recursion formulas for g1 and g2 horn hypergeometric functions
Transcription
recursion formulas for g1 and g2 horn hypergeometric functions
Miskolc Mathematical Notes Vol. 16 (2015), No. 2, pp. 1153–1162 HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2015.1306 RECURSION FORMULAS FOR G1 AND G2 HORN HYPERGEOMETRIC FUNCTIONS RECEP ŞAHIN AND SUSAN RIDHA SHAKOR AGHA Received 04 September, 2014 Abstract. The aim of this paper is to present various recursion formulas for Horn hypergeometric functions by the contiguous relations of hypergeometric series.These recursion formulas allow us to state the functions G1 and G2 Horn hypergeometric functions as a combination of themselves. 2010 Mathematics Subject Classification: 33C20; 11J72 Keywords: recursion formulas, Horn hypergeometric functions, contiguous relation 1. I NTRODUCTION The first G1 and G2 Horn hypergeometric functions were defined by the series [3–5] 1 X xm yp .˛/mCp .ˇ/p m ˇ 0 m p G1 ˛; ˇ; ˇ 0 I x; y D mŠ pŠ m;pD0 jxj < r ; jyj < s ; r C s D 1 and 1 X .˛/m ˛ 0 p .ˇ/p G2 ˛; ˛ 0 ; ˇ; ˇ 0 I x; y D m ˇ0 m;pD0 m xm yp p mŠ pŠ jxj < 1 ; jyj < 1; respectively. Recently, Opps et al: [1] have obtained some recursion formulas for the function F2 by the contiguous relation of the Gauss hypergeometric function 2 F1 : In [6], Wang gave some recursion formulas for Appell hypergeometric functions. The aim of our present investigation is to construct various recursion formulas for each of Horn hypergeometric functions G1 and G2 : Recall that gamma function is defined in [2, 3] by Z1 .n/ D t n 1 e t dt ; Re .n/ > 0: 0 c 2015 Miskolc University Press 1154 RECEP ŞAHIN AND SUSAN RIDHA SHAKOR AGHA The Pochhammer symbol ./n is denoted by ./n WD . C 1/ ::: . C n 1/ ; .n 2 N W D f1; 2; 3; :::g/ and ./0 WD 1 and its well known form is also given in [1] as . 1/n ; .n 2 N W D f1; 2; 3; :::g/ : .1 /n It easily follows from (1.1) that ./ nD ./m n D ./m . C m/ (1.1) n; (1.2) for m; n 2 N. 2. R ECURSION FORMULAS OF G1 In this section, we give some recursion formulas for the function G1 . We start the following theorem. Theorem 1. Recursion formulas for the function G1 are as follows W G1 ˛ C n; ˇ; ˇ 0 I x; y D G1 ˛; ˇ; ˇ 0 I x; y C .ˇ/ 1ˇ C ˇ ˇ0 0 n X x G1 ˛ C k; ˇ kD1 n X 1 y (2.1) 1; ˇ 0 C 1I x; y G1 ˛ C k; ˇ C 1; ˇ 0 1I x; y kD1 and G1 ˛ n; ˇ; ˇ 0 I x; y D G1 ˛; ˇ; ˇ 0 I x; y .ˇ/ n X1 0 1ˇ x (2.2) G1 ˛ k; ˇ 1; ˇ 0 C 1I x; y kD0 ˇ ˇ0 y 1 n X1 G1 ˛ k; ˇ C 1; ˇ 0 1I x; y kD0 Proof. From the definition of the function G1 and transformation m p .˛ C 1/mCp D .˛/mCp 1 C C ˛ ˛ we can get the following relation: G1 ˛ C 1; ˇ; ˇ 0 I x; y D G1 ˛; ˇ; ˇ 0 I x; y C .ˇ/ Cˇ 0 1 ˇ xG1 ˇ 0 1 yG1 ˛ C 1; ˇ 0 (2.3) 1; ˇ C 1I x; y ˛ C 1; ˇ C 1; ˇ 0 1I x; y : RECURSION FORMULAS FOR G1 AND G2 HORN HYPERGEOMETRIC FUNCTIONS 1155 By applying this contiguous relation to function G1 with the parameter ˛ C 2 , we have G1 ˛ C 2; ˇ; ˇ 0 I x; y 0 D G1 ˛ C 1; ˇ; ˇ 0 I x; y C .ˇ/ 1 ˇ xG1 ˛ C 2; ˇ 1; ˇ 0 C 1I x; y 0 Cˇ ˇ yG1 ˛ C 2; ˇ C 1; ˇ 0 1I x; y 1 D G1 ˛; ˇ; ˇ 0 I x; y 0 C .ˇ/ 1 ˇ x G1 ˛ C 1; ˇ 1; ˇ 0 C 1I x; y C G1 ˛ C 2; ˇ 1; ˇ 0 C 1I x; y 0 Cˇ ˇ yŒG1 ˛ C 1; ˇ C 1; ˇ 0 1I x; y C G1 ˛ C 2; ˇ C 1; ˇ 0 1I x; y 1 G1 ˛ C n; ˇ; ˇ 0 I x; y D G1 ˛; ˇ; ˇ 0 I x; y C .ˇ/ n X 0 1ˇ x C ˇ ˇ0 G1 ˛ C k; ˇ kD1 n X 1 y 1; ˇ 0 C 1I x; y G1 ˛ C k; ˇ C 1; ˇ 0 1I x; y kD1 If we compute the function G1 with the parameter ˛ C n by relation (2.3) for n times, we find the formula given by (2.1). Replacing ˛ by ˛ 1 in the contiguous relation (2.3), we get G1 ˛ 1; ˇ; ˇ 0 I x; y D G1 ˛; ˇ; ˇ 0 I x; y .ˇ/ 1 ˇ 0 xG1 ˛; ˇ 1; ˇ 0 C 1I x; y ˇ ˇ 0 1 yG1 ˛; ˇ C 1; ˇ 0 1I x; y : If we apply this relation to the function G1 with the parameter ˛ n for n times, we obtain the recursion formula (2.2) similar to the proof of formula (2.1). By the same contiguous relations (2.1) and (2.2) we can express the functions G1 in the above theorem in other forms. Theorem 2. The function G1 satisfies the recursion formulas W ! ! n X n i X n n i 0 .ˇ/i k ˇ 0 k i G1 ˛ C n; ˇ; ˇ I x; y D i k (2.4) i D0 kD0 G1 ˛ x k y i G1 ˛ C i C k; ˇ C i k; ˇ 0 C k ! ! n i n X X n n i 0 .ˇ/i k ˇ 0 k i n; ˇ; ˇ I x; y D i k i I x; y (2.5) i D0 kD0 . x/k . y/i G1 ˛ C i C k; ˇ C i k; ˇ 0 C k i I x; y : 1156 RECEP ŞAHIN AND SUSAN RIDHA SHAKOR AGHA Proof. By the induction method, we only prove the recursion formula given by (2.4). For n D 1, formula (2.4) is satisfied. Assume that the result (2.4) is true for n D t. Then, we need to show that the relation (2.4) is satisfied for n D t C 1. Setting n D t in (2.4), we have t X t i X t G1 ˛ C t; ˇ; ˇ 0 I x; y D i t i k .ˇ/i k ˇ0 k i xk yi i D0 kD0 k; ˇ 0 C k G1 ˛ C i C k; ˇ C i i I x; y : Replacing ˛ by ˛ C 1 in the above relation, we obtain 0 G1 ˛ C t C 1; ˇ; ˇ I x; y D t X t i X t i t i k .ˇ/i k ˇ0 k i xk yi i D0 kD0 G1 ˛ C i C k C 1; ˇ C i k; ˇ 0 C k i I x; y : In the above equality, we apply the contiguous relation (2.3) with the transformations ˛ ! ˛ C i C k; ˇ ! ˇ C i k; ˇ 0 ! ˇ 0 C k i: Using the relations ! ! ! n 1 n 1 n C D k k 1 k and ! n D 0 ; whe n k > n or k < 0 k and with some simplifications, we deduce G1 ˛ C t C 1; ˇ; ˇ 0 I x; y D t i t X X t t i k .ˇ/i k i ˇ0 k i x k y i G1 ˛ C i C k; ˇ C i k; ˇ 0 C k i D0 kD0 C t X t i X t i t i k .ˇ/i k ˇ0 k i x kC1 y i .ˇ C i k/ 1 ˇ0 C k i 1 i D0 kD0 G1 ˛ C 1 C i C k; ˇ C t X t i X t i k; ˇ 0 C 1 C k 1Ci t i k .ˇ/i k ˇ0 k i i I x; y x k y i C1 .ˇ C i k/1 ˇ 0 C k i D0 kD0 G1 ˛ C 1 C i C k; ˇ C 1 C i D t C1 t C1 X Xi i D0 kD0 k; ˇ 0 t C1 t i C1 .ˇ/i k i k ˇ0 1Ck k i xk yi i I x; y i 1 i I x; y RECURSION FORMULAS FOR G1 AND G2 HORN HYPERGEOMETRIC FUNCTIONS G1 ˛ C i C k; ˇ C i k; ˇ 0 C k 1157 i I x; y ; where we replace k by k 1 in the second summation term and i by i 1 in the third summation term in the first equality. So, we obtain the recursion formula (2.4). In a similar manner, the relation (2.5) can be easily proved. Theorem 3. For the function G1 , we have G1 ˛; ˇ C n; ˇ 0 I x; y D G1 ˛; ˇ; ˇ 0 I x; y C ˛ ˇ0 1 y n X (2.6) G1 ˛ C 1; ˇ C k; ˇ 0 1I x; y kD1 ˛ˇ 0 x n X kD1 .ˇ C k 1/ 1 G1 ˛ C 1; ˇ C k .ˇ C k 1/ 2; ˇ 0 C 1I x; y and G1 ˛; ˇ n; ˇ 0 I x; y D G1 ˛; ˇ; ˇ 0 I x; y ˛ ˇ0 y 1 n X (2.7) G1 ˛ C 1; ˇ k C 1; ˇ 0 1I x; y kD1 0 ˛ˇ x n X .ˇ kD1 k/ 1 G1 ˛ C 1; ˇ .ˇ k/ k 1; ˇ 0 C 1I x; y : Proof. Using the definition of the function G1 and the equality p m .ˇ C 1/p m D .ˇ/p m 1 C ˇ ˇ we can easily obtain the contiguous function G1 ˛; ˇ C 1; ˇ 0 I x; y D G1 ˛; ˇ; ˇ 0 I x; y C ˛ ˇ 0 1 yG1 ˛ C 1; ˇ C 1; ˇ 0 ˛ .ˇ/ ˇ 1 0 ˇ xG1 ˛ C 1; ˇ (2.8) 1I x; y 1; ˇ 0 C 1I x; y : If we apply this contiguous relation for two times for the function G1 with the parameter ˇ C 2, we get G1 ˛; ˇ C 2; ˇ 0 I x; y D G1 ˛; ˇ C 1; ˇ 0 I x; y C ˛ ˇ 0 1 yG1 ˛ C 1; ˇ C 2; ˇ 0 1I x; y .ˇ C 1/ 1 0 ˇ xG1 ˛ C 1; ˇ; ˇ 0 C 1I x; y ˛ 1 .ˇ C 1/ 0 D G1 ˛; ˇ; ˇ I x; y 1158 RECEP ŞAHIN AND SUSAN RIDHA SHAKOR AGHA C ˛ ˇ0 1 yG1 ˛ C 1; ˇ C 1; ˇ 0 1I x; y .ˇ/ 1 0 ˇ xG1 ˛ C 1; ˇ 1; ˇ 0 C 1I x; y ˇ C ˛ ˇ 0 1 yG1 ˛ C 1; ˇ C 2; ˇ 0 1I x; y .ˇ C 1/ 1 0 ˛ ˇ xG1 ˛ C 1; ˇ; ˇ 0 C 1I x; y : .ˇ C 1/ By iterating this method on G1 with ˇ C n for n times, we find G1 ˛; ˇ C n; ˇ 0 I x; y D G1 ˛; ˇ C 1; ˇ 0 I x; y ˛ C ˛ ˇ0 n X y 1 G1 ˛ C 1; ˇ C k; ˇ 0 1I x; y kD1 n X .ˇ C k ˛ˇ 0 x 1/ 1 G1 ˛ C 1; ˇ C k .ˇ C k 1/ kD1 2; ˇ 0 C 1I x; y : Replacing ˇ by ˇ G1 ˛; ˇ 1 in contiguous relation (2.8), we obtain 1; ˇ I x; y D G1 ˛; ˇ; ˇ 0 I x; y ˛ ˇ 0 1 yG1 ˛ C 1; ˇ; ˇ 0 0 1I x; y .ˇ 1/ 1 0 ˇ xG1 ˛ C 1; ˇ 2; ˇ 0 C 1I x; y : .ˇ 1/ If we apply this relation to the function G1 with the parameter ˇ n for n times, we obtain the recursion formulas (2.7). C˛ Theorem 4. For the function G1 , the equalities G1 ˛; ˇ; ˇ 0 C nI x; y D G1 ˛; ˇ; ˇ 0 I x; y C ˛ .ˇ/ 1x n X G1 ˛ C 1; ˇ (2.9) 1; ˇ 0 C kI x; y kD1 ˛ˇy n X .ˇ 0 C k kD1 .ˇ 0 C k 1/ 1 G1 ˛ C 1; ˇ C 1; ˇ 0 C k 1/ 2I x; y and G1 ˛; ˇ; ˇ 0 nI x; y D G1 ˛; ˇ; ˇ 0 I x; y ˛ .ˇ/ 1x n X G1 ˛ C 1; ˇ (2.10) 1; ˇ 0 k C 1I x; y kD1 C ˛ˇy n X .ˇ 0 kD1 hold. .ˇ 0 k/ 1 G1 ˛ C 1; ˇ C 1; ˇ 0 k/ k 1I x; y RECURSION FORMULAS FOR G1 AND G2 HORN HYPERGEOMETRIC FUNCTIONS 1159 Proof. If we use following equalities G1 ˛; ˇ; ˇ 0 C 1I x; y D G1 ˛; ˇ; ˇ 0 I x; y C ˛ .ˇ/ 1 xG1 ˛ C 1; ˇ 1; ˇ 0 C 1I x; y .ˇ 0 / 1 yG1 ˛ C 1; ˇ C 1; ˇ 0 ˇ0 1I x; y D G1 ˛; ˇ; ˇ 0 I x; y ˛ˇ G1 ˛; ˇ; ˇ 0 ˛ .ˇ/ C ˛ˇ 1 xG1 ˛ C 1; ˇ 1I x; y 1; ˇ 0 I x; y .ˇ 0 1/ 1 yG1 ˛ C 1; ˇ C 1; ˇ 0 .ˇ 0 1/ 2I x; y we obtain recursion formulas given by (2.9) and (2.10). 3. R ECURSION FORMULAS OF G2 In this section, we give some recursion formulas for the function G2 : We first present the recursion formulas for the function G2 about the parameter ˛ and ˛ 0 : Theorem 5. The function G2 satisfies the recursion formulas W G2 ˛ C n; ˛ 0 ; ˇ; ˇ 0 I x; y D G2 ˛; ˛ 0 ; ˇ; ˇ 0 I x; y C .ˇ/ 0 1ˇ x n X G2 ˛ C k; ˛ 0 ; ˇ (3.1) 1; ˇ 0 C 1I x; y kD1 and G2 ˛ n; ˛ 0 ; ˇ; ˇ 0 I x; y D G2 ˛; ˛ 0 ; ˇ; ˇ 0 I x; y .ˇ/ 0 1ˇ x n X1 G2 ˛ (3.2) k; ˛ 0 ; ˇ 1; ˇ 0 C 1I x; y : kD0 Proof. By the definition of the function G2 , we get G2 ˛ C 1; ˛ 0 ; ˇ; ˇ 0 I x; y D G2 ˛; ˛ 0 ; ˇ; ˇ 0 I x; y C .ˇ/ 1ˇ 0 xG2 ˛ C 1; ˛ 0 ; ˇ 1; ˇ 0 C 1I x; y : Applying this relation n times recursively, as the same as we have done in the proof of Theorem 1, we immediately have complete the proof (3.1). The function G2 in the above theorem can be expressed in other forms as follows: Theorem 6. For the function G2 , the equalities G2 ˛ C n; ˛ 0 ; ˇ; ˇ 0 I x; y 1160 RECEP ŞAHIN AND SUSAN RIDHA SHAKOR AGHA ! n X n .ˇ/ D k ˇ0 k k x k G2 ˛ C k; ˛ 0 ; ˇ k; ˇ 0 C kI x; y (3.3) kD0 and G2 ˛ n; ˛ 0 ; ˇ; ˇ 0 I x; y ! n X n .ˇ/ D k ˇ0 k k . x/k G2 ˛; ˛ 0 ; ˇ k; ˇ 0 C kI x; y ; (3.4) kD0 hold. Proof. By the inductive method as we have done in the proof of Theorem 2, the proof can be easily seen. Theorem 7. The function G2 satisfies the following recursion formulas G2 ˛; ˛ 0 C n; ˇ; ˇ 0 I x; y D G2 ˛; ˛ 0 ; ˇ; ˇ 0 I x; y C ˇ ˇ0 y 1 n X G2 ˛; ˛ 0 C k; ˇ C 1; ˇ 0 (3.5) 1I x; y kD1 D n X ! n .ˇ/k ˇ 0 k kD0 k y k G2 ˛; ˛ 0 C k; ˇ C k; ˇ 0 kI x; y and G2 ˛; ˛ 0 n; ˇ; ˇ 0 I x; y D G2 ˛; ˛ 0 ; ˇ; ˇ 0 I x; y ˇ ˇ 0 y 1 n X1 (3.6) G2 ˛; ˛ 0 k; ˇ C 1; ˇ 0 1I x; y kD0 D n X kD0 ! n .ˇ/k ˇ 0 k k . y/k G2 ˛; ˛ 0 ; ˇ C k; ˇ 0 Proof. By the definition of the function G2 , we get G2 ˛; ˛ 0 C 1; ˇ; ˇ 0 I x; y D G2 ˛; ˛ 0 ; ˇ; ˇ 0 I x; y C ˇ ˇ 0 1 yG2 ˛; ˛ 0 C 1; ˇ C 1; ˇ 0 1I x; y kI x; y and G2 ˛; ˛ 0 1; ˇ; ˇ 0 I x; y D G2 ˛; ˛ 0 ; ˇ; ˇ 0 I x; y ˇ ˇ 0 1 yG2 ˛; ˛ 0 ; ˇ C 1; ˇ 0 1I x; y : By applying this relation for n times, as the same as we have done in the proof of Theorem 1, we complete the proof. RECURSION FORMULAS FOR G1 AND G2 HORN HYPERGEOMETRIC FUNCTIONS 1161 Now, we present the recursion formulas of the function G2 about the parameter ˇ and ˇ 0 . Theorem 8. Recursion formulas for the function G2 are as follows G2 ˛; ˛ 0 ; ˇ C n; ˇ 0 I x; y D G2 ˛; ˛ 0 ; ˇ; ˇ 0 I x; y C ˛ 0 ˇ 0 y 1 n X (3.7) G2 ˛; ˛ 0 C 1; ˇ C k; ˇ 0 1I x; y kD1 ˛ˇ 0 x n X .ˇ C k kD1 1/ 1 G2 ˛ C 1; ˛ 0 ; ˇ C k .ˇ C k 1/ 2; ˇ 0 C 1I x; y and G2 ˛; ˛ 0 ; ˇ n; ˇ 0 I x; y D G2 ˛; ˛ 0 ; ˇ; ˇ 0 I x; y (3.8) ˛0 ˇ0 y 1 n X G2 ˛; ˛ 0 C 1; ˇ k C 1; ˇ 0 1I x; y kD1 C ˛ˇ 0 x n X kD1 .ˇ k/ 1 G2 ˛ C 1; ˛ 0 ; ˇ .ˇ k/ k 1; ˇ 0 C 1I x; y : Proof. From the definition of the function G2 , we have the following relation: G2 ˛; ˛ 0 ; ˇ C 1; ˇ 0 I x; y D G2 ˛; ˛ 0 ; ˇ; ˇ 0 I x; y C ˛ 0 ˇ 0 1 yG2 ˛; ˛ 0 C 1; ˇ C 1; ˇ 0 1I x; y .ˇ/ 1 ˛ˇ 0 x G2 ˛ C 1; ˛ 0 ; ˇ 1; ˇ 0 C 1I x; y : ˇ If we apply this relation for n times, we can easily prove the theorem by the same method as we have done in the proof of Theorem 3. Theorem 9. Recursion formulas for the function G2 are as follows G2 ˛; ˛ 0 ; ˇ; ˇ 0 C nI x; y D G2 ˛; ˛ 0 ; ˇ; ˇ 0 I x; y C ˛ .ˇ/ 1x n X G2 ˛ C 1; ˛ 0 ; ˇ (3.9) 1; ˇ 0 C kI x; y kD1 ˛ 0 ˇy n X kD1 .ˇ 0 C k .ˇ 0 C k 1/ 1 G2 ˛; ˛ 0 C 1; ˇ C 1; ˇ 0 C k 1/ 2I x; y and G2 ˛; ˛ 0 ; ˇ; ˇ 0 nI x; y (3.10) 1162 RECEP ŞAHIN AND SUSAN RIDHA SHAKOR AGHA D G2 ˛; ˛ 0 ; ˇ; ˇ 0 I x; y ˛ .ˇ/ 1x n X G2 ˛ C 1; ˛ 0 ; ˇ 1; ˇ 0 k C 1I x; y kD1 C ˛ 0 ˇy n X .ˇ 0 kD1 .ˇ 0 k/ 1 G2 ˛; ˛ 0 C 1; ˇ C 1; ˇ 0 k/ k 1I x; y : Proof. From the definition of the function G2 , we have the following relation: G2 ˛; ˛ 0 ; ˇ; ˇ 0 C nI x; y D G2 ˛; ˛ 0 ; ˇ; ˇ 0 I x; y C ˛ .ˇ/ 1 xG2 ˛ C 1; ˛ 0 ; ˇ 1; ˇ 0 C 1I x; y .ˇ 0 / 1 ˛ 0 ˇy G2 ˛; ˛ 0 C 1; ˇ C 1; ˇ 0 1I x; y : 0 ˇ If we apply this relation for n times, we can easily prove the theorem by the same method as we have done in the proof of Theorem 3. R EFERENCES [1] [2] [3] [4] J. Horn, “Hypergeometrische funktionen zweier veräMath. Ann., vol. 105, pp. 381–407, 1931. E. Rainville, Special functions. New York: Macmillan Company, 1971. L. Slater, Generalized Hypergeometric Functions. Cambridge: Cambridge University Press, 1966. H. Srivastava and P. Karlsson, Multiple Gaussian Hpergeometric Series. New York: Halsted Press (John Wiley and Sons), 1985. [5] H. Srivastava and H. Monacha, A Treatise on Generating Functions. New York: Halsted Press, 1984. [6] X. Wang, “Recursion formulas for appell functions,” Integral Transforms Spec. Funct., vol. 23, no. 6, pp. 421–433, 2012, doi: 10.1080/10652469.2011.596483. Authors’ addresses Recep Şahin Kırıkkale University, Department of Mathematics, Yahşihan, 71450 Kırıkkale, Turkey E-mail address: [email protected] Susan Rıdha Shakor Agha Kırıkkale University, Department of Mathematics, Yahşihan, 71450 Kırıkkale, Turkey E-mail address: [email protected]