Data assimilation
Transcription
Data assimilation
Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Datenassimilation und Inversion von Chemie-Transportmodellen Hendrik Elbern Rhenish Institute for Environmental Research at the University of Cologne and Virt. Inst. for Inverse Modelling of Atmospheric Chemical Composition with contributions from the RIU Chemical Data Assimilation Research group 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Contents 1. Objectives of data assimilation and inversion 2. Theoretical background 3. Meteorological examples 4. Stratospheric chemistry data assimilation 5. Tropospheric chemistry data assimilation and inversion 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 1. Objectives of data assimilation and inversion 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Terminology Inverse Modelling The inverse modelling problem consists of using the actual result of some measurements to infer the values of the parameters that characterize the system. A. Tarantola (2005) 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Data Assimilation The ambitious and elusive goal of data assimilation is to provide a dynamically consistent motion picture of the atmosphere and oceans, in three space dimensions, with known error bars. M. Ghil and P. Malanotte-Rizzoli (1991) 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Objective of atmospheric data assimilation • "is to produce a regular, physically consistent four dimensional representation of the state of the atmosphere • from a heterogeneous array of in situ and remote instruments • which sample imperfectly and irregularly in space and time. Data assimilation • extracts the signal from noisy observations (filtering) • interpolates in space and time (interpolation) and • reconstructs state variables that are not sampled by the observation network (completion).“ (Daley, 1997) 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 2. Theoretical background 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Information sources and theories declarative information: •observations/retrievals •forecasts •“Climate” statistics, •error statistics procedural Information differential equations models •contol theory •statist. filter theory •classical numerics •optimisation algorith. Interpolation in space and time Filter error affected data Completion non-observed parameters Advection Information set 4D-consistent process description radiation microphysic s gasphase aqueous phase chem. aerosol s Emissionen Deposition 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Data assimilation has much of curve fitting! y=ax+b y a b{ | 0 | 1 x 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Characteristics in data assimilation, in comparison to remote sensing retrievals • high dimensional problem: dim (x) > 105 • highly underdetermined system (few observations with respect to model freedom: dim(x)>>dim(y) ) • nonlinear dynamics • constraints by physical laws are insufficient 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Advanced data assimilation is an application of the principles of Data Analysis. (As in satellite retrievals) we strive for estimating a latent, not apparent parameter set x. We dispose of 1. indirect information on the state and processes in terms of manifest, though insufficient or inappropriate data y, and 2. a deterministic model M connecting x and y, in some way. Bayes’ rule gives access to the probability of state x, given y and M 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Ad hoc (empirical) approaches (1) Interpolation 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Optimality criteria: Which property can be attributed to our analysis result? (Need for quantification) • maximum likelyhood: maximum of probability density function • minimal variance: l2 norm parameters optimal, for which analysis error spread is minimal (for Gaussian/normal and log-normal error distributions), Best Linear Unbiased Estimate (BLUE) • minimax norm (discrete cases) • maximum entropy 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Data assimilation: Synergy of Information sources example: 2 data sets with Gaussian distribution (here: minimal variance= maximum likelihood) Bayes’ rule: Analysis (=estimation) BLUE Best Linear Unbiased Estimate xxb bb xa yxoo a a priori (=prediction or climatology) observation 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 A 2 information bits example (1): Assumptions 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 A 2 information bits example (2): estimation 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 A 2 information bits example (3): estimation 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 A 2 information bits example (4): estimation 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Single Observation, direct inversion 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Single observation, Minimisation 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Optimal Interpolation Notation: Ide, K., P. Courtier, M. Ghil, and A. Lorenc, Unified notation for data assimilation: operational sequential and variational, J. Met. Soc. Jap., 75, 181--189, 1997. 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Types of assimilation algorithms: “smoother” and filter 4D-var Kalman Filter 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Sources of satellite trace gas observations: •Limb sounding instruments (trace gas profiles, e.g. MIPAS on ENVISAT) •Occultation •sun, moon, stars •Nadir viewing instruments -Total column content - Profiles (coarse vertical resolution) 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 DA in the satellite data application chain data retrieval level 0 detector tensions level 1 spectra prior data level 2 geolocated geophysical parameters radiance data asimilation inversion geophysical models level 3 geophysical parameters on regular grids level 4 user applications 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 The cost function to be minimized 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Transport-diffusion-reaction equation and its adjoint 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Staircase to the abyss: Adjoint integration “backward in time” How to make the parameters of resolvents i M(ti-1,ti) available in reverse order?? back 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 CONTRACE Convective Transport of Trace Gases into the upper Troposphere over Europe: Budget and Impact of Chemistry Coord.: H. Huntrieser, DLR flight path Nov. 14, 2001 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 CONTRACE Nov. 14, 2001 north (= home) bound O3 CO H2O2 1. guess NO assimilation result observations flight5.10.2011 height [km] Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 The 4D variational method: Key development: construction of the adjoint code forward model backward model (forward differential equation) (backward differential equation) algorithm (solver) adjoint algorithm (adjoint solver) code adjoint code 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Kalman filter, basic equations 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Reduced rank Kalman filter (basic idea) (Hanea, Heemink, Velders, 2004) Appoximate covariance matrices Pb,a (n x n) by a product of suitably low ranked matrix Sb,a (n x p), and p << n . Same procedure for the system noise matrix Q with T (n x r). The forecast step remains unchanged. The forecast error covariance matrix rests on 2 x p model integrations only! The enlargement of p by r enforces periodic reductions of columns (with lowest ranked eigenvalues) 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Stratospheric chemistry data assimilation CRISTA 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Worum geht es? Bobachtung von Spurengasen durch Satellitensensoren (z.B. MIPAS / SCIAMACHY auf ENVISAT) Synoptische Karte von Spurengasverteilungen SACADA Assimilationssystem 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Icosahedral Grid vs. Conventional lat/lon Grid •Separation of grid points 220-260 km, nearly homogeneous •Equivalent resolution lat/lon grid needs 2.0° x 2.4° •10242 grid points per level •13500 grid points per level 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 SACADA Vertical Model Grid Hybrid sigma / pressure coordinate system Assimilation currently on 32 levels from 0.1 – 440 hPa (grey shaded region) 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 MIPAS FZK-IMK ClONO2 retrieval example Distribution of ClONO2 at 20 km altitude in the Southern hemisphere for 24 July 2002 and 3 days in September 2002 (case study 1). Note the pronounced collar structure at the vortex edge. 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Results: Cost-functions for Oct. 21 – Oct. 26 c2- optimum 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Results: Cost-function for Oct. 27 – Nov. 14 c2- optimum 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Scatter plots for Nov. 13, 2003 HNO3 ClONO2 O3 Control Run (after 23 days of free integration with SOKRATES (2D) initial values) 23 days consecutive 4D-var: Background Analysis 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Vergleichsbeispiel am DFD: ROSE - SACADA ROSE: 2.5°x3.8° SACADA: ni32 = 2.25x2.25 5.10.2011 from Baier et al., 2006, EGU poster Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Results for ClONO2 at 7.6 hPa (~33 km), Nov. 13, 2003 12:00 UTC Control Run (no assimilation) MIPAS Observations Analysis 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Results for HNO3 at 28 hPa (~24 km), Nov. 4, 2003 12:00 UTC Control Run (no assimilation) MIPAS Observations Analysis 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 water vapour assimilation 20. July 2003 ~160 hPa Integration start: 1. July, no assimilation after continuous assimilation MIPAS water vapour retrievals 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Tropospheric chemistry data assimilation and inversion Rostock-Stuthof 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Objectives of air quality inverse modelling • bring together air quality measurements and CTMs to provide optimal spatio-temporal reconstructions of air quality parameters, • estimate variability, sources, sinks, and trends • provide better air quality predictions • reconstruct past changes, • act as a decision support system for protection measures (which emissions are most critical?) 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Source types • Gas phase NOx, volatile organic compounds (VOC), other anthropogenic biogenic (isoprenes, pinenes, …) • Aerosol sources traffic, industrial, dwelling biomass burning mineral dust sea salt 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 data “Upgrade to information” health information Satellite retrievals in situ observations Emission inventories legislation Simulation of the “atmospheric processor” Meteo data GIS data cultural heritage farming support aviation control Chemical Weather System science 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Processes in a complex chemistry-transport model (EURopean Air pollution Dispersion model EURAD) Meteorological Model radiative transfer, winds, temperature, aqueous processes, cloud physics condensation evaporation wet deposition sublimation CTM transport diffusion chemical transformations Gas phase aqueous phase aerosols chemistry dynamics •nucleation •coagulation •sedimentation •deliquescence • …. anthropogenic + biogenic emissions dry deposition 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Which constituents/complexity really matters? • Human health: PM10, PM2.5, PM1 (= Particulate Matter ) POPs (Persistent Organic Pollutants): - PAHs (Polycyclic Aromatic Hydrocarbons), PCBs (PolyClorinated Biphenyls), HCHs (HexaCloroHexanes), benzene, benzopyrene, …. x m(r )dr 0 Trace metals: Cd, Be, Co, Hg, Mo, Ni, Se, Sn, V, As, Cr, Cu, Mn, Zn, Pb Ozone, PAN, NO, NO2, SO2, CO Pollen • Crops: Ozone • Forests, lakes, other vulnerable ecosystems “Acid rain” ozone 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Special challenges of tropospheric chemistry inverse modelling The following problems prevail: 1. strong influence of manifold processes including emissions and deposition 2. spatially highly variable “chemical regimes” 3. chemical state observability (= “analyseability”) hampered by manifold hydrocarbon species 4. to maintain consistency across heterogeneous data sources: satellite data and in situ observations This invokes the application space-time inverse modelling algorithms preserving the BLUE property (Best Linear Unbiased Estimator) 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 State of the Art Examples How are today’s services designed? 1. 2. 3. 4. solvers of a deterministic transport-diffusion-reaction equation, mostly operator-split-wise (except probably reaction-vert. diffusion) continental, or regional nest (1 km < Dx < 250 km horizontal resolution) tropospheric gas phase chemistry, 40-60 species, < 200 reactions basic aerosol treatment of at least NH3, HNO3, H2SO4 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Special challenge: which is the appropriate scale for air quality modelling? • intercontinental / long range transport of pollutants • many processes are local: point and line source emissions • surface patterns/tesselation impacts skill • boundary layer and convection simulation at least of like importance as in meteorology 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Prognosis www.eurad.uni-koeln.de 23 levels lowest level: ca. 40 m upper boundary ca. 15 km Sequential nesting Jülich example Europe ds = 125 km Central Europe ds = 25 km NRW ds = 5 km ECHO ds = 1 km 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Hemispheric forecast PM10 Incentives •In readiness for tropospheric satellite data •boundary value provision for continental scale models for long range transported constituents high resolution version 150 x 150 grid Dx = 125 km 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Daughter grids forecast 6.9.2005today Europe Dx=125 km and central Europe Dx=25 km 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 targeted regions forecast 6.9.2005 5 km resolution 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 NOx 1.5 x 0.6 x 1x 1.5 x BERLIOZ NOx-VOC emissions variation ensemble (21.7.1998, 15:00 UTC) 1x 0.6 x 0.6 x 1x 1.5 x Note: not C-orthogonal, not max. sensitivities aligned VOCs 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 concentration Question: Which parameter to be optimized? Hypothesis: initial state and emission rates are least known emission biased model state observations only initial value opt. true state joint opt. only emission rate opt. time 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Which model parameters should be optimised? • those that maximise the product (paucity of knowledge * impact) • tropospheric modelling: Initial and boundary values Emission Rates / Deposition Velocities EURAD-CTM: Grid Resolution Reaction Rates values and/or • initial Model Equations • emission rates • (boundary values) 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 In the troposphere, for emission rates, the product (paucity of knowledge*importance) is high 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Treatment of the inverse problem for emission rate inference 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Normalised diurnal cycle of anthropogenic surface emissions f(t) emission(t)=f(t;location,species,day) * v(location,species) day in {working day, Saturday, Sunday} v optimization parameter 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Optimisation of emission rates amplitude optimisation for each emitted species and grid cell 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Background emission rate covariance matrix D 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Mesoscale EURAD 4D-var inverse modelling system 4D-var configuration Initial values gradient EURAD emission model EEM emission 1. guess minimisation meteorological driver MM5 emission rates analysis direct CTM forecast adjoint CTM observations 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 2 level forward and backward integration scheme time direction forward integration 1. step 2. step 3. step 4. step 5. step 6. step 7. step 8. step 9. step disk store recover intermediate storage Level 1 1. step 2. step 3. step 4. step 5. step 6. step 7. step 8. step 9. step backward integration 5.10.2011 vert. Diffusion Adjungierte vert.Diffusion vert.. Advekt Adjungierte vert. Advekt horiz. Advekt y Adjungierte horiz. Advekt y horiz. Advekt x Adjungierte horiz. Advekt x Adjungierte Chemie Chemie Chemie horiz. Advekt x horiz. Advekt y vert.. Advekt vert. Diffusion horiz. Advekt x horiz. Advekt y vert.. Advekt vert. Diffusion horiz. Advekt x Adjungierte horiz. Advekt x horiz. Advekt y Adjungierte horiz. Advekt y vert.. Advekt Adjungierte vert. Advekt vert. Diffusion Adjungierte vert.Diffusion Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 storage sequence: level 2, operator split (each time step) intermediate storage Level 1 intermediate storage Level 2 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Semi-rural measurement site Eggegebirge 7. August 8. August 1997 + observations no optimisation initial value opt. emis. rate opt. joint emis + ini val opt. assimilation interval forecast 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Error statistics bias (top), root mean square (bottom) assimilation window forecast + observations no optimisation initial value opt. emis. rate opt. assimilation window joint emis + ini val opt. forecast 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Control and diagnostics Which is the requested resolution? BERLIOZ grid designs and observational sites (20.21. 07.1998) Dx=6 km Dx=18 km Dx=2 km Dx=54 km 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Some BERLIOZ examples of NOx assimilation (20.21. 07.1998) NO NO2 Time series for selected NOx stations on nest 2. + observations, -- - no assimilation, -____ N1 assimilation (18 km), -____N2 assimilation.(6 km), -grey shading: assimilated observations, others forecasted. 5.10.2011 NO2, (xylene (bottom), CO (top) SO2 . surface Emission source estimates by inverse modelling Optimised emission factors for Nest 3 height layer ~32-~70m Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Nest 2: (surface ozone) (20.21. 07.1998) without assimilation with assimilation 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 # molec NO2/cm2 # molec NO2/cm2 Assimilation of GOME NO2 tropospheric columns, 5.8.1997 forecast without assimilation NOAA ch 3 (near infrared) post assimilation forecast started: 5.8.97 06:00 UTC # molec NO2 /cm2 GOME NO2 columns: Courtesy of A. Richter, IFE, U. Bremen 5.10.2011 NOAA 14 11:51 UTC no assimilation NO2 tropospheric column assimilation IFE: Example: BERLIOZ episode 20.7.1998 with assimilation GOME retieval Courtesy: A. Richter, IFE Bremen Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 IUP Bremen GOMEGOME forecast validation no assimilation with assimilation 20.7.98 ideal forecast forecast verification forecast 21.7.98 (not assimilated) 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 MOPITT tropospheric CO assimilation retrieved 850 hPa concentrations in ppbV. first guess at 11:00 UTC;. 4D-Var analysis for the same time; 850 hPa, 1 July. 2003 Note: Colour codes are not fully consistent! 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Aerosol observations • In situ: EEA Airbase: Database of groundstations of EU member countries & states: - 450 stations for PM10 (2003) - No PM2.5. (4 stations in UK only) (national and federal observation networks, partly in near real time) • Satellite measurements: SYNAER (SYNergetic AErosol Retrieval, DLR-DFD, [HolzerPopp et al., 2001])* 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 SYNAER data See details in next presentation M. Schrödter-Homscheit SYNAER (SYNergetic AErosol Retrieval) has been developed at DLR-DFD [Holzer-Popp et al., 2002] • SYNAER provides a first step from aerosol optical properties to chemical properties • Information breakdown in terms of: water soluble water insoluble sea salt (accumulation mode) sea salt (coarse mode) soot minerals transported 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 SYNAER scheme • uses data from SCIAMACHY/AATSR (Envisat) & GOME2/AVHRR (METOP), • calculates BLAOT (boundary layer aerosol optical thickness) from radiometers • calculate SCIAMACHY/GOME-2 spectra and select best fit spectrum -> chosen mixture (assigning aerosol type concentrations (40 reference mixtures)) • PMx calculation 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Typical data configuration by ENVISAT and in situ SYNAER PM10 retrievals EEA PM10 stations (2003) SYNAER retrievals are available near real-time 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 EURAD Aerosol and Fire Emission model 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Parameterization of Fire Emissions • Classification of landcover IGBP Scheme 18 Categories (International Geosphere-Biosphere Program) Assignment of Fuel Load FL [g(C)/m2] (DM) • Type of combustion Assignment of Emission factors EF [g(Spec.)/kg(DM)] • Climatic conditions Assignment of burning efficiency BE [fract.] Dep. on: geolocation Time-of-year /rel. Hum., Temp, Wind • Area Burned AB [m2] Overall emitted mass (Spec) mSpec FL EFSpec BE AB 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 EURAD – FIRE – MODEL RACM chemistry EFM 52 Species RACM 22 Gas & 4 Aerosol species Gas-phase CO2,CO,SO2,NH3, Isoprene, Xylene,HCHO,CH4,Ethane, Ethene, Formic-, Acetic acid ~ other Alkanes, Alkanols Butadien other Alkenes, Dienes Aldehydes, Ketones HC3, HC5, HC8 DIEN OLT, OLI ALD, KET Terpenes 50% API Nox 20% NO2 80% NO 50% LIM Aerosols TSP, PM2.5, EC, OC PM2.5, EC, OC Special K, Hg, Furanes, Methyl halogenides - 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Vegetation Classes for Fuel Load FL estimation EFM EFM BE EFM FL IGBP 18 types of vegetation 5+1 Ecosystems Evergreen Broadleaf Tropical Forest Evergreen Needleleaf Deciduous Broadleaf Mixed Forest Burning efficiency [frac] Fuel Load [kg(C)/m2] 0.85 30.0 Temperate Forest* 0.6 15.0 Deciduous Needleleaf Boreal Forest 0.5 8.0 Shrublands Wetlands Woody Savanna Crop/Natural Mosaic Wooded Savanna 0.5 2.0 Savanna Grass-,Croplands Barren areas Grassland 0.5 0.4 0 0.0 Water, Ice & Snow No Vegetation Urban * north of 50° only Boreal Forest 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Input Data: Areas Burnt (AB) Fire Locations (Hot Spots): MODIS Web Fire Mapper Further alternatives: ESA World Fire Atlas Environmental Agencies/Government/Institutes Area Burned: Satellite pictures (following confidence categories) „Rule of thumb“: Small Fires 1 ha Large Fires 10 ha Guessed from newspapers/news 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Example case: 13.07.2003 5.10.2011 in situ only in situ & SYNAER in situ & SYNAER analysis increment background Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 How long does assimilation prevail? ~ ENVISAT overpass ~ assimilation time Model run 12. – 14. July; Assimilation at 10 UTC 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 How long do assimilation effects prevail? No previous assimilation assimilation on previous days 10 UTC 5.10.2011 Kompaktkurs: Atmosphärische Chemie und Dynamik, FZ Jülich 4.-8.10. 2011 Conclusions • chemical weather inversions are high dimensional multiple scale problems with transient constituents • chemical inverse modelling rests on sparse and heterogeneous observations, with variable error characteristics (incl. error of representativity) • initial value optimisation is insufficient, as at least emissions are less known and more important for inversion • the ability for inversion is therefore required to optimize emission rates in the context of chemical conversions in a high dimensional phase space 5.10.2011