Expressions with Trigonometric Functions
Transcription
Expressions with Trigonometric Functions
EqWorld http://eqworld.ipmnet.ru Auxiliary Sections > Integral Transforms > Tables of Inverse Laplace Transforms > Inverse Laplace Transforms: Expressions with Trigonometric Functions Inverse Laplace Transforms: Expressions with Trigonometric Functions No Laplace transform, fe(p) Inverse transform, f (x) = 1 2πi 1 sin(a/p) √ p ¡√ ¢ ¡√ ¢ 1 √ sinh 2ax sin 2ax πx 2 sin(a/p) √ p p ¡√ ¢ ¡√ ¢ 1 √ cosh 2ax sin 2ax πa 3 cos(a/p) √ p ¡√ ¢ ¡√ ¢ 1 √ cosh 2ax cos 2ax πx 4 cos(a/p) √ p p 5 ¡ √ ¢ ¡√ ¢ 1 √ exp − ap sin ap p 6 ¡ √ ¢ ¡√ ¢ 1 √ exp − ap cos ap p ¡√ ¢ ¡√ ¢ 1 √ sinh 2ax cos 2ax πa ³ a ´ 1 √ sin 2x πx ³ 1 a ´ √ cos 2x πx Z c+i∞ epx fe(p) dp c−i∞ Inverse Laplace Transforms: Expressions with Inverse Trigonometric Functions No 1 Laplace transform, fe(p) arctan a p 3 1 a arctan p p a p arctan − a p 4 arctan 2 2ap + b2 p2 1 Inverse transform, f (x) = 2πi Z c+i∞ epx fe(p) dp c−i∞ 1 sin(ax) x Si(ax), where Si(x) is the integral sine ¤ 1 £ ax cos(ax) − sin(ax) 2 x ¡ √ ¢ 2 sin(ax) cos x a2 + b2 x References Bateman, H. and Erdélyi, A., Tables of Integral Transforms. Vols. 1 and 2, McGraw-Hill Book Co., New York, 1954. Doetsch, G., Einführung in Theorie und Anwendung der Laplace-Transformation, Birkhäuser Verlag, Basel–Stuttgart, 1958. Ditkin, V. A. and Prudnikov, A. P., Integral Transforms and Operational Calculus, Pergamon Press, New York, 1965. Polyanin, A. D. and Manzhirov, A. V., Handbook of Integral Equations , CRC Press, Boca Raton, 1998. Inverse Laplace Transforms: Expressions with Trigonometric Functions c 2005 Andrei D. Polyanin Copyright ° http://eqworld.ipmnet.ru/en/auxiliary/inttrans/LapInv8.pdf