Kranz-Earth Observation for Conflict Mitigation and
Transcription
Kranz-Earth Observation for Conflict Mitigation and
Earth observation for conflict mitigation and peacekeeping – from humanitarian relief to supporting peace and conflict studies Olaf Kranz1,2, Elisabeth Schoepfer3, Kristin Spröhnle3 & Stefan Lang1 1 Interfaculty Department of Geoinformatics – Z_GIS, University of Salzburg/Austria 2 Helmholtz Association Head Office, Research Section, Berlin/Germany 3 German Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Oberpfaffenhofen/Germany EARseL, 21 June 2016 65.3 million forcibly displaced worldwide 21 million refugees approx. 41 million internally displaced persons approx. 3 million asylum-seekers approx. Quelle: THW Causes of flight and migration Wars and armed conflicts Violations Natural or man-made disasters Climate change / environmental change Population pressure Poverty etc. A complete picture of the in-field situation is needed (short-, mid- and long-term)! How can Earth Observation provide reliable information for supporting humanitarian relief action or decision making within the context of conflict mitigation, prevention activities and peace-building? Quelle: THW Example Refugee-/IDP-camps: What is needed? OBJECTIVE: sustainable camp management, sustainable management of food and natural resources (e.g. fire wood, building timber and water) Information about: • Infrastructure • Tents, Dwellings, Huts • Facilities • Population Estimation & Density • Monitoring of Development over time • LULC status quo and change • Availability of Natural Resources (e.g. fire wood, building timber, water) IDP Population in Zalingei Chart 7 Data & Methods: The Approach Object-Based Image Analysis (OBIA) on Very High Resolution Satellite data for the Estimation of Population & Availability of Resources WorldView GeoEye Quickbird IKONOS Impact of Refugees on the Environment Quelle: THW Multi-scale satellite image analysis approach • Medium resolution (MR) • monitoring of land cover changes • High resolution (HR) • detection of broad vegetation categories • Very high resolution (VHR) • separation of woody vegetation features Chart 10 Multi-scale satellite image analysis approach (MR) • Data: • • • • Earth observation data, from MODIS VI (MOD13Q1), over one decade, 237 data sets Precipitation data, from Hydrological Data and Information System (HyDIS) Temperature data, from Berkeley Earth (2014) Population data, from HIC, UN OCHA, IRIN, UNEP, Sudan Tribune • Methodology: • Time series analysis, based on Seasonal Kendall (SK) test • Results: • Trend pattern showing trends in vegetation cover => significant land-cover changes • Positive and negative trends => increase or decrease in vegetation • Hotspots in areas with specific characteristics, i.e. near wadi banks or within the vicinity of settlements and IDP camps • Indication for the influence of increasing population on natural resources => Correlation of these trend patterns with precipitation, temperature, and population data KRANZ, O., SACHS, A. & LANG, S. (2015), Assessment of environmental changes induced by internally displaced person (IDP) camps in the Darfur region, Sudan, based on multi-temporal MODIS data. Int. Journal of Remote Sensing, Vol. 36, No. 1, 190–210 Chart 11 Multi-scale satellite image analysis approach (MR) Comparison of trend pattern resulting from the time series analysis with VHR satellite Imagery Red indicate negative change Green highlights increasing vegetation cover KRANZ, O., SACHS, A. & LANG, S. (2015), Assessment of environmental changes induced by internally displaced person (IDP) camps in the Darfur region, Sudan, based on multi-temporal MODIS data. Int. Journal of Remote Sensing, Vol. 36, No. 1, 190–210 Chart 12 Multi-scale satellite image analysis approach (HR) • Data: • Earth observation data, from SPOT between 2003 and 2007 • Precipitation data, from Hydrological Data and Information System (HyDIS) • Population data, from UN OCHA, IRIN, UNEP, Sudan Tribune • Methodology: • Object-based image analysis • Results: • Trend pattern suggests negative and positive changes in woody vegetation • Influence of the camps is not that obvious • Precipitation data reveal that the change detection results are influenced by different precipitation and consequent phenological conditions at the time of data acquisition SPRÖHNLE, K., KRANZ, O., SCHÖPFER, S., VOIGT, S. & MÖLLER, M. (2015), Earth observation based multi-scale impact assessment of refugee camps on wood resources in Zalingei, Darfur. Geocarto International. SPRÖHNLE, K., KRANZ, O., & SCHÖPFER, S. (2010), Abschätzung der Umweltauswirkungen von Flüchtlingslagern mit Hilfe multitemporaler Fernerkundungsdaten am Beispiel des Camps Zalingei in Westdarfur. In: STROBL, J., BLASCHKE, T. & GRIESEBNER, G. (Eds.), Angewandte Geoinformatik 2010. Beiträge zum 22. AGIT Symposium, 697–702. SPRÖHNLE, K. (2010): Earth Observation for Environmental Impact Assessment in the surroundings of Refugee Camps in Darfur. Unveröffentlichte Magisterarbeit, Bamberg, 105 S. Chart 13 Multi-scale satellite image analysis approach (HR) SPRÖHNLE, K., KRANZ, O., & SCHÖPFER, S. (2010), Abschätzung der Umweltauswirkungen von Flüchtlingslagern mit Hilfe multitemporaler Fernerkundungsdaten am Beispiel des Camps Zalingei in Westdarfur. In: STROBL, J., BLASCHKE, T. & GRIESEBNER, G. (Eds.), Angewandte Geoinformatik 2010. Beiträge zum 22. AGIT Symposium, 697–702. SPRÖHNLE, K. (2010): Earth Observation for Environmental Impact Assessment in the surroundings of Refugee Camps in Darfur. Unveröffentlichte Magisterarbeit, Bamberg, 105 S. Chart 14 Multi-scale satellite image analysis approach (VHR) • Data: • Earth observation data, from IKONOS and QUICKBIRD from 2004 and 2008 • Precipitation data, from Hydrological Data and Information System (HyDIS) • Population data, from UN OCHA, IRIN, UNEP, Sudan Tribune • Methodology: • Object-based image analysis • Results: • Land degradation becomes evident when comparing the VHR data of 2004 and 2008 • Decline of woody vegetation in the surroundings of the IDP camps becomes obvious SPRÖHNLE, K., KRANZ, O., SCHÖPFER, S., VOIGT, S. & MÖLLER, M. (2015), Earth observation based multi-scale impact assessment of refugee camps on wood resources in Zalingei, Darfur. Geocarto International. SPRÖHNLE, K., KRANZ, O., & SCHÖPFER, S. (2010), Abschätzung der Umweltauswirkungen von Flüchtlingslagern mit Hilfe multitemporaler Fernerkundungsdaten am Beispiel des Camps Zalingei in Westdarfur. In: STROBL, J., BLASCHKE, T. & GRIESEBNER, G. (Eds.), Angewandte Geoinformatik 2010. Beiträge zum 22. AGIT Symposium, 697–702. SPRÖHNLE, K. (2010): Earth Observation for Environmental Impact Assessment in the surroundings of Refugee Camps in Darfur. Unveröffentlichte Magisterarbeit, Bamberg, 105 S. Chart 15 Multi-scale satellite image analysis approach (VHR) SPRÖHNLE, K., KRANZ, O., & SCHÖPFER, S. (2010), Abschätzung der Umweltauswirkungen von Flüchtlingslagern mit Hilfe multitemporaler Fernerkundungsdaten am Beispiel des Camps Zalingei in Westdarfur. In: STROBL, J., BLASCHKE, T. & GRIESEBNER, G. (Eds.), Angewandte Geoinformatik 2010. Beiträge zum 22. AGIT Symposium, 697–702. SPRÖHNLE, K. (2010): Earth Observation for Environmental Impact Assessment in the surroundings of Refugee Camps in Darfur. Unveröffentlichte Magisterarbeit, Bamberg, 105 S. Chart 16 Approach for Estimating Water Availability Free of charge data only! Landsat-data First step: Analysis according to hydrogeological methods to get a broad overview of potential aquiferous regions Second step: More detailed analysis adapted for the specific conditions of each study site to cut down the detected area of aquiferous regions Overall methodological approach for the detection of water resources including the analysis according to hydrogeology as well as more specific spatial analyses. Chart 17 Approach for Estimating Water Availability Aquiferous regions have been extracted taking under consideration the following initial parameters: climatic geological hydrogeological vegetation cover The IDP camp is displayed in red; aquiferous regions are highlighted from dark blue (which indicates high water probability) to light blue (indicating low water probability); regions with permanent vegetation cover over the year are displayed in yellow and green Chart 18 Conclusions OBJECTIVE: sustainable camp management, sustainable management of food and natural resources (e.g. fire wood, building timber and water) • EO derived infromation together with further information coming from reports and statistics provide a more complete picture in highly dynamic regions. • The analysis and quantification of environmental impact of mass migration might be an important indicator for mitigation and prevention strategies and in the context of setting up strategies for sustainable use of natural resources, economic development and peace-building. Thank you for your attention ! Chart 19