmogoroff 22 (1961), Über die orthogonalen Funktionen. X 23 (1962), Über die Konvergenz der Orthogonalreihen 24(1963), Über die Konvergenz der Orthogonalreihen. II 25 (1964), Über ein Problem von S. B. Stetschkin 26 (1965), Bemerkung zur Konvergenz der Orthogonalreihen 26(1965), Über die Divergenz der Wahlshschen Reihen 27 (1966), Ergänzung zu einem Satz von S. Kaczmarz 28 (1967), Bemerkung zur Divergenz der Fourierreihen 28(1967), Berichtigung zur Arbeit „Über die starke Summation von Fourierreihen" 29 (1968), Über die Reflexivität gewisser Banachräume 30(1969), Ein Divergenzsatz für Fourierreihen 30(1969), Über die unbedingte Konvergenz der Orthogonalreihen 32(1971), Über das Maximum der Summen orthogonaler Funktionen 32(1971), Bemerkung über die Konvergenz der Orthogonalreihen 34 (1973), Eine Abschätzung des Maximums der Partialsummen von Orthogonalreihen ! : . . . 36 (1974), — Bemerkungen zur Konvergenz der Reihen nach multiplikativen Funktionensystemen... 38(1976), Einfacher Beweis eines Satzes von B. S. Kaäin 39 (1977), Bemerkung zu einem Satz von S. Kaczmarz 42 (1980), — Über einem Satz von Alexits und Sharma 42(1980), —: Beitrag zur Konvergenz der Orthogonalreihen 43 (1981), — Beitrag zu den Arbeiten „Bemerkung zu einem Satz von S. Kaczmarz" und „Über einen Satz von Alexits und Sharma" ..44(1982), 52 85—95 223—230 236—239 65—73 74—76 57—130 149—168 169—178 18—25 1—13 14—18 19—24 25—32 245—251 12—14 15—18 292—299 133—135 185—221 139—151 219—232 75—78 249—252 261—263 147—156 281—283 351—352 39—42 43—48 11—40 317—326 393—399 169—180 167—170 175—178 171—173 175—182 127—130 307—311 TANDORÍ, K., Über einen Zusammenhang zwischen der Grössenordnung der Partialsummen der Fourierreihe und der Integrabilitätseigenschaft der Funktionen 45(1983), Unbedingte Konvergenz der Orthogonalreihen 47(1984), Über die Cesàrosche Summierbarkeit von mehrfachen Orthogonalreihen 49 (1985), see Joó, I. 409—413 189—200 179—210 s e e LEINDLER, L . s e e MÓRICZ, F . TELLMAN, S. G., Images of induced endomorphisms in Ext (H, G) 23 (1962), 290—291 36(1974), 38 (1976), 40 (1978), 42 (1980), 181—188 183—185 389—396 325—330 46 (1983), 157—171 TEXTORIUS, B., On generalized resolvents of nondensely defined symmetric contractions 49 (1985), 329—338 TEMIGRAIJEV, I . , s e e TeMHrpanneB, H . TEODORESCU, R. I., Sur les décompositions directes C 0 —C u des contractions Fonctions caractéristiques constantes Factorisations régulières et sous-espaces hyperinvariants Factorisations régulières et sous-espaces invariants TERJÉKI, J., On the stability and convergence of solutions of differential equations by Liapunov's direct method s e e HATVANI, L . s e e LANGER, H . THOMPSON, R . C . , s e e K u o , C . T . TILLMANN, H. G., Zur Eindeutigkeit der Lösung der quantenmechanischen Vertauschungsrelationen TISCHER, J., A note on the Radon—Nikodym theorem of Pedersen and Takesaki TrrcHMARSH, E. C., On the discreteness of the spectrum of a differential equation TKACHUK, S. G., see TicaiyK, C. T. TOMILENKO, V. A., On a property of strictly logarithmic concave functions 24 (1963), 258—270 41(1979), 411—418 12 B (1950), 16—18 38 (1976), 417—421 43(1981), 369—381 47 (1984), 41—54 41 (1979), 41 (1979), 227—251 419—428 45(1983), 46(1983), 415—418 .211—222 46(1983), 48 (1985), 49 (1985), 223—232 483—498 235—256 TORLOPOVA, N . G., see T o p j i o n o B a , H . T . TÖRÖK, A . , s e e MOÓR, A . TÓTH, G., Fibrations of compact Riemannian manifolds see LEE, A . * E.-TÓTH, P., A characterization of quasi-varieties in equality-free languages TonK, V., On structural properties of functions arising from strong approximation of Fourier series On very strong and mixed approximations Solutions to three problems concerning the overconvergence of complex interpolating polynomials — Approximation in L1 by Kantorovich polynomials —'• On the equiconvergence of different kinds of partial sums of orthogonal series Representation of functional via summability methods. I Representation of functionals via summability methods. II s e e CSÖRGŐ, S . —! s e e MAZHAR, S. M . 53 Тотж, V. and VINCZE, I., On relations of coefficient conditions TRAORE, S., Slender modules, slender rings 50 (1986), 33 (1972), 93—98 77—80 TREBELS, W., O n a Fourier L 1 (¿^-multiplier criterion 30 (1973), 21—26 46(1983), 173—176 see GASPER, G . see GÖRLICH, E . see SEEGER, A . TRENT, Т. Т., Meromorphic functions of operators TSCHEBOTARÖW, N . , see BAUER, M . TURÄN, P., Über die Primzahlen der arithmetischen Progression 8 (1936/37), Über die Primzahlen der arithmetischen Progression. (II) 9 (1938/40), Über die Verteilung der Primzahlen (I) 10(1941/43), Über die Wurzeln der Dirichletschen ¿-Funktionen 10 (1941/43), On rational polynomials 11 (1946/48), On the theory of the mechanical quadrature 12 A (1950), On a property of lacunary power-series 14 (1951/52), A theorem on diophantine approximation with application to Riemann zetafunction 21 (1960), 226—235 187—192 81—104 188—201 106—113 30—37 209—218 311—318 see GRÜNWALD, G . TURO, J., Existence and uniqueness of random solutions of nonlinear stochastic functional integral equations . . . : . . 44 (1982), 321—328 TURZIK, D . , see POUAK, S . TYURNPU, N., see Т ю р н п у , H. TZIMBALARIO, J . , see HOLLAND, A . S. B . U UCHIYAMA, M., Hyperinvariant subspaces of operators of class C0(N) Quasi-similarity of restricted C0 contractions Contractions and unilateral shifts 39 (1977), 41 (1979), 46 (1983), 179—184 429—433 345—356 ULYANOV, V. V., Normal approximation for sums of nonidentically distributed random variables in Hilbert spaces 50(1986), 411—419 UHL JR, J . J . , see GRETSKY, N . E . UL'YANOV, P. L., see У л ь я н о в , П . JI. V VALUSE§CU, I., The maximal function of a contraction VAN CASTEREN, J. A., A p r o b l e m of Sz.-Nagy VARGA, O., Über die Integralinvarianten, die zu einer Kurve in der Hermiteschen Geometrie gehören Zur Begründung der Minkowskischen Geometrie Linienelementräume, deren Zusammenhang durch eine beliebige Transformationsgruppe bestimmt ist Über den Zusammenhang der Krümmungsaffinoren in zwei eineindeutig aufeinander abgebildeten Finslerschen Räumen 42(1980), 42 (1980), 183—188 189—194 9(1938/40), 88—102 10 (1941/43), 149—163 11 (1946/48), 55—62 12 A (1950), 132—135 VARGA, R . S . , see SZABADOS, J . VARLET, J., On the characterization of Stone lattices VARMA, A. K., Inequalities for polynomials and their derivatives BirkhofF quadrature formulas based on Tchebycheff nodes 54 27(1966), 29 (1968), 50 (1986), 81—84 137—146 381—390 VASILESCO, FL., Remarques sur la Note de M. O. D. Kellog intitulée "Some notes on the notion of capacity in potential theory" VASILESCU, F. H. and Zsroó, L., Uniformly bounded groups in finite W*algebras VÁZSONYI, E., Über Gitterpunkte des mehrdimensionalen Raumes VENKATANATASIMHAN, P. V., Ideals in pseudo-complemented lattices and semi lattices 4 (1928/29), 186—187 36 (1974), 189—192 9 (1938/40), 163—173 36(1974), 221—226 VERESS, P . , Ü b e r F u n k t i o n e n m e n g e n 3 (1927), 177—192 Über eine Beweismethode in der Theorie der abstrakten Räume VERMES, D., A necessary and sufficient condition of optimality for Markovian control problems On optimal control of semi-Markov processes VERMES, P., Conservative series to series transformation matrices VÉRTESI, P., One-sided convergence conditions for Lagrange interpolation based on the Jacobi roots 6 (1932/34), 34—45 34 (1973), 401—413 36 (1974), 345—356 14(1951/52), 23—38 45 (1983), 419—428 s e e SZABADOS, J . VINCZE, I . , s e e TOTIK, V . VINCZE, I., Über den Minimalkreisring einer Eilinie 11 (1946/48), 133—138 Bemerkungen über den Maximum-Modul ganzer transzendenter Funktionen 19(1958), 129—140 s e e CSÁKI, E . s e e VINCZE, ST. VINCZE, ST., Über die Schwerpunkte der konvexen Kurven bei speziellen Belegungen. 9 (1938/40), 52—59 On a geometrical extremum problem 12 A (1950), 136—142 VINCZE, ST. und Szüsz, P., Beweis eines Abbildungssatzes von Béla Sz.Nagy . . . . . ^ 14(1951/52), 96—100 VISKOV, О. V., see Висков, О. В. VOICULESCU, D . , À note on quasitriangularity and trace-class selfcommu- tators 42(1980), Asymptotically commuting finite rank unitary operators without commuting approximants 45 (1983), 195—199 429—431 s e e APOSTOL, С . s e e BERCOVICI, H . VOIGT, J . , s e e TAFEL, W . VOLKOV, M. V., Separation of the radical in ring varieties 46(1983), 73—75 W WADE, W. R., II inequalities for Walsh series WADHWA, B. L., Operators satisfying a sequential growth condition A note on reductive operators WALSH, J. L., The location of critical points of harmonic functions 46 (1983), 233—241 35 (1973), 181—186 38 (1976), 187—189 12 В (1950), 61—65 WARD, J . D . , see ROGERS, D . D . WARLICH, L., Zur Eindeutigkeit des Holomorphs bestimmter Ringe . . : . . . WARNE, R. J., On the structure of standard regular semigroups WATANABE, S., The boundedness of closed linear maps in С *-algebras WATERMANN, D., On functions of bounded deviation 37 (1975), 41(1979), 43 (1981), 36 (1974), 297—300 435—443 37—39 259—263 55 WAVRE, R., SUT le potentiel newtonien et la théorie des fonctions analytiques 8 (1936/37), 185—190 WEBB, M . C , A bound f o r the nilstufe of a group Nilpotent torsion-free rings and triangles of types 39 (1977), 185—188 41 (1979), 253—257 22 (1961), 91—105 22 (1961), 283—285 24 (1963), 26 (1965), 32 (1971), 41 (1979), 24—27 171—186 223—224 445—456 WEIDMANN, J . , s e e TAFEL, W . WEINERT, H. J., Über die Einbettung von Ringen in Oberringe mit Einselement Zur Existenz und Homogenität des größten gemeinsamen Teilers und des kleinsten gemeinsamen Vielfachen Ein hinreichendes und notwendiges Kriterium für die ZPE-Eigenschaft in kommutativen, regulären Halbgruppen Zur Theorie der Algebren und monomialen Ringe Bemerkung zu einem von F. Szäsz angegebenen Ring A concept of characteristic for semigroups and semirings s e e RÉDEI, L . WEINERT, H . J . u n d EILHAUER, R . , Z u r H o l o m o r p h e n t h e o r i e d e r R i n g e 2 4 (1963), 28—33 WELLS, CH., Generators for groups of permutation polynomials over finite fields 29(1968), 167—176 WESTPHAL, U . , see BERENS, H . see BUTZER, P . L . VAN WICKEREN, E . , s e e DICKMEIS, D . s e e NESSEL, R . J . WIDIGER, A. and WIEGANDT, R., Theory of radicals for hereditarily artinian rings 39 (1977), WIEGANDT, R., On complete semi-groups 19 (1958), On complete semi-modules 19(1958), On the general theory of Möbius inversion formula and Möbius product 20(1959), Bemerkung über die einstufig nichtregulären Ringe 21 (1960), Bemerkung zu einer Arbeit von Herrn Steinfeld 23(1962), Über lokal linear kompakte Ringe 28 (1967), Local and residual properties in bicategories 31 (1970), On the scole of an object in categories 32 (1971), see Loi, N. V. 303—312 93—97 219—223 164—180 350—352 74—75 255—260 245—251 195—205 s e e WIDIDIGER, A . WIELANDT, H., Der Normalisator einer subnormalen Untergruppe 21 (1960), 324—336 WIENER, N., Laplacians and continuous linear functionals 3 (1927), 7—16 WIENER, N. and GELLERT, L., Some prime-number consequences of the Ikehara theorem 12 B (1950), 25—28 WILCZYNSKI, W., Finite partitions of the real line consisting of similar sets 38(1976), 191—192 WHIJAMS, G. B., ^-objects in an abelian category 32 (1971), 351—358 WILLIAMS, J. P., Minimal spectral sets of compact operators 28(1967), 93—106 s e e ANDERSON, J . B . see FILLMORE, P . A . WILLIAMS, L. R., Similarity invariants for a class of nilpotent operators . . 38 (1976), A quasisimilarity model for algebraic operators 40 (1978), The approximate point spectrum of a pure quasinormal operator 49 (1985), WISNER, R . J . , see BEAUMONT, R . A . 56 423—428 185—188 309—320 WONG, T . K . , / ^ " - o p e r a t o r s a n d s e m i - C a r l e m a n o p e r a t o r s 3 3 (1972), 105—112' 37 (1975), 38 (1976), . . 40(1978), 41 (1979), 42(1980), 42 (1980), 44 (1982), 44 (1982), 47 (1984), 301—306 193—202 189-196259—266 205—210' 331—338 137—149' 151—155 449—455 YADAV, B. S. and CHATTERJEE, S., On a partial solution of the transitive algebra problem 47 (1984), YAMASHITA, S., The hyperbolic M. Riesz theorem 43 (1981), 211—215 141—146 YAP, L . Y . H . , O n a c o n v o l u t i o n t h e o r e m 3 8 (1976), 203—204 YOSHIDA, R., On ¿^disjunctive inverse semigroups 49 (1985), 49—52 YOUNG, N . J . , A m a x i m u m p r i n c i p l e f o r i n t e r p o l a t i o n i n H°° 4 3 (1981), 147—152 47 (1984), 107—111 47 (1984), 277—288 Wu, P. Y., On nonorthogonal decompositions of certain contractions Commutants of Ca(N) contractions Jordan model for weak contractions Hyperinvariant subspaces of weak contractions On contractions of class Ct On a conjecture of Sz.-Nagy and Foia? Approximate decompositions of certain contractions When is a contraction quasi-similar to an isometry? Which C.o contraction is quasi-similar to its Jordan model? Y YABUTA, K . , see OKADA, M . YADAV, B . S., s e e BANSAL, R . /-unitary equivalence of positive subspaces of a Krein space YOUNGS, J . W . T . , see RADÔ, T . YUE C. M. R., On self-injectivity and strong regularity Z ZAHORSKA, H., Über die Punktmengen der Divergenz der singulären Integrale von Riemann-integrablen Funktionen 19 (1958), ZAINI, S . Z . A . a n d HASAN, S., I n t e g r a b i l i t y o f R e e s — S t a n o j e v i é s u m s ZÂNYI, L., Zur Theorie, der identischen Kongruenzen mit Idealmoduln. (Erste Mitteilung.) Zur Theorie der identischen Kongruenzen mit Idealmoduln. (Zweite Mitteilung.) ZAPPA, G., Sull'esistenza di sottogruppi normali di Hall in un gruppo finito Errata 4 9 (1985), 5—17 295—298- 5 (1930/32), 117—131 5 (1930/32), 168—171 21 (1960), 22(1961), 224—228 319—319 ZAPPA, G. and SZÉP, J., A generalization of Gaschütz's theorem on sylowizers 37(1975), 161—164 see SZÉP, J . ZEMÂNEK, J . , see AUPETIT, B . ZLATOS, P., A Mal'cev condition for compact congruences to be principal 43 (1981), 383—38T ZSIDÔ, L . , see ARSENE, G R . see CIORÂNESCU, I . see PEUGRAD, C . see STRÂTILÂ, S. see VASILESCU, F . H . ZWAHLEN, B . , s e e GUSTAFSON, K . 57 ZYGMUND, A., On continuability of power series 6 (1932/34), 80—84 A remark on functions of several complex variables 12 В (1950), 66—68 An individual ergodic theorem for non-commutative transformations . 14 (1951/52), 103—110 A А р е с т о в , В. В., О точных неравенствах между нормами функций и их производных 33(1972), А р о в , Д. 3. и Крейн, М. Г., О вычислении энтропийных функционалов и их минимумов в неопределенных проблемах продолжения 45 (1983), 243—267 33—50 Б Б а х ш е ц я н , А. В., О центрированных системах в С[0,1] Б е р н ш т е й н , С. Н., О некоторых новых достижениях теории приближения функций действительной переменной Б и к я л и с , А. П. и М о д ь о р о д и , Й., Об одной задаче Б. В. Гнеденко Б р о д с к и й , В. М., Теоремы умножения и деления характеристических функций обратимого оператора Б р о д с к и й , В. М., Г о х б е р г , И. Ц. и К р е й н , М. Г., О характеристических функциях обратимого оператора Б р о д с к и й , М. С., Об операторах с ядерными мнимыми компонентами Б р о д с к и й , С. Д. и К о г а л о в с к и й , С. Д., Замечания о многообразиях алгебраических систем 47 (1984), 223—231 12 А (1950), 161—169 30 (1969), 241—245 32 (1971), 165—175 32 (1971), 141—164 27(1966), 146—155 43 (1981), 263—266 39 (1977), 50 (1986), 27—28 365—366 23(1962), 24 (1963), 24 (1963), 25 (1964), 26(1965), 28(1967), 28 (1967), 26 (1965), 58—63 165—172 244—250 124—128 269—272 39—54 55—60 43—48 25(1964), 90—123 В Висков, О. В., О тождестве JI. Б. Редей для полиномов Лагерра Представление полиномов Лагерра Г Гечег, Ф., Шрейерово расширение мультиоператорных Q групп О некоторых классах полумодулей у модулей О произведениях упорядоченных автоматов О произведениях упорядоченных автоматов. П О композиции автоматов без петель О семействах автоматных отображений О многотактных автоматах Гечег, Ф. и Пеак, И., Автоматы с изоморфными полугруппами Г о х б е р г , И. Ц., см. Б р о д с к и й , В. М. Г о х б е р г , И. Ц. и Крейн, М. Г., О факторизации операторов в гильбертовом пространстве .58 Г о х б е р г , И. Ц. и Л а й т е р е р , Ю., Общие теоремы о факторизации оператор-функций относительно контура. I. Голоморфные функции Общие теоремы о факторизации оператор-функций относительно контура. П. Обобщения Г о х б е р г , И. Ц. и Ф е л ь д м а н , Н. А., Интегрально-разностные уравнения Винера—Хопфа Г о х б е р г , И. Ц. и Х а й н и г , Г., Результантная матрица и ее обобщения. I. Результантный оператор матричных полиномов 34(1973), 103—120 35 (1973), 39—59 30(1969), 199—224 37(1975), 41—61 Д ж а м и р з а е в , А. А., О свойстве перемепщвания в смысле А. Реньи для числа положительных сумм 41 (1979), 47—53 Д К К о в а ч , Ю. И. и Хегедыш, Й., Об одном двустороннем методе решения краевой задачи дам дифференциального уравнения с запаздывающим аргументом за данного в неявном виде К о г а л о в с к и й , С. Р., см. Б р о д с к и й , С. Д. К о л я д а , В. И., О разрывности сопряженной функции К р е й н , М. Г., см. Аров, Д. 3. см. Б р о д с к и й , В. М. см. Г о х б е р г , И. Ц. К у ж е л ь , А. В., Обобщение теоремы Надя—Фояша о факторизации характеристической оператор-функции К у р о ш , А. Г., Свободные суммы мультиоператорных групп 36 (1974), 357—368 47 (1984), 405—412 30 (1969), 21 (1960), 225—234 187—196 Л Л а й т е р е р , Ю., см. Г о х б е р г , И. Ц. Л е о н т ь е в , А. Ф., Представление функций в выпуклых областях обобщенными рядами экспонент 45(1983), Л и з о р к и н , П. И. см. Н и к о л ь с к и й , С. М. 305—315 М Маркус, А. С., М а ц а е в , В. И. и Руссу, Г. И., О некоторых обобщениях теории сильно демпфированных пучков на случай пучков произвольного порядка 34 (1973), М а ц а е в , В. И., см. Маркус, А. С. Медеши, Л., О вложении полугрупп в полугруппу, в которой исходные полугруппы являются независимыми 39 (1977), Построение полугрупповой амалгамы, независимо вложимой в полугруппу . 4 0 (1978), 245—271 329—340 111—120 59 М е н ь ш о в , Д., О сходимости тригонометрических рядов 12 А (1950), 170—184 М е р г е л я н , С. Н., О наилучших приближениях в комплексной области 12 А (1950), 189—212 М о д ь о р о д и , Й. см. Б ы к я л и с , А. П. H Н и к и ш и и , Е. М., Об одной оценке ортогональных многочленов 48 (1985), 395—399 Н и к о л ь с к и й , С. М., О наилучшем приближении дифференцируемых непериодических функций многочленами 12 А (1950), 185—197 Н и к о л ь с к и й , С. М. и Л и з о р к и н , П. И., Оценки для производных гармонических многочленов и сферических полиномов в L r 48 (1985), 401—416 П Пеак, И., Автоматы и полугруппы. I 25 (1964), Автоматы и полугруппы. П 26 (1965), см. Гечег, Ф. П о л л а к , Г., Новое доказательство простоты знакопеременной группы 16 (1955), О типах евклидовых норм 20 (1959), 193—201 49—58 63—64 252—268 о р Руссу, Г. И., см. Маркус, А. С. С Сандик, М. Д., Обратимые мультиоперации и подстановки 39 (1977), Стечкин, С. Б., Неравенства между нормами произвольных производной функции 26(1965), 153—161 225—230 Т Т е м и г р а л и е в , И. и У л ь я н о в , П. Л., Об интегральном модуле непрерывности Ткачук, С. Г., Характеристические функции распределений притягивающихся к устойчивому закону с показателем а = 1 Т о р л о п о в а , Н. Г., Многообразия квазиортодоксальных полугрупп.. Тюрнпу, Н., Об обобщении одной теоремы С. В. Стечкина 36(1974), 173—180 49 (1985), 47(1984), 36 (1974), 299—307 297—301 369—374 49 (1985), 169—178 У У л ь я н о в , П. Л., Об одной алгебре функций см. Т е м и г р а л и е в , И. Ф Ф е л ь д м а н , Н. А., см. Г о х б е р г , И. Ц. 60 X Х а й н и г , Г., см. Г о х б е р г , И. Ц. Х а р а з о в , Д. Ф.( О спектре вполне непрерывных операторов, аналитически зависящих от параметра, в линейных топологических пространствах 23 (1962), Х е г е д ы ш , Й., см. К о в а ч , Ю. И. 38-45 Ч Ч а к а н ь , Б., Об эквивалентностьи некоторых классов алгебраических систем 23 (1962), Примитивные классы алгебр, эквивалентные классам подмодулей и модулей 24(1963), Об абелевых свойствах примитивных классов универсальных алгебр 25 (1964), 46-57 157—164 202—208 OBITÜARÍES Fodor, G. (1927—1977) Haar, А. (1885—1933) Huhn, А. Р. (1947—1985) Kalmár, L. (1905—1976) Kerékjártó, В. (1898—1946) Rédei, L. (1900—1980) Riesz, F. (1880—1956) Sz.-Nagy, Gy. (1887—1953) 39(1977), 203—204 6 (1932/34), 65-66 50 (1986), 3—3 38 (1976), 221—222 11 (1946/48), V—VII, 128 43(1981), 3^1 17 (1956), 1—3 15(1953/54), 97—98 61 86-2044 — Szegedi Nyomda — Feleifis vezető: Surányi Tibor igazgató INDEX M. Krasner, Abstract Galois theory and endotheory. I R. Nöbauer, Rédei-Funktionen und ihre Anwendung in der Kryptographie . G. Pollák, Some sufficient conditions for hereditarily finitely based varieties of semigroups P. P. Pálfy, The arity of minimal clones Z$. Lengvárszky, A note on minimal clones Z. Daróczy, A. Járat und I. Kátai, Intervallfüllende Folgen und volladditive Funktionen 253 287 299 331 335 337 IS. Körmendi, Canonical number systems in Q(Í2) Z. Sasvári, On measurable functions with a finite number of negative squares О. В. Висков, Представление полиномов JIareppa F. Móricz, Orthonormal systems of polynomials in the divergence theorems for double orthogonal series A. K. Varma, Birkhoff quadrature formulas based on Tchebycheff nodes L. Rempulska, Remarks on the strong summability of numerical and orthogonal series by some methods of Abel type D. Mitrovic, Behavior of the extended Cauchy representation of distributions V. Marie, M. Skendzic, A. Takaci, On Stieltjes transform of distributions behaving as regularly varying functions V. V. Ulyanov, Normal approximation for sums of non-identically distributed random variables in Hilbert spaces C. R. Putnam, A connection between the unitary dilation and the normal extension of a subnormal contraction J. Kristóf, C*-norms defined by positive linear forms Bibliographie INDEX 1—50 (1922—1986) 351 359 365 ' 8_ 367 381 391 397 405 411 421 427 433 ACTA SCIENTIARUM MATHEMATICARUM SZEGED (HUNGARIA), ARADI VÉRTANÚK TERE 1 On peut s'abonner à l'entreprise de commerce des livres et journaux „Kultúra" (1061 Budapest, I., Fő utca 32) ISSN 0324-6523 Acta Univ. Szeged ISSN 0001 6969 Acta Sei. Math. INDEX: 26024 86-2044 —Szegedi Nyomda—F. v.: S lírányi Tibor igazgató Feleifis szerkesztő és kiadó: Leindler László A kézirat a nyomdába érkezett: 1986. április 29. Megjelenés: 1987. Példányszám: 1000. Terjedelem: 18,2 (A/5) 1т Készült monószedéssel, íves magasnyomással, az MSZ 5601-24 és az MSZ 5602-55 szabvány szerint