Der Einfluss thermophysikalischer Daten auf die numerische
Transcription
Der Einfluss thermophysikalischer Daten auf die numerische
Einfluss thermophysikalischer Daten auf die Simulation Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen Tagung des Arbeitskreises Thermophysik, 4. – 5.3.2010 Karlsruhe, Deutschland E. Kaschnitz Österreichisches Gießerei-Institut Leoben, Österreich 1 Einfluss thermophysikalischer Daten auf die Simulation Numerical simulation in metal part production: ¾ Differential equations describing the physical phenomena are usually highly non-linear and coupled ¾ Analytical solutions are not obtainable ¾ Numerical approximations by means of Finite Methods (e.g. Finite Elements, Finite Differences, ...) ¾ Need of high computing power (computing times hours, days, weeks), parallelization of processes ¾ Simulated processes: casting, welding, forging, heat treatment, rolling, cutting … ¾ Accurate thermo-physical and -mechanical properties are urgently needed 2 Einfluss thermophysikalischer Daten auf die Simulation Geometry Process at He ed as re le tu Re ra te pe ra m ng Te ooli C Material Thermal Model Heat transfer Air gap Strain Material model Mechanical Model ge n a ch n ed e e ai c s u g a tr nd han ph s i s es se c r t s ha p Shrinkage Distortion Residual stress Cold shots Microstructure Segregation Thermal model: fluid flow, heat transfer, diffusion Material model: macro-, meso- micro-model Mechanical model: elasto-, plasto-, visco-model And Combinations 3 Einfluss thermophysikalischer Daten auf die Simulation Density and volume expansion of Al-17Si-4Cu: 1.10 2750 Teutectic Tliquidus Tsolidus 1.08 Density, kg.m -3 2650 1.06 2600 2550 1.04 2500 Volume Expansion 2700 1.02 2450 2400 1.00 0 100 200 300 400 500 600 700 Temperature, °C 4 Einfluss thermophysikalischer Daten auf die Simulation Thermal diffusivity of Al-17Si-4Cu: Thermal diffusivity, mm2 . s-1 70 60 solidus temperature 50 eutectic temperature 40 30 20 10 liquidus temperature Fit to the measured data Initial heating Col 7 vs Col 8 Col 9 vs Col 10 f vs Col 12 0 100 200 300 400 500 600 700 Temperature, °C 5 Einfluss thermophysikalischer Daten auf die Simulation Influence of volume thermal expansion data on feeding of castings: ¾ Alloys are (usually) contracting during solidification (up to several percent) ¾ Shrinkage has to be compensated in order to get a sound casting ¾ Additional material is provided from an extra reservoir by hydrostatic or external pressure (feeding) ¾ If feeding is disturbed, shrinkage cavities or porosity will be found in the final casting – leading to scrap ¾ feeding channels must not been frozen until solidification of casting (directional solidification towards the feeders) ¾ Precise volume expansion (contraction) data in the vicinity of the solidification region must be known 6 Einfluss thermophysikalischer Daten auf die Simulation Example: Liquid and solidification shrinkage due to density change during cooling – porosity and shrinkage cavity 7 Einfluss thermophysikalischer Daten auf die Simulation Example: Solidification of a gear housing 8 Einfluss thermophysikalischer Daten auf die Simulation Volume thermal expansion (contraction) depends also on: ¾ Exact chemical composition – an alloy designation has (wide) composition ranges for each element ¾ Solidification speed – competition between thermal and mass diffusion (lever rule, Scheil, back diffusion models) ¾ Global vs. local equilibrium at solidification front – development of different phases ¾ Melt treatment (inoculation, grain refinement, modification, degassing 9 Einfluss thermophysikalischer Daten auf die Simulation Influence of linear thermal expansion data on distortion of castings: ¾ When solidified, the casting shrinks from its high temperature dimensions to room temperature ¾ In the mold, the (relatively soft) casting is more or less constrained and follows the dimensions of the (stiff) mold (plastically deformed at high temperature) ¾ When the casting is shaked out of mold, it can shrink freely ¾ Different regions of the casting are at different temperatures at shake-out – shrinkage is locally different ¾ The local shrinkage (elastic part) equals to thermal expansion x local temperature difference to room temperature ¾ Each region has an individual shrinkage – that can lead to distortion (plastic contributions ease the stress but increase distortion) 10 Einfluss thermophysikalischer Daten auf die Simulation Example: V-shaped high-pressure die-casting – temperature distribution until shake-out 11 Einfluss thermophysikalischer Daten auf die Simulation Example: V-shaped high-pressure die-casting – distortion in xdirection during free cooling 12 Einfluss thermophysikalischer Daten auf die Simulation V-shaped high-pressure die-castings are produced at ÖGI High-pressure die-casting machine V-shaped specimens 13 Einfluss thermophysikalischer Daten auf die Simulation Dimensions of the V-shaped specimens are measured and compared to simulation 14 Einfluss thermophysikalischer Daten auf die Simulation Influence of linear thermal expansion data on distortion of castings: ¾ Different regions of the casting are at different temperatures at shake-out – shrinkage is locally different (plastic strain can also happen in the die – some stress is already present at shake-out) ¾ The local shrinkage leads to distortion ¾ After machining, the stress distribution changes – also the distortion ¾ Similar problems arise at heat treatment of metal parts 15 Einfluss thermophysikalischer Daten auf die Simulation Influence of linear thermal expansion and thermal conductivity data on die life expectance (high-pressure die-casting): ¾ After filling of the cavity the hot melt is in direct contact with the cooler tool steel ¾ The steel surface is heated rapidly, the material expands in the vicinity of the surface ¾ The surface layer gets under heavy compressive stress – can be beyond the yield stress ¾ This leads to plastic deformation of the surface layer ¾ After removing of the casting, a lubricant-water mixture is sprayed at the surface – rapid cooling ¾ The cooled surface layer gets under tension stress – the material is now “too short” – cracking of the surface under tension stress 16 Einfluss thermophysikalischer Daten auf die Simulation Temperatures at a tool-steel die-surface in high-pressure diecasting: 800 600 Casting in die Air Spray Air cooling cooling cooling 600 500 400 200 0 300 -200 200 -400 Cut of a fraction of die and melt 100 Die closed Die open -600 Die open Die closed 0 -800 0 10 20 30 40 50 60 Time, s 17 Stress, MPa Temperature, °C 400 Einfluss thermophysikalischer Daten auf die Simulation Tool-steel die in high-pressure die-casting during solidification: After 1 second Temperature Normal stress in vertical direction 18 Einfluss thermophysikalischer Daten auf die Simulation Tool-steel die in high-pressure die-casting during solidification: After 5 seconds Temperature Normal stress in vertical direction 19 Einfluss thermophysikalischer Daten auf die Simulation Tool-steel die in high-pressure die-casting during solidification: After 20 seconds Temperature Normal stress in vertical direction 20 Einfluss thermophysikalischer Daten auf die Simulation Tool-steel die in high-pressure die-casting at open die: After 30 seconds Temperature Normal stress in vertical direction 21 Einfluss thermophysikalischer Daten auf die Simulation Tool-steel die in high-pressure die-casting during spraying: After 40 seconds Temperature Normal stress in vertical direction 22 Einfluss thermophysikalischer Daten auf die Simulation Tool-steel die in high-pressure die-casting at the end of cycle: After 55 seconds Temperature Normal stress in vertical direction 23 Einfluss thermophysikalischer Daten auf die Simulation Examples of die damage: Thermal fatigue cracks Fracture of the entire die 2 1 10mm 24 Einfluss thermophysikalischer Daten auf die Simulation Influence of linear thermal expansion and thermal conductivity data on die life expectance simulation (high-pressure die-casting): ¾ Plastic deformation at heating leads to cracking during rapid cooling ¾ Smaller linear thermal expansion lowers thermal stress ¾ Higher thermal conductivity removes heat faster – smaller temperature gradients – lower thermal stress ¾ just a few percent change in thermal conductivity of the tool steel changes peak temperature at the surface for several degrees – that can have a tremendous influence in die life expectance (up to a factor of 10) ¾ Search for a tools steel with higher thermal conductivity is ongoing 25 Einfluss thermophysikalischer Daten auf die Simulation Warmarbeitsstahl von Rovalma HTCS-130: Wärmeleitfähigkeit, W/Km 60 40 20 Rovalma HTCS-130 Datenblatt STM Stahl 1.2343 (W300 ISODISC) W360 ISOBLOC 0 0 100 200 300 400 500 600 700 Temperatur, °C 26 Einfluss thermophysikalischer Daten auf die Simulation Influence of thermal conductivity on microstructure simulation of castings: ¾ Mechanical properties (aluminum, magnesium) depend on ¾Melt cleaning, degassing, grain refinement, modification ¾Correct fluid flow, feeding technique ¾ Solidification speed (thermal conductivity of the mold) ¾ Rapid solidification leads to fine grain and small secondary dendrite arms in the microstructure – superior mechanical properties ¾ Local cooling of crucial regions of a casting 27 Einfluss thermophysikalischer Daten auf die Simulation Simulation of the cooling time: Casting with grey iron core Casting with quartz sand core 28 Einfluss thermophysikalischer Daten auf die Simulation Microstructure (position 7 mm from surface): Casting with grey iron core Casting with quartz sand core DAS 20 µm 200µm DAS 61 µm 200µm 29 Einfluss thermophysikalischer Daten auf die Simulation Conclusions: How in(accurate) thermal conductivity and thermal expansion data influences the quality of casting simulations ¾ Volume thermal expansion of the solidifying melt can lead to shrinkage porosity – with inaccurate data cavities can be predicted when casting is sound and vice versa ¾ Linear thermal expansion is responsible for thermal strain – with inaccurate data the final distortion of the casting and residual stresses are not correctly predicted ¾ Thermal conductivity of the mold determines the heat removal from the solidifying casting – with inaccurate data the microstructure will develop different in simulation and reality ¾ Thermal conductivity and linear thermal expansion of a die are responsible for the amount of (cycling) compression and tension stress – inaccurate data lead to a completely wrong prediction of cracking (lifetime) 30 Einfluss thermophysikalischer Daten auf die Simulation 31