Derivatives, Integrals, and Properties Of Inverse Trigonometric
Transcription
Derivatives, Integrals, and Properties Of Inverse Trigonometric
Derivatives, Integrals, and Properties Of Inverse Trigonometric Functions and Hyperbolic Functions (On this handout, a represents a constant, u and x represent variable quantities) Derivatives of Inverse Trigonometric Functions Identities for Hyperbolic Functions d sin¡1 u dx sinh 2x = 2 sinh x cosh x d cos¡1 u dx = p = p 1 du 2 1 ¡ u dx ¡1 du 1 ¡ u2 dx d tan¡1 u = dx 1 du 1 + u2 dx d csc¡1 u dx = d sec¡1 u dx ¡1 du p juj u2 ¡ 1 dx = d cot¡1 u dx = 1 du p juj u2 ¡ 1 dx (juj < 1) cosh 2x = cosh2 x + sinh2 x (juj < 1) Z Z p a2 a2 1 du ¡ u2 (juj > 1) ¡1 du 1 + u2 dx 1 du + u2 = sin¡1 = 1 p du = 2 u u ¡ a2 ³u´ +C a ³u´ 1 tan¡1 +C a a ¯u¯ 1 ¯ ¯ sec¡1 ¯ ¯ + C a a sinh x = ¡x x ¡x e ¡e 2 sinh2 x = cosh 2x ¡ 1 2 cosh x = e +e 2 tanh x = sinh x ex ¡ e¡x = x cosh x e + e¡x cschx = 1 2 = x sinh x e ¡ e¡x sechx = 1 2 = x cosh x e + e¡x coth x = cosh x ex + e¡x = x sinh x e ¡ e¡x cosh2 x ¡ sinh2 x = 1 tanh2 x = 1 ¡ sech2 x coth2 x = 1 + csch2 x Derivatives of Hyperbolic Functions (Valid for u2 < a2 ) d sinh u dx = cosh u (Valid for all u) d cosh u dx = sinh u (Valid for u2 > a2 ) d tanh u = dx The Six Basic Hyperbolic Functions x cosh 2x + 1 2 (juj > 1) Integrals Involving Inverse Trigonometric Functions Z cosh2 x = du dx du dx sech2 u du dx du dx d coth u dx = ¡ csch2 u d sechu dx = ¡ sechu tanh u d cschu dx = ¡ cschu coth u du dx du dx Inverse Hyperbolic Identities µ ¶ 1 sech x = cosh x µ ¶ 1 ¡1 ¡1 csch x = sinh x µ ¶ 1 coth¡1 x = tanh¡1 x ¡1 ¡1 Integrals Involving Inverse Hyperbolic Functions Integrals of Hyperbolic Functions Z Z Z Z Z Z sinh u du Z = cosh u + C cosh u du Z = sinh u + C 2 sech u du = tanh u + C csch2 u du = ¡ coth u + C 1 du a2 + u2 = sinh¡1 p 1 du u2 ¡ a2 = cosh¡1 = ¡ cschu + C d cosh¡1 u dx = = d tanh¡1 u = dx d csch¡1 u dx = d sech¡1 u dx = d coth¡1 u dx = p 1 du 1 + u2 dx 1 du p 2 u ¡ 1 dx (u > 1) 1 du 1 ¡ u2 dx (juj < 1) ¡1 du p 2 juj 1 + u dx (u 6= 0) ¡1 du p 2 u 1 ¡ u dx 1 du 1 ¡ u2 dx p 1 du 2 u § a2 p x2 + 1) cosh¡1 x = ln(x + p x2 ¡ 1) tanh¡1 x = 1 du 2 a ¡ u2 +C (a > 0) +C (u > a > 0) sech¡1 x csch¡1 x coth¡1 x = ln(u + p (¡1 < x < 1) (x ¸ 1) 1 1+x ln (jxj < 1) 2 1¡x à ! p 1 + 1 ¡ x2 = ln (0 < x · 1) x à ! p 1 1 + x2 = ln + (x 6= 0) x jxj = 1 x+1 ln 2 x¡1 u2 § a2 ) + C ¯ ¯ ¯a + u¯ 1 ¯ ¯+C = ln 2a ¯ a ¡ u ¯ à ! p Z 1 1 a + a2 § u2 p du = ¡ ln +C a juj u a2 § u2 Z a = ln(x + Alternate Form For Integrals Involving Inverse Hyperbolic Functions Z ³u´ sinh¡1 x (0 < u < 1) (juj > 1) a Expressing Inverse Hyperbolic Functions As Natural Logarithms Derivatives of Inverse Hyperbolic Functions d sinh¡1 u dx ³u´ 8 ³ ´ 1 ¡1 u > > tanh + C (if u2 < a2 ) > > Z a a < 1 ³ ´ du = 2 1 ¡1 u > a ¡ u2 > coth + C (if u2 > a2 ) > > a : a Z ³ ´ 1 1 ¡1 u p du = ¡ sech + C (0 < u < a) a a u a2 ¡ u2 Z ¯u¯ 1 1 ¯ ¯ p du = ¡ csch¡1 ¯ ¯ + C 2 2 a a u a +u sechu tanh u du = ¡ sechu + C cschu coth u du p (jxj > 1)