Joachim Sauer!
Transcription
Joachim Sauer!
IMPRS Block Course! Schmöckwitz, March 1, 2012! Quantum chemistry and wavefunction based methods for electron correlation ! Joachim Sauer! Institut für Chemie, Humboldt-Universität! HUMBOLDT-UNIVERSITÄT ZU BERLIN Wlodzimierz Kolos 1928 - 1996 © Joachim Sauer, HU Berlin, 2012 © Joachim Sauer, HU Berlin, 2012 © Joachim Sauer, HU Berlin, 2012 CO/MgO(001)! MgO(001)/CO! O C Mg2+ O2- © Joachim Sauer, HU Berlin, 2012 CO/Mg(001)! Example: CO/MgO(001) Observed binding energy 15 kJ/mol! 2002 Nygren, Pettersson, J. Chem. Phys. 105 (1996) 9339! © Joachim Sauer, HU Berlin, 2012 ! ! ! ! ! ! (terrace)! ! © Joachim Sauer, HU Berlin, 2012 Temperature programmed desorption! ! ! ! ! ! ! (terrace)! ! Wichtendahl,... Kuhlenbeck, Freund, Surf. Sci. 423 (1999) 90! © Joachim Sauer, HU Berlin, 2012 Temperature programmed desorption! ! 29 K peak: multilayer! ! 76 K peak: defects! ! ! ! Readhead! 57 K Peak: {Mg2+}5c! (ν=1013 s-1) ! ! 0.14 eV (15 kJ/mol)! ! ! Wichtendahl,... Kuhlenbeck, Freund, Surf. Sci. 423 (1999) 90! © Joachim Sauer, HU Berlin, 2012 CH4/MgO(100)! Monolayer, c 2x 2 R 45 o (Coulomb et al.) „dipod configuration (Larese et al.) Tait, Dohnalek, Campbell, Kay, JCP 122 (2005) 164708! 12.6 kJ/mol (Θ=1)! 13.1 kJ/mol (40 K) (He scattering) © Joachim Sauer, HU Berlin, 2012 CH4/MgO(100) - Temperature Programmed Desorption! (terrace)! Attractive interaction between molecules! Cluster formation at low coverage E0=11.1, γ =1.53 Tait, Dohnalek, Campbell, Kay, JCP 122 (2005) 164708! © Joachim Sauer, HU Berlin, 2012 CH4/MgO(100) - Arrhenius Barrier vs. Desorption Energy! EA = Hd + RT! Hd(T)= Ed + EZPV + ΔH(T)! EA = Hd + RT! Arrhenius barrier EA! T/K! Hd=EA - RT! kJ!/mol! 12.6! 13.1! 47! 40! 12.2! 12.8! ΔH(T)1 1.1! Hd(0) = Hd - ΔH(T)! ZPVE1 11.1! -4.2! Ed = Hd(0) - ZPVE! 15.3! 1.0! 11.8! -4.2! 16.0! 15.3± 0.6! 1 Vibrational contributions from PBE+D slab calculations! © Joachim Sauer, HU Berlin, 2012 P. Dirac, Proc. Roy. Soc. (London) A123 (1929) 714:! „The general theory of quantum mechanics is now almost complete...! The underlying physical laws necessary for the mathematical theory of .... the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations that are much too complicated to be soluble.“! It therefore becomes desirable that approximate methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation.! © Joachim Sauer, HU Berlin, 2012 The Royal Swedish Academy of Sciences has awarded The 1998 Nobel Prize in Chemistry in the area of quantum chemistry to Walter Kohn, University of California at Santa Barbara, USA and John A. Pople, Northwestern Univ., Evanston, Ill., USA (British citizen). Citation: "to Walter Kohn for his development of the density-functional theory and to John Pople for his development of computational methods in quantum chemistry." © Joachim Sauer, HU Berlin, 2012 Quantum chemistry ! Accuracy · (system size)m ≈ constant(resources)! ! Coupled cluster expansion of wave function: CCSD(T)! 2nd order Moller-Plesset perturbation theory: MP2! ! ! ! ! Density functional theory (DFT)! for full periodic structures feasible! Dispersion largely missing:! Van der Waals functional (Langreth & Lundquist)! Pragmatic solution: DFT+D (e.g. Grimme)! ! © Joachim Sauer, HU Berlin, 2012 Surface Reaction! TS Catalyst-Educt! Complex! Catalyst! + Educt! Intrinsic! Barrier! Binding! energy! Apparent! Barrier! Reaction energy! Catalyst-Product! Complex! © Joachim Sauer, HU Berlin, 2012 DFT problems with barriers! TS Van der Waals (dispersion) Catalyst-Educt! Complex! Catalyst! + Educt! SI error (reaction site) Intrinsic! Barrier! Binding! energy! Catalyst-Product! Complex! © Joachim Sauer, HU Berlin, 2012 O Zeolite catalysts: active sites (transitionOmetal ions, protons) in a „surface-only Sisilica matrix ! Al Si Si O Si +Al, H Si Si O Al O O O O O -Si O O M+ Si O O O O O O M+ Al O O H O O O -Si +Al, H Si Al O H © Joachim Sauer, HU Berlin, 2012 O Zeolite catalysis: Methanol-to-hydrocarbons! MTG MTO! Methanol from different sources! CH3OH! + CH3OH! Gasoline! Olefines! CH3OCH3! C-C Formation, induction! CH2=CH2! Methylation! CH2=CH-CH3! Cyclic Polyens! Hydrocarbon pool! mechanism ! Haw et al, Kolboe et al. Aromatic HC! Review: Stöcker, Microp. and Mesop. Mat. 29 (1999) 3-48! © Joachim Sauer, HU Berlin, 2012 Methylation of ethene, propene, trans-2-butene in H-MFI! Measured* Apparent Barrier Ethene Propene t-2-Butene 104 64 (-40) 40 (-24) Transition structure MeOH (g) Alkene (g) Water (g) Alkene (g) MeOH (ads) Alkene (g) MeOH (ads) Alkene (ads) Water (ads) Alkene (ads) *S. Svelle, P.A. Ronning, S. Kolboe, J. Catal. 2004, 224, 115.! S. Svelle, P.O. Ronning, U. Olsbye, S. Kolboe,J. Catal. 2005, 234, 385.! © Joachim Sauer, HU Berlin, 2012 Methylation of alkenes in H-MFI - pbc DFT! Error increases with chain length Svelle, Tuma, Rozanska, Kerber, Sauer, JACS 131 (2009) 816! © Joachim Sauer, HU Berlin, 2012 Pragmatic solution: DFT + Dispersion (DFT+D)! Many predecessors with DFT, HF+Disp, e.g. Ahlrichs and Scoles! Many more sophisticated schemes! E total = E DFT + E disp E disp = −s ij N −1 N 6 6 6 i =1 j =i +1 ij ∑∑ C fdamp r fdamp (R) = 1 1+e-α (R/R0 -1) s6 = 1.4/1.3/0.7 for BLYP/BP86/PBE Grimme, J. Comput. Chem., 2004, 25, 1463; 2006, 27, 1787.! Parameters are as good for solids (condensed systems) as for molecules Note, however, Mg2+ very different from Mg, whereas O2- similar to O Implementation of Ewald sum for 1/r6 for periodic systems Kerber, Sierka, Sauer, J. Comput. Chem. 29 (2008) 2088.! © Joachim Sauer, HU Berlin, 2012 Methylation of alkenes in H-MFI - pbc DFT+D! Dispersion increases with chain length Svelle, Tuma, Rozanska, Kerber, Sauer, JACS 131 (2009) 816! © Joachim Sauer, HU Berlin, 2012 Methylation of alkenes in H-MFI - pbc DFT+D! Dispersion Too low barrier! constant SIC error! Svelle, Tuma, Rozanska, Kerber, Sauer, JACS 131 (2009) 816! © Joachim Sauer, HU Berlin, 2012 Errors on energy barriers (Truhlar et al.)! kcal/mol Nucleophilic substitution Reference data: CCSD(T) with extrapolation to complete basis set limit(„W1 theory ) © Joachim Sauer, HU Berlin, 2012 Divide and Conquer - Models and Methodsn! DFT (PBE/plane waves), VASP 20.2x20.5x13.5 Å; 96 +18 atoms Periodic Boundary Conditions CCSD(T)/cbs 17+17 Atome C3O11Si2AlH17 MOLPRO _ a MP2/TZVP 123+67Atome C3O72Si47AlH67 CC2 code b_ © Joachim Sauer, HU Berlin, 2012 Hybrid high level : low level method! Hybrid MP2(cluster):PBE+D(pbc) +ΔCCSD(T) method! Ehybrid (S,C) = EDFT+D(S) + [EMP2(C) - EDFT+D(C)]! High level correction Step 0: PBE+D optimization, periodic boundary conditions (pbc) Frequency calculation for stationary points, ZPVE Step 1: Hybrid MP2(cluster):PBE+D(pbc) optimization [Step 2: Basis set extrapolation to CBS limit, single point Step 3: CCSD(T)-MP2, small cluster model Tuma, Sauer, CPL 2004, 387, 388; PCCP, 2006, 8, 3955! Kerber, Sierka, Sauer, J. Comput. Chem. 2008, 29, 2088! Reuter/Scheffler, PRL 98 (2007) 176103 (CO/Cu(111))! Stoll, JPC A 113 (2009) 11483 (Be, Mg crystals)! © Joachim Sauer, HU Berlin, 2012 Energy as functional of orbitals or electron density! kinet. e-n e-e e-e! en. attract Coulomb exchange/corr orbital density density ! ! ! EHF = ET + EN + ! EJ + EXFock30 (orbital)! ! Self-interaction cancels EDFT = ET + EN + EJ + EXC (density)! functional of density only! EXCLDA = EXDirac30 + ECVWN! functional also of density gradient (Generalized Gradient Approximation)! EXCBLYP = EXDirac30 + EXB88 + ECLYP! © Joachim Sauer, HU Berlin, 2012 Self-interaction correction! Hartree-Fock EJ 1 2 ρ(x) = ∫∫ ρ(x ) 1 1 r12 ρ(x2 )dx1dx2 − N ∑ i(x)i*(x) 1 2 i =1 EXF30 (orbital) + ∑ ⎡⎣ ij ij i, j 1 2 ∑ ∫∫ i (x ) j (x ) ∗ * 1 2 i, j 1 r12 j (x1 )i (x2 )dx1dx2 − ij ji ⎤⎦ ⎡⎣ ii ii − ii ii ⎤⎦ = 0 i= j Coulomb and exchange terms cancel - self-interaction correction (SIC)! Kohn-Sham ! EJ 1 2 ∫∫ ρ(x ) 1 1 r12 + EXC (density)! ρ(x2 )dx1dx2 + ∫ dx ρ(x)VXC [ ρ,∇ρ ] 1 2 ii ii + i VXC [ ρ,∇ρ ] i ≠ 0 Coulomb and exchange do not cancel - self-interaction error! * ∫∫ i * (x1 ) j ∗ (x2 ) r121 i (x1 ) j (x2 )dx1dx2 = ij ij © Joachim Sauer, HU Berlin, 2012 Energy as functional of orbitals or electron density! kinet. e-n e-e e-e! en. attract Coulomb exchange/corr orbital density density ! ! ! EHF = ET + EN + ! EJ + EXFock30 (orbital)! ! Self-interaction cancels EDFT = ET + EN + EJ + EXC (density)! functional of density only! EXCLDA = EXD30 + ECVWN! functional also of density gradient (Generalized Gradient Approximation)! EXCBLYP = EXDirac30 + EXB88 + ECLYP! orbital-density hybrid functional! EXCB3LYP = a0 EXF30 + (1- a0) EXD30 + aX EXB88 ! Self-interaction VWN LYP! cancels partially ! +(1- aC ) EC + aC EC © Joachim Sauer, HU Berlin, 2012 Cluster anions (V2O5)n!- SOMO Size-dependent electron localization 20% 0% 50% Fock-exchange in functional! ! © Joachim Sauer, HU Berlin, 2012 CCSD(T) calculations confirm most stable structures! C s2A V4O10- ! ! + 33! D2d- 2B1! - 57 kJ/mol ! C s2A V6O15- C2v- 2A2! ! C s- 2A ! CCSD(T)//BH-LYP! B3-LYP! -10! BH-LYP! - 9! ! © Joachim Sauer, HU Berlin, 2012 - 48 kJ/mol ! Electron hole defects in silica and zeolites SiO2 Al doped SiO2 electron hole self-trapped electron hole [SiO4•]+ - e- H-Zeolite -H+ [AlO3•OH]+ [AlO4•] - e- - e-H+ [SiO4] [AlO4-] [AlO3OH] The hole is localized at one O site (EPR -quartz) Solans-Monfort, Branchadell, Sodupe, Sierka, Sauer, J Chem Phys 131 (2004) 6034! © Joachim Sauer, HU Berlin, 2012 Embedded MFI models (5T, 25T) - QM-Pot! © Joachim Sauer, HU Berlin, 2012 Energy for electron hole creation (eV)! BHLYP:Pot.fct.! 5T! 25T//5T! Hybrid! 7.40! 7.61! QM//Hybrid! 9.26! 8.81! -0.45! LR//Hybrid! -1.86! -1.20! +0.66! f·LR//Hybrid! (-1.27)! -0.82! (+0.45)! corrected! (7.99)! 7.99! +aperiodic corr.! Diff.! 8.33! © Joachim Sauer, HU Berlin, 2012 Systematic error of BHLYP (eV)! 6-31++G(d,p)! BHLYP, {T5}MFI! 9.26! BHLYP, T1// {T5}MFI! 9.47! CCSD(T), T1// {T5}MFI! 9.60! cc-pVQZ! 9.91-10.02! Increment! 0.44-0.55! © Joachim Sauer, HU Berlin, 2012 f=0.682 Expected rage of IP (eV)! 5T// {25T}MFI! BHLYP//Hybrid! 8.81! 8.81! LR//Hybrid! -1.20! -0.82! Hybrid! 7.61! 7.99! + aperiodic corr.! 7.95! 8.33! + QM error! 0.44! 0.55! [AlO3•OH]+! 8.4! 8.9! [SiO2•]+! 9.2! 9.5! Valence band edge (SiO2): 10.2 - 10.6 eV! Solans-Monfort, Branchadell, Sodupe, Sierka, Sauer, J Chem Phys 131 (2004) 6034! © Joachim Sauer, HU Berlin, 2012