EEG und Frühdiagnostik der Demenz vom Alzheimer - prof
Transcription
EEG und Frühdiagnostik der Demenz vom Alzheimer - prof
Elektroenzephalographische Frühdiagnose des neurodegenerativen Krankheitsprozesses bei der Demenz vom Alzheimer Typ (DAT) durch ipsative Trendermittlung (Ipsative Trend Assessment) Nach einem eingeladenen Vortrag im Rahmen des Symposions „Neurobiologische Horizonte psychiatrischer Forschung“ in der Psychiatrischen Universitätsklinik Leipzig am 3./4. April 2008 Gerald Ulrich Charité-Berliner Universitätsmedizin Mit dem pathogenetisch vieldeutigen Begriff der Demenz bezeichnen wir das klinische Erscheinungsbild der Alzheimer Krankheit. Trotz intensiver Forschung gibt es bis heute kein Verfahren, die asymptomatische Phase dieser Krankheit, die mit einem progredienten kortikalen Neuronenschwund gleichzusetzen ist, zu diagnostizieren. Zwar gibt es große Fortschritte, den Beginn der geistigen Desintegration immer zeitiger nachzuweisen, was irrtümlich bzw. irreführend als Fortschritt in der Frühdiagnose der Krankheit ausgegeben wird (55, 58, 69). Aufgrund vielfach bestätigter neuropathologischer Befunde aus den frühen 90ern wissen wir aber, dass zwischen Krankheitsbeginn und Ausbruch des Leidens eine 10-15 jährige symptomfreie Phase liegt (13, 2 14, 43, 48, 55, 62, 71). Wenn in neueren Publikationen auch der Anschein erweckt werden mag, so ist diese zeitliche Inkongruenz doch ist alles anderer als eine Erkenntnis der modernen Neurologie. Derartige symptomfreie Initialphasen bei Prozessen mit geringer Progredienz („Momentum“) werden schon seit wenigstens 100 Jahren durch die funktionelle Plastizität des Gehirns erklärt werden (z.B. 45, 56). Wie ein roter Faden zieht sich der Hinweis durch die Literatur, dass alle stetig und langsam progredient verlaufenden Hirnerkrankungen durch eine mehrjährige symptomfreie Phase charakterisiert sind. Diese Phase geht einher mit einer Verminderung des neuroplastischen Potentials. Bei Überschreiten einer bestimmten Schwelle treten Symptome auf. Allein schon die Vielzahl der im Laufe der Jahrzehnte abwechselnd bevorzugten synonymen Begriffe wie etwa „Elastizität“, „Kompensation“, „Anpassung“, „funktionelle Reorganisation“, „Neuroadaptation“, „Neuroplastizität“ verweist auf deren Unverzichtbarkeit zur Erklärung klinischer Beobachtungen. Für die Parkinson-typischen Symptome hat man beispielsweise eine sich über wenigsten 7 Jahre erstreckende Degeneration von wenigstens 80% der dopaminergen Zellen der Substantia nigra gefordert. Es stellt sich die Frage, warum dieser zentrale pathogenetische Aspekt in der inzwischen äußerst umfänglichen Alzheimer-Literatur Krankheit kaum Erwähnung findet. Das unbestreitbare Faktum langjähriger symptomfreier Krankheitsphasen lässt sich nur durch adaptive Mechanismen erklären, wie sie auch in einer Reihe von eindrucksvollen tierexperimentellen Studien demonstriert wurden (22, 23). Finger (22) vermutet hinter dem skeptischen Desinteresse der Alzheimer-Forschung am Phänomen der Neuroadaptation die Besorgnis, dass dadurch die seit Jahrzehnten dominierenden modulär-lokalisationistischen Modellvorstellungen in Frage gestellt werden könnten. Dies würde darüber hinaus das 3 inzwischen fest etablierte Methodenmonopol des Neuroimaging tangieren. So wird heute mehr denn je „Neurophysiologie“ mit Neuroimaging (MRI) gleichgesetzt. Die Vorherrschaft der bildlichen Darstellung hat das Wissenschaftsverständnis unserer Nachwuchsforscher entscheidend verändert. Anstatt sich mit großem Zeitaufwand und Mühen die Methodik der Hirnphysiologie erarbeiten zu müssen, wird beim Neuroradiologen, der in der Regel kein eigenes Forschungsinteresse hat, die Anfertigung eines Bildes in Auftrag gegeben. Die wissenschaftliche Leistung des Auftraggebers beschränkt sich in der Regel auf die (gemeinsame) Betrachtung des Fremdprodukts. Diejenigen Areale, die wie beim MRI eine höhere Protonendichte oder eine vermehrte Glucoseanreicherung (wie bei PET) erkennen lassen, werden den bekannten anatomischen Strukturen zugeordnet. Damit ist der Boden bereitet für eine moderne Hirnmystik, die aufgrund der eingesetzten hochmodernen Technologie gegen jede Kritik gefeit zu sein scheint. Zieht man die, alle mechanistischen Modellvorstellungen sprengende Komplexität unseres Zentralorgans in Betracht, dann erscheint es ziemlich aussichtslos, durch eine derartige Simplifizierung jemals zu erkenntnisrelevanten Fragestellungen bzw. Antworten zu gelangen. Wenn der Kulturkritiker Neil Postman die moderne Herrschaft des Bildes als Ausdruck einer Infantilisierung der Gesellschaft versteht, dann gilt dies in ganz besonderer Weise für eine zum Neuroimaging degenerierte Neurophysiologie. So ist es auch nicht verwunderlich, dass man derzeit im Begriffe ist, noch hinter das vorwissenschaftlich-scharlataneske Niveau der Gallschen Phrenologie zurückzufallen. In renommierten Fachzeitschriften müssen wir neuerdings lesen, es sei gelungen „Religiöses Erleben“ (2), bzw. „Romantische Liebe“ und „Mutterliebe“ zu lokalisieren (3, 4). Als einer der wenigen Kritiker dieser kollektiven 4 Verirrung wagte W.R. Uttal (82) die Anmerkung, dass es extrem schwierig geworden sei, in prestigeträchtigen Journalen wie Science ein Manuskript ohne Hirnbildchen unterzubringen: „These wonderful machines are not omnipotent, however, and one of the places where their application has run ahead of a thoughtful and rigorous analysis is in localizing notoriously ill-defined mental activities in what may be non-existent modules of the brain (p. 208). Wird aber das moduläre Hirnmodell in Frage gestellt, dann gerät so ziemlich alles ins Schwimmen, worauf die modernen Neurowissenschaften gegründet sind. Wir werden dann zurückverwiesen auf die von vielen längst als obsolet betrachtete Lehre von der globalintergrativen Konnektivität neuronaler Funktionshierarchien, wie sie vor über 100 Jahren von dem großen Kliniker und Visionär John Hughlings Jackson inauguriert wurde. Im Unterschied zum modulären Modell vermag diese Lehre zwanglos die vom Kliniker zu beobachtenden funktionellen Reorganisationen des Systems zu erklären, da jeder einzelne Zelluntergang sich prinzipiell auf das gesamte System auswirkt. Die funktionelle Reorganisation hat natürlich einen bestimmten Zeitbedarf. Dieser wird immer dann ausreichend sein, wenn der Schädigungsprozess sehr langsam fortschreitet, denn dann können die Reorganisationspotenzen optimal ausgeschöpft werden. Es resultieren mehrjährige symptomfreie Krankheitsphasen und dies trotz erheblicher, mitunter grotesker Verluste an funktionstragenden Strukturen. Zu erwähnen wären hier etwa jene, oft nur zufällig entdeckten symptomlosen Ventrikulomegalien bei Aquäduktstenosen. Ganz anders verhält es bei sehr rasch einwirkenden Noxen, etwa beim Apoplex, wo es häufig trotz vergleichsweise geringen Substanzverlusts schlagartig zu länger anhaltenden schlaffen Halbseitenlähmungen kompletten Ausfälle kommt („Diaschisis“). und anderen 5 Mehr denn je gilt in den Drittmittel-verwöhnten “Centres of Excellence” der Computational - bzw. Clinical Neuroscience (ehedem schlicht unter experimenteller Psychologie firmierend) der Modulcharakter des Gehirns als keiner Begründung bedürftige wissenschaftliche Tatsache. Mit dem vielzitierten Titel des vor einem viertel Jahrhundert erschienenen Buchs der Bostoner Wissenschaftstheoretikers J. Fodor (24) „The Modularity of Mind“, scheint das Gehirn ein für alle mal bestimmt zu sein als „a rigid mosaic of independently encapsulated modules“ (17). Zur Frage nach der kritische Schwelle jenseits der bei der DAT mit Frühsymptomen gerechnet werden kann, finden sich in der Literatur lediglich Grobschätzungen. So müssten wenigsten 90% wenn nicht mehr der Neurone zerstört sein, wobei man für den Degenerationsprozess eine Dauer zwischen 7 und 30 Jahren annimmt (13, 14). Nachdem vor 10 Jahren Knopman (48) als erster auszusprechen wagte, dass die klinische Frühdiagnose der Demenz tatsächlich eine Spätdiagnose der Krankheit ist, scheint ein Tabu gebrochen zu sein (28, 43, 52, 69,70, 75). Damit wurde mit durchaus vermeidbarer Verzögerung ein neues Kapitel der Alzheimer-Forschung aufgeschlagen. Gegenwärtig befinden wir uns in einem Umbruch, der Merkmale eines Kuhnschen Paradigmenwechsels aufweist. Während noch vor wenigen Jahren die Struktur-Funktions-Leistungs Äquivalenz als Basis der MRI- basierten „Neophrenologie“ unantastbar erschien, wird in einem brandneuen Buch führender anglophoner Alzheimer-Experten das neue Ziel formuliert: „… to detect in the living brain the lesions, that until now have only be detected by histological analysis; to detect them quantitatively, so that the amount of rate of change of the lesions, can be used to guide the development of therapeutics, and to guide their use“ (43). Doch damit nicht genug: 6 “The critical issue is to develop technologies that will enable us not simply diagnose Alzheimer’s disease once it is already established but to predict with accuracy those individuals who are at risk for developing clinical symptoms” (43). Ob solcher unvermuteter visionärer Kühnheit eines Mainstream Exponenten reibt sich der Leser verwundert die Augen. Hat Hyman vielleicht gar schon konkrete Vorstellungen von den ihm notwendig erscheinenden „new technologies“ und wenn ja, was genau könnte ihm vorschweben ? Könnte sich hinter seiner kryptischen Formulierung nicht der Aufruf zu einer Rückbesinnung auf neuro- bzw. psychophysiologische Modelle stehen, die heute hinter dem alles beherrschenden Neuroimaging unsichtbar geworden sind? Es hat den Anschein, dass Hyman mit seinen „new technologies“ weniger Technisches als vielmehr Theoretisches im Sinn hat, haben sich doch die Neurowissenschaften mit ihrer scheuklappenartigen Blickverengung auf die jeweils neuesten und aufwendigsten Methoden in eine Sackgasse manövriert. Das zeigt sich auch in den Lösungsvorschlägen von Hyman’s Mitautoren, die allesamt dem Prinzip des Neuroimaging verhaftet sind. Nachdem die mit der konventionellen Gruppenmittelwertstatistik sectional) zur Beantwortung verquickte Querschnittsanalyse (cross- der neuerdings interessierenden Fragen ungeeignet erscheint, werden die Befürworter von „dynamic studies“ immer zahlreicher (z. B. 15, 26, 27, 43, 44, 68). „Dynamic studies“ anstelle von „longitudinal studies“ soll offensichtlich die Nähe letzterer zur immer noch verpönten Einzelfallstudie camouflieren. Wie es scheint, wirkt auch heute noch das Verdikt nach, das Duffy (19) vor zwei Jahrzehnten über die qualitative Forschung insgesamt verhängt hat: „ As is evident to all clinicians, single case demonstrations – even when data are consistent across repetitions and 7 are non-artifactual – cannot be used to prove the value of a laboratory procedure“. Besonders aufschlussreich hinsichtlich der neuerdings avisierten Forschungsstrategie sind die Anmerkungen von Thompson et al. (75). „A more recent trend in dementia research has been to move from crosssectional to dynamic measures. Serial MRI scans … can provide much greater power to detect pathological atrophy, as they provide a baseline reference point to calculate change. A key limitation with single time- point measures is their poor power to detect incipient process. Then large inter – and intraindividual variability in brain structure leads to an overlap of AD and normal aging”. Die Autoren bekennen sich nachdrücklich zu dieser neuen Strategie – ungeachtet der von ihnen erkannten und benannten ungelösten Probleme. So weisen sie darauf hin, dass Längsschnittdaten ungleich schwerer zu gewinnen und zu interpretieren seien als Daten aus einer Einmalmessung. Ungelöst sei das Problem der beträchtlichen interindividuellen Varianz der anatomischen Hirntopographie, was die Bildung homogener Vergleichs-Gruppen erheblich erschwere, wenn schon nicht ausschließe. Da es keine altersadaptierten Referenzpopulationen gebe und wohl auch nie geben werde, sei es äußerst schwierig, die an Untersuchungsstichproben gemessenen Werte gruppenstatistisch auf Überzufälligkeit zu prüfen. Schließlich wurde auch noch auf den vergleichsweise hohen Zeitbedarf solcher Studien von wenigstens 3-5 Jahren hingewiesen (44). Derartige und noch weitere methodische Restriktionen gelten allerdings für jede Längsschnittanalyse. Eine Längsschnittanalyse zu fordern bedeutet daher, sich von der vertrauten gruppenstatistischen 8 Signifikanzbestimmung zu verabschieden. Die Chancen, dass das Manuskript im Peer-Review Verfahren akzeptiert wird tendieren damit allerdings gegen Null. Die Einzelfallstatistik (Zeitreihenanalysen etc.) hilft hier erfahrungsgemäß kaum weiter. Zu unbekannt sind diese Verfahren und zu unrealistisch hoch ist deren Anspruch an die Messhäufigkeit. Nur vor diesem Hintergrund wird die irreale bzw. irrationale Hoffnung auf ein solche Probleme aus der Welt schaffendes „ appropriate complex mathematical framework“ (15) verständlich. Mathematische Strukturen, wie komplex auch immer sie sein mögen , können aber niemals eine naturwissenschaftliche Theorie ersetzen! Mathematik wird hier missverstanden als höchstrangiges Erkenntnisprinzip, sozusagen als Urquell jeder Heuristik. Aber selbst wenn man das Neuroimaging unter Verzicht auf Gruppenmittelwertvergleiche als ipsativ-longitudinale Einzelfallanalyse betriebe, muss die Frage gestattet sein, ob wir nicht über physiologische Messverfahren verfügen, die dem Gegenstand von Grund auf angemessener sind als das Neuroimaging. Einer der wenigen, die es bisher wagten diese auch wissenschaftspolitisch bzw. - soziologisch immer brisanter gewordene Frage überhaupt anzusprechen, ist Walter Freeman (30), wenn er fordert: „ … to break with the reductionistic view that the behavior of an system can be explained in terms of the properties and relationships between individual components that constitute the system”. Und weiter:”… information that is related with behaviour exists in the cooperative activity of many millions of neurons and not in the favored few….Neurons are involved constantly in widespread activity with other neurons, some at great distances … constant, ceaseless, ever 9 fluctuating activity of masses of nerve cells that start talking and never stop (30). Damit distanziert sich Freeman unmissverständlich von der aktuellen pseudowissenschaftlichen neo-phrenologischen Strömungen und weist den Weg zurück zu einer seriösen, um Erkenntniserweiterung bemühten Psychophysiologie, die von ihren Anfängen an auf biolelektrische Phänomene gegründet war und damit gegenüber der Neuroanatomie völlig neue Erkenntniswelten erschloss. Für die Methode des EEG spricht zunächst einmal, dass sie dem heute nicht mehr in Frage zu stellenden Modell der schwerpunktmäßig akzentuierten globalen Konnektivität („Vernetzung“) angemessen ist, wohingegen die Imaging-Befunde in ein neuroanatomisches ProkrustesBett blockdiagrammartiger verknüpfter Module gezwängt werden. Wenn etwa Thompson et al. (75) als Verfechter des „dynamic mapping“ fordern: „… our goal is to use imaging data, to … discriminate AD from normal aging”, dann ist hierfür das f-MRI methodisch sicherlich nicht die erste Wahl. Demgegenüber weiß man heute definitiv, dass gesundes Altern sich nicht in einer EEG-Veränderung reflektiert (s.u.). Des weiteren spricht für das EEG und gegen das f-MRI, dass bei den autoptisch verifizierten DAT-Fällen die pathologischen Veränderungen fast immer nur auf die Hirnrinde als dem unmittelbaren Generator der hirnelektrischen Massenaktivität beschränkt sind (42). Wenn schließlich Gomez-Isla et al. (37) resümieren; „In summary, changes observed in normal aging may primarily reflect substantial neuronal loss“ und Jack (44) feststellt:“ Therefore, brain atrophy, is certainly not specific for AD“, dann sind das starke Argumente dafür, dass sich das EEG zur Erreichung des formulierten Ziels weit besser eignen sollte, als 10 irgendeine der Imaging-Techniken. Bedenken grundsätzlicher Art gegen die Monopolstellung des Imaging in der klinischen Forschung scheinen Hyman (43) zu bewegen, wenn er für so manche seiner Kollegen wohl kryptisch, dabei aber auf längst vergessene Erkenntnisse der klinische Neurologie anspielend, sagt: „Whether the presence of lesions means the presence of disease can be debated…”. Imaging of the living brain may well lead to a dis-association between the diagnosis of Alzheimer changes on radiologic imaging from Alzheimer dementia” (43). Diese Aussage stellt eine Neuformulierung des von der deutschen Gestaltpsychologie der 20er Jahre experimentell untermauerten Diktums dar, wonach stets zwischen Funktion und Leistung zu unterscheiden sei, da nicht von einer umkehrbar-eindeutigen Zuordenbarkeit (wechselseitigen Reduzierbarkeit) ausgegangen werden könne. „Lesions“ steht bei Hyman für Funktionsdefizit, „disease“ für Leistungsdefizit. Wie sich speziell bei den neurodegenerativen Demenzen erweist, kann ein Funktionsdefizit über viele Jahre hinweg ohne nachweisbares Leistungsdefizit existieren. Grundsätzlich gilt, dass Funktion (Physiologie) und Leistung (Psychologie) durch intervenierende Variablen „vermittelt“ sind. Eine kausale Reduktion ist ausgeschlossen. Möglich ist lediglich eine korrelative Zuordnung der den beiden Beschreibungsbereichen zugehörigen Phänomene. Diese erfordert jedoch eine psychophysiologische Theorie, die auf einem höheren Abstraktionsniveau (Metaebene) angesiedelt sein muss als die beiden empirisch beschreibbaren Bereiche. Worum es bei der Früherkennung der Krankheit allein gehen kann sind also Funktionsdefizite, insoweit sie mit neurophysiologischer Methodik am „Living Brain …“ (43) messbar sind. Um es mit anderen Worten zu wiederholen: Es ist ungleich wichtiger, den Krankheitsbeginn zu erkennen als den Beginn der klinisch inapparenten Phase, da jede sinnvolle Prävention und Pharmakotherapie eine Mindestmenge funktionstüchtiger Neurone voraussetzen. Was wir brauchen ist ein zuverlässiger, vor allem aber einfach anzuwendender und preiswerter, 11 für das Massenscreening geeigneter Indikator des Neuronenuntergangs. Was ließe sich hier außer dem bereits Gesagten noch zugunsten des EEG als eines sensitiven Funktionsindikators anführen? Diese Frage ist umso berechtigter als es bisher keine einzige EEG-Untersuchung gibt, bei der Personen im klinisch inapparenten kompensierten Vorstadium mit manifest Erkrankten und mit Gesunden verglichen worden wären. Somit lassen sich hierzu nur Mutmaßungen anstellen. Die von uns favorisierte Arbeitshypothese basiert zum einen auf dem EEG als der Massenaktivität kortikaler Neurone (9, 16. 29, 30, 60, 78). Zum anderen sehen wir im EEG Organisationsniveaus einen und Makroindikator damit einer des hirnelektrischen Verbesserung oder Verschlechterung der Hirnfunktion. Diese Arbeitshypothese lässt es plausibel erscheinen, dass sich eine numerische Verminderung der diese Massenaktivität konstituierenden Elemente in Parametern reflektiert, die für das aktuelle Organisationsniveau und die Dynamik des spontanen Ruhe-EEG entscheidend sind. Von der Zielsetzung her wäre es widersinnig, die Akzeptanz eines solchen – mutmaßlichen - physiologischen Indikators von einer externen Validierung durch die ihrem Wesen nach weit weniger trennscharfe Testpsychologie (z.B. 28) abhängig zu machen. Dessen ungeachtet besteht man – in Ermangelung einer allgemein akzeptierten psychophysiologischen Theorie des EEG - auf einer Validierung der Funktions- durch die Leistungsebene. Die geringsten theoretischen Schwierigkeiten scheinen die Neurochemiker zu haben. Ihre auf den ersten Blick einleuchtend einfache Theorie besagt, daß sich mit dem Ingangkommen der neuronalen Degeneration bestimmte neurotoxische Substanzen im Liquor vermehrt nachweisen lassen. Trotz weltweit fleißiger Arbeit ist der Ertrag - gerade was das eigentliche Ziel, nämlich das Massenscreening angeht - eher mager geblieben. Solange man fast 12 nur Patienten in der Prodromalphase untersucht und dabei die Gesunden, beginnend mit dem 50. Lebensjahr ausklammert, zu denen ja die uns in erster Linie interessierenden klinisch inapparent Erkrankten gehören, wird man hinsichtlich einer Frühdiagnose von der Neurochemie auch in Zukunft nicht allzuviel erwarten dürfen. Wenn, wie bei unseren Bemühungen um eine Frühdiagnose, gesundes Altern von der hochgradig alterskorrelierten Alzheimer-Krankheit unterschieden werden muss, dann bedarf es einer Methodik, die diesen Unterschied hinreichend deutlich macht. Für das spontane Ruhe-EEG wäre demnach eine weitestgehende Altersunabhängigkeit zu fordern. Dies impliziert, dass diese Methodik, die ja den progredienten Neuronenschwund erfassen soll nur dann zielführend sein kann, wenn gesundes Altern mit keinem oder allenfalls einem sehr geringen Neuronenschwund einhergeht. Dass diese Vorbedingungen einer elektroenzephalographischen Frühdiagnose heute tatsächlich als erfüllt gelten können, verdanken wir verschiedenen neueren, methodisch unanfechtbaren Untersuchungen (20, 32, 39, 41, 47, 49, 59, 63, 77). Dennoch wird es wohl noch eine Weile dauern, bis EEG- Befundformulierungen wie „altersentsprechend verlangsamtes EEG“ verschwunden sein werden. Vergleichsweise neu sind aber die mit stereologisch-histologischer Zähltechnik erhobenen Befunde, wonach die alterskorrelierte und sich im MRI so eindrücklich darstellende Hirnatrophie keineswegs eine Verminderung der Neuronendichte einzuschließen braucht. So zeigen Personen, die hochbetagt ohne Anzeichen einer Demenz verstarben bei der Obduktion einen gewissen Grad an Rindenatrophie, jedoch zwar immer kaum einen Neuronenschwund (1, 12, 25, 33, 38, 57, 64, 68, 70, 71, 74, 84, 85). Die Rindenatrophie beruht hier auf Zellschrumpfung infolge Verminderung des Wasseranteils, vom 65. Lebensjahr an etwa 1% jährlich. Somit ist im 13 Zweifelsfall von einer Überlagerung von physiologischer und pathologischer Atrophie auszugehen (37, 38, 44). Ziehen wir ein vorläufiges Resümé, dann spricht vieles dafür, endlich das dem EEG innewohnende, bisher aber nicht einmal ansatzweise ausgeschöpfte Erkenntnispotential zu nutzen. Der Schlüssel zum „Spontanen Ruhe-EEG“ besteht in einer Theorie (z. B. 6, 7, 8, 9, 10, 16, 29, 30, 50, 53, 60, 61, 65, 67, 72, 78, 79, 80). Wie es scheint, reicht es in einem theorieabstinenten, stramm empiristisch ausgerichteten Umfeld nicht, einen solchen Schlüssel einfach nur zu präsentieren. Man muss ihn wohl schon selber in die Hand nehmen, ihn ins Schloss stecken und coram publico die Tür öffnen.. aber selbst damit wird man Jene nicht überzeugen können, die nicht überzeugt werden wollen. Schließlich wäre es ja auch ganz unrealistisch zu erwarten, dass man altgediente Forscher, Opinion leaders zumal, deren Status in der Wissenschaftswelt Mikrodetailforschung aufs engste verknüpft mit ist, einer für kompromisslosen erkenntnistheoretische Alternativkonzepte interessieren könnte. Die gerade verfügbar gewordene neueste Technik wird wohl auch weiterhin als Theorieersatz betrachtet werden, ebenso wie bloße mathematische Transformationen von Messwerten (etwa die schnelle Fourier-Transformation, FFT oder die nicht-lineare Komplexitätsanalyse, oder – schon seit längerem - statistische Verfahren, die auf Datenreduktion abzielen, wie etwa die Hauptkomponentenanalyse, ganz zu schweigen von ANOVAS und MANOVAS). Aktuell wie eh und je ist, was Künkel (50) vor einigen Jahrzehnten in einem Handbuchbeitrag zum Thema EEG und Psychiatrie formulierte: „Es fragt sich also, ob überhaupt die Suche nach Frequenzbändern der richtige Weg ist …oder, ob wir uns etwas anderes ausdenken 14 müssen….Solange dieses Problem nicht vorangebracht werden kann, wird die zur Zeit zu beobachtende Stagnation der EEG-Analyse weiter andauern… Und wir werden der Tatsache ins Auge sehen müssen, dass unsere Modellvorstellungen wesentlich komplizierter werden müssen, wenn wir die topographische Differenzierung und die zeitliche Variabilität, die Verlaufsdynamik des EEG in Betracht ziehen. Und solange wir dieses nicht tun, können wir nicht den Anspruch erheben, von einem Modell zu sprechen, das die EEG-Aktivität auch nur annähernd beschreiben kann“. Die zum Thema EEG und DAT-Frühdiagnose vorliegenden Negativresultate sind nicht dem EEG als solchem anzulasten. Sie waren aus unterschiedlichen Gründen geradezu unvermeidlich. Der Druck zur Generierung von immer mehr und neuen Daten hat dazu geführt, daß die Frage nach der Rechtfertigung bestimmter Analyseverfahren kaum noch gestellt wird. Wo vermeintlich theoriefreies durch methodengeleitetes Forschen verdrängt wurde, wird meist auch weniger streng oder gar nicht geprüft, ob die Voraussetzungen für die spezielle Art der Datenverarbeitung überhaupt gegeben sind. Das eigentliche Problem aber liegt in den den Messungen zugrunde liegenden Modellvorstellungen, also der Theorie, die entweder nicht näher expliziert oder aber mit der Meßtechnologie in Eins gesetzt wird. Der meine Arbeit bestimmende Theorierahmen gründet in den zwischen 1960 und 1980 (5, 6, 7, 8, 9, 10) weit überwiegend in Deutsch publizierten und daher in den USA unbekannt gebliebenen Arbeiten von Dieter Bente. Er läßt sich wie folgt umreißen. Beim spontanen RuheEEG handelt es sich: 1) Um den integralen kortikalen Neurone; Ausdruck der Massenaktivität der 15 2) Um einen Makroindikator des aktuellen Niveaus der „cerebralen Gesamtfunktion“, die sich visuell als eine bestimmten Regeln folgende, nicht-stationäre „Verlaufsgestalt“ zwischen den Polen voller Wachheit und Einschlafen erfassen läßt und auch als die spontane Zyklusdynamik des Proportionierung Ruhe-EEG zu kennzeichnen und Dynamik elektroenzephalographischen Vigilanzstadien ist. dieser stellen die psychophysiologisch relevante Information dar, die indes in der Regel durch Mittelwertbildung eliminiert wird; 3) Um ein synergetisches Systemdynamik (d.h. stochastischen Prozeß, verhaltensirrelevante Phänomen eben gerade also „elektrische mit nicht „Noise“ non-linearer um einen bzw. eine Begleitmusik“ der Rindenneurochemie; 4) Zu der regelhaften, von der Ableitezeit abhängigen intraindividuellen Variabilität (Non-Stationarität), kommt eine erhebliche, sich ebenfalls visuell bekundende interindividuelle Variabilität mit Trait- Charakter. Diesen vier Essentials wurde bisher nur ansatzweise Rechnung getragen. Akzeptiert man, daß es das normale EEG – auch bei Gesunden - nicht gibt (5, 31, 36, 51, 54, 66, 73, 78, 83), dann muss man konsequenter Weise sowohl von jeglicher primär-gruppenstatistischer Datenverarbeitung Abstand nehmen, wie auch von Auswertungssoftwares, die sich eines Vergleichs mit einer Normative Data Base bedienen. Übrig bleiben dann nur Einzelfallstudien in Gestalt quantitativer Vergleiche zwischen zeitlich versetzt abgeleiteten EEGs. Es liegt auf der Hand, daß man bei der Befolgung der Forderung, weg vom 16 Ideal möglichst großer Vergleichsgruppen und hin zur Einzelfallanalyse, spätestens beim Publikationsversuch scheitern wird. Die Situation scheint verfahren. Die anhaltenden Mißerfolge mit dem klinischen EEG haben nicht etwa zum Umdenken angeregt, sondern die Methode als solche diskreditiert. Vor einem Jahrzehnt haben wir damit begonnen, ein quantitatives Verfahren zu entwickeln, das den genannten Essentials – speziell der intra- wie auch interindividuellen Variabilität - Rechnung zu tragen versucht. Ziel ist dabei die numerische Bestimmung einer Anhebung oder Absenkung des zerebralen Organisationsniveaus, numerisch ausgedrückt in einem Differenzscore (79). Ein derartiger serieller oder ipsativer Längsschnittvergleich erfordert natürlich die Ableitung mehrerer EEGs in festzulegenden Intervallen. Berechnet wird eine Reihe unterschiedssensitiver, soweit möglich voneinander unabhängiger Parameter. Deren Auswahl erfolgte auf der Grundlage des oben skizzierten Rahmenkonzepts. Das Verfahren nutzt die FFT, allerdings nur als Instrument zur Quantifizierung der morphologischen Qualitäten und ohne die Information über die Verlaufsdynamik zu zerstören. Es liegt auf der Hand, dass in Ermangelung entsprechender empirischer Befunde nicht behauptet werden kann, dass mit diesem neuartigen EEGVerfahren (ITA steht für Ipsative Trend Assessment)) das Problem der Früherkennung des M. Alzheimer gelöst wäre. Erforderlich wäre hierfür eine prospektive Studie an kognitiv unbeeinträchtigten, der Altersgruppe zwischen 50 und 70 Jahren (12) zugehörigen Personen, von denen sich schätzungsweise 20% in der klinisch inapparenten Phase der Krankheit befinden (12). „The optimal subjects in whom to intervene therapeutically are those who are destined but not yet manifest“(44). 17 Eine solche Studie wird es vermutlich aus einer Reihe von Gründen so schnell nicht geben. Nachdem bisher fast ausschließlich theoretisch argumentiert wurde erscheint die praktisch-empirische Frage überfällig, ob sich die dem Krankheitsprozess inhärente Progredienz bei Patienten mit fortgeschrittener Alzheimer-Krankheit elektroenzephalographisch (ITA) objektivieren lässt. Diese Frage lässt sich aufgrund einer Anzahl individueller Verlaufsanalysen mit Ableitungsintervallen von 3 Monaten uneingeschränkt bejahen. Einer abschließenden exemplarischen Befunddemonstration sei noch ein kurzer Ausblick vorangestellt: Hält man die hier vorgetragenen Argumente für überzeugend, dann gibt es zu der eigentlich gebotenen, aber aus verschiedenen Gründen kaum zu realisierenden prospektiven Studie nur die Alternative, sich mit einem Vorsorgeangebot („Präventiv-Screening“) an die Öffentlichkeit zu wenden. Es müsste dabei klar gemacht werden, dass es sich um eine Pilot-Studie handelt, die durch keinerlei finanzielle Interessen seitens der Anbieters motiviert ist Dies könnte etwa in Absprache und Zusammenwirken mit Alzheimer-Angehörigenverbänden geschehen, deren Mitglieder schon in eigenem Interesse an einer aktiven Mitwirkung und Unterstützung interessiert sein sollten. Kasuistik Abb. 1 18 I 18 (MMSE) II 17 III 16 IV 14 V 11 VI 9 Verlaufsdokumentation des spontanen Ruhe-EEG; Abl. in 12wöchigem Abstand; Kurvenbeispiele vom Ableitebeginn von jeweils 9 s Dauer; visuell keine Unterschiede zwischen I (MMSE=18), II (MMSE=17) und III (MMSE=16); ab IV (MMSE=14) über V (MMSE=11) zu VI (MMSE=9) diskrete Zunahme desd Delta-Anteils Abb. 2 Ipsative Trend Assessment (ITA) Variablen und Scorierungstabelle 19 Patienten-ID: Patient: 029-300498 W., G. Geboren am: 01.01.1940 01 Untersuchungs-ID: Abgeleitet am: 30.04.1998 um: 13:24:19 1. Alpha-Leistung, Ln[ Wert( 8 - 13Hz ) x 100 ], µV2 O1 - Av O2 - Av 2. Baryzentrische Frequenz ( 2,5 - 15Hz ) O1 - Av O2 - Av 06 03.08.1999 10:16:18 Sensitivität I Sensitivität II ∆ - Score ∆ - Score 1,23 0,88 0,33 0,36 -4 -4 -7 -7 3,70 3,75 2,75 3,00 -4 -3 -4 -3 3,85 4,01 4,06 4,06 -1 0 -2 0 5,68 5,70 0 0 0 -1 -1 -2 -20 0 -3 -2 -3 -31 3. Anteriorisierungsquotient AQ, Ln[ Wert x 100 ] (als Mittelwert aus 300 konsekutiven 2s - Segmenten) AQL AQR 4. Anzahl der NonA-Segmente Ln[ Wert ] ( NonA-Kriterium: 20% ) 5. Delta-/Theta-Leist., Ln[ Wert( 3 - 7,5Hz ) x 100 ], µV2 F3 - Av F4 - Av O1 - Av O2 - Av 3,30 3,48 3,05 3,57 3,68 3,82 2,96 3,67 ∆ - Totalscore: Der quantitative Vergleich der im Abstand von ca. 14 Monaten abgeleiteten RuheEEG (siehe dazu Abb. 1 mit Originalauschrieben aus der ersten Ableiteminute) zeigt eine deutliche Befundverschlechterung nahezu aller Variablen (Absenkung des globalen hirnelektrischen Organisationsniveaus), entsprechend einer testpsychologischen Verschlechterung des MMSE von 18 auf 9. Abb.3 Verlauf der ITA-Gesamtdifferenz-Scores, bezogen auf das Ausgangs-EEG QUEIDA -Totalscore Verlauf Pat. W. G., 58 Jahre, m. IvsII I vs II I: II: III: IV: V: VI: IvsIII I vs III IvsIV I vs IV 29.04.1998 30.07.1998 29.10.1998 28.01.1999 22.04.1999 03.08.1999 IvsV I vs V 20 IvsVI I vs VI 0 EEG I II III IV V VI -1 -1 -5 -3 -3 -6 -10 -10 -13 -15 Sens. I Sens. II -15 -20 MMSE 18 17 16 14 11 9 -21 -25 Epikrise Pat. W. G. 6 Verlaufsuntersuchungen in fixen 3-Monatsintervallen zeigen einen stetigen elektronenzephalographischen Verschlechterungstrend, dem ein ebensolcher des kognitiven Leistungsniveaus (MMSE) entspricht. Wenn sich ITA als geeigneter Indikator des Alzheimerschen Neuronenschwunds erweist, bleibt noch die entscheidende Frage offen, ob sich das Verfahren auch für ein Massenscreening eignet. Es darf keinesfalls verschwiegen werden, daß die mehrkanalige Messung über wenigstens 10 min hinweg artefaktanfällig ist und daher vom Personal viel Expertise und Konzentration verlangt. Der Zeitaufwand liegt pro Ableitung bei etwa einer Stunde. Da zu gewärtigen ist, daß das Interesse am ITA-EEG mit der Auflistung der einzuhaltenden Kautelen abflaut, kann fürs erste eine erheblich vereinfachte, den an ein Massenscreening zu stellenden Anforderungen genügende Variante (als „ITA-light“) hilfreich sein. So wäre eine Beschränkung auf die Baryzentrischen Frequenz (BF), also des Frequenzmedians des Power-Spektrums denkbar. Dieser bereits anfangs der 70er Jahre für neurologische Verlaufsfragestellungen als aussagekräftig propagierte geometrische Deskriptor verhielt sich in allen bisherigen Analysen gleichsinnig zur Änderungsrichtung der Totalscores. Der technische Aufwand wie auch die Artefaktanfälligkeit ließen sich so entscheidend reduzieren, reicht doch hierfür ein symmetrisch gesetztes Elektrodenpaar bei 1 minütiger 21 Ableitezeit. Überdies können Filterung sowie visuelle Artefakteliminierung entfallen, wenn man die langsamen Frequenzen unterhalb von 2.5 Hz als Bereich der Bewegung-, Schwitz- und Pulsartefakte und die raschen Frequenzen oberhalb von 15 Hz als Bereich der Muskelpotentiale und Sedativaeffekte von der Variablenberechnung ausschließt. Das die EEG- Information natürlich viel besser ausschöpfende ITAProgramm könnte zum Einsatz kommen, wenn sich beim Grobscreening ein Anhalt für einen in Gang gekommenen Neuronenuntergang ergeben hat oder wenn es um wissenschaftliche Fragen geht, etwa im Hinblick auf den Erfolg präventiver oder neuroprotektiven Maßnahmen. Literatur 1) Aizenstein RC, Cochran J, Saxton J et al. Functional neuroimaging indicators of successful executive control in the oldest old Neuroimage 289 (2005) 881-889 2) Azari NP, Nickel J, Wunderlich G et al. Neuronal correlates of religious experience. Eur J Neurosci 13 (2001) 1669-1652 3) Bartels A, Zeki S. The neuronal correlates of romantic love. Neuroreport 11(2002) 3829-3834 4) Bartels A, Zeki S The neuronal correlates of maternal and romantic love Neuroimage 21 (2004) 1155-1166 5) Bente D. Elektroenzephaographische Gesichtspunkte zur Klassifikation thymoleptischer Pharmaka Med exp 5 (1961) 337-346 neuro- und 6) Bente D Electroencephalographie und psychiatrische Pharmakotherapie p 75-99). In: Anthropologische und naturwissenschaftlich-klinische Grundprobleme der Pharmakotherapie. Achelis JD, v.Ditfurth H (eds), Thieme, Stuttgart 1963 7) Bente D Die Insuffizienz des Vigilitätstonus Habil.-Schrift, Univ. Erlangen 1964 22 8) Bente D Vigilanz, dissoziative Vigilanzverschiebung und Insuffizienz des Vigilitätstonus (p 13-18). In: Begleitwirkungen und Misserfolge der psychiatrischen Pharmakotherapie, Kranz H, Heinrich K (eds) Thieme, Stuttgart 1964 9) Bente D Elektroenzephalographische Vigilanzbestimmungen: Methoden und Beispiele Z EEG-EMG 15 (1984) 173-179 10) Bente D, Engelmeier M-P, Heinrich K et al. Psychische Grundaktivität und cerbrale Gesamtfunktion („Vigilance“-HEAD) Nervenarzt 34 (1963) 426-430 11) Bernheimer H. Birkmeyer W, Hornykiewcz O et al Brain dopamine and the syndrome of Parkinson and Huntington J Neurol Sci 20 (1973) 415-455 12) Beyreuther K, Multhaupt G, Masters CL Molecular biology and pathology of Alzheimer’s disease (p. 61-73). In: Neuronal Cell Death and Repair. Cuello AC (ed), Elsevier, Amsterdam 1993 13) Braak H, Braak E Neuropathological staging of Alzheimer-related changes Acta Neuropath 82 (1991) 239-259 14) Braak H, Braak E Staging of Alzheimer disease-related neurofibrillary tangles Neurobiol of Aging 16 (1995) 271-284 15) Bradley KM, Bydder. GM, Budge MM et al. Serial brain MRI at 3-6 months intervals as a surrogate maker for Alzheimer’s Br J Radiol 75 (2002) 506-513 disease 16) Creutzfeld O Some problems of cortical organization in the light of ideas of the classical „Hirnpathologie“ and the modern neurophysiology. An essay (p 217-226). In: Cerebral Localization. An Otfrid Foerster Symposium. Zülch KJ, Creutzfeld O, Galbraith GC (eds) Springer Berlin etc. 1975 17) Desmurget M, Bonnetblanc F, Duffeau H Contrasting acute and slow-growing lesions: a new door to brain plasticity Brain 130 (2007) 898-914 18) Dubois B, Feldman HH, Jacova C et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria Lancet Neurol 6 (2007) 734-746 19) Duffy FH Brain electrical activity mapping: clinical applications Psychiat Res 29 (1989) 379-382 20) Duffy FH, Mc Anulty GB, Albert MS The pattern of age-related differences in electrophysiological activity of healthy males and females Neurobiol Aging 14 (1993) 73-84 21) Fell J Classification of mental states with nonlinear deterministic and stochastic EEG measures: a combined strategy Acta Neurobiol Exp 60 (2000) 87-109 22) Finger S Lesion momentum and behaviour (p. 135-169). In: Finger S (ed) Recovery from Brain Damage: Research and Theory, Plenum New York 1998: 23 23) Finger S. Stein D Brain Damage and Recovery: Research and Clinical Perspectives Acad Press, Orlando, FL 1982 24) Fodor J. The Modularity of Mind MIT Press Cambridge. MA 1983 25) Fox NC, Scahill RI, Crum WR et al. Correlation between rates of brain atrophy and cognitive decline in AD Neurology 52 (1999) 1687-1689 26) Fox NC, Cousens S, Scahill R et al. Using serial registered nuclear magnetic resonance imaging to measure disease progression in Alzheimer’s disease: power calculation and estimates of sample size to detect treatment effects Arch Neurol 57 (2000) 339-344 27) Fox NC, Crumb WR. Scahill R et al. Imaging of onset and progression in Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images Lancet 358 (2001) 201-205 28) Fox NC, Schott JM, Scahill RI Measuring progression in Alzheimer’s disease using serial MRI: 4DMRI (p.61-74) In: The Living Brain, Hyman B, Demonet JF, Christen Y (eds.), Springer, Berlin-Heidelberg-New York 2004 29) Freeman WJ Mass Action the Nervous System Acad Press, New York 1975 30) Freeman WJ, Skarda Ch Mind/Brain Science. Neuroscience on philosophy of mind. In: John Searle and His Critics, LePore E, Gulick R (eds) Cambridge. Blackwell 1991 31) Gasser T, Bächer P, Steinberg H Test-retest reliability of spectral parameters of the EEG EEG Clin Neurophysiol. 60 (1985) 312-319 32) Giaquinto S, Nolfe G The EEG in the normal elderly: a contribution to the integration of aging and dementia EEG Clin Neurophysiol 63 (1985) 540-546 33) Godbolt AK, Cipolotti L, Watt et al. The natural history of Alzheimer disease Arch Neurol 61 (2004) 1743-1748 34) Goldstein K The modification of behaviour consequent to cerebral lesions (p 586-610) Psychiat Quart 10 (1936) 586-610 35) Goldstein K The two ways of adjustment of the organism to cerebral defects J Mt Sinai Hosp 9 (1942) 4-16 36) Goldstein L. Is a man a man? (or: is an EEG, an EEG?). Some remarks on the homogeneity of “normal” subjects Pharmakopsychiat. 12 (1979) 74-82 37) Gomez-Isla T, Price TL, McKeel DW et al. Profound loss of layer II entorhinal cortex neurons occur in very mild Alzheimer’s disease. J Neurosci 16 (1996) 4491-4500 24 38) Gomez-Isla T, Holister R, West H et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease Ann Neurol 41 (1997) 17-24 39) Green J, Reilly, Hazelwood C Observation of the electroencephalogram in seven centenarians Clin EEG 17 (1988) 146-151 40) Haken H What can synergetics contribute to the understanding of brain functioning? In: Analysis of Neurophysiological Brain Functioning. Uhl C (ed), Springer, Berlin etc. 1999 41) Hubbard O, Sunde D, Goldensohn ES The EEG in centenerians EEG Clin Neurophysiol 40 (1976) 407-417 42) Hubbard BM, Anderssen JM A quantitative study of cerebral atrophy in old age and in senile dementia. J Neurol Sci 50 (1989) 135-145 43) Hyman BT The Living Brain and Alzheimer’s Disease (p. 25-30) In: The Living Brain and Alzheimer’s Disease, Hyman BT, Demonet JF, Christen Y (eds.) Springer- Berlin-Heidelberg-New York 2004 44) Jack CR Jr. Validating MRI measures of disease stage and progression in Alzheimer’s disease (p. 75-83) In: The Living Brain and Alzheimer’s Disease, Hyman BT, Demonet JF, Christen Y (eds.) Springer BerlinHeidelberg-New York 2004 45) Jackson J H On affections of speech from disease of the brain Brain 12 (1879) 323-356 46) Jeong J, Gore JC, Peterson BS Detecting determinism in short time series with an application to the analysis of stationary EEG recording Biol Cybern 86 (2002) 335-342 47) Katz RI, Horowitz GR Electroencephalogram in the septuagenarian: studies in a normal geriatric population J Amer Geriat Soc 3 (1982) 273-275 48) Knopman DS The initial recognition and diagnosis of dementia Am J Med 104 (1998) 2S-12S 49) Koyama K, Hirasawa H, Okubo Y et al. Quantitative EEG correlates of normal aging in the elderly Clin EEG 28 (1997) 160-165 50) Künkel H Elektroenzephalographie und Psychiatrie (p 115-196). In: Psychiatrie der Gegenwart, Bd, I Kisker KP, Meyer JE, Müller C et al. (eds) Springer, Berlin etc. 1980 51) Lairy GC The Normal EEG Throughout Life (p 543 cf), Vol 6. In: Handbook of Electroencephalography and Clinical Neurophysiology, Elsevier, Amsterdam 1976 52) Linn RT, Wolf PA, Bachman DL et al. 25 The „preclinical phase“ of probable Alzheimer’s disease: a 18 years prospective study of the Framington cohort Arch Neurol 52 (1995) 485-490 53) Lopes da Silva FH Neural mechanisms underlying brain waves: from neural membranes to networks EEG Clin Neurophysiol 79 (1991) 81-93 54) Lynch J, Paskewitz DA, Orne MT Intersession stability of human alpha rhythm densities EEG Clin Neurophysiol 36 (1974) 538-540 55) Mayeux R (Editorial) Finding the beginning or predicting the future Arch Neurol 67 (2000) 783-784 56) v. Monakow C Die Lokalisation im Grosshirn und der Abbau der Funktion durch kortikale Herde. Bergmann, Wiesbaden 1914 57) Morrison JH, Hof PR Life and death of neurons in the aging brain Science 278 (1997) 412-419 58) Nestor PJ, Scheltens P, Hodges JR Advances in the early detection of Alzheimer’s disease Nature Rev Neurosci 5 (2004) S34-S41 59) Niedermeyer E The EEG in old age (p 255-261). In: Elektroencephalography: basic principles, clinical applications, and related fields. Niedermeyer E, Lopes da Silva FH (eds) Urban & Schwartzenberg, Baltimore etc. 1981 60) Nunez P Neocortical Dynamics and Human EEG-Rhythms Oxford Univ. Press, New York 1995 61) Nunez P Toward a quantitative description of large-scale neocortical dynamic function and EEG Behav Brain Sci 23 (2000) 371-437 62) Ohm TG, Müller H, Braak H et al. Close-meshed prevalence rates of different stages of a tool to uncover the ….. of Alzheimer’s disease related neurofibrillary changes Neurosci 64 (1995) 209-212 63) Oken BS, Kaye JA Electrophysiologic function in the healthy extreme old Neurology 42 (1992) 519-529 64) Pakkenberg B, Pelving D, Marner L et al. Aging and the human cortex Exp. Geronto 38 (2003) 95-99 65) Röschke J, Basar W The EEG is not a simple noise: strange attractors in intracranial structures (p 203-216). In: Dynamics of Sensory and cognitive Processing by the Brain.Vol 1, Basar E, Bullock TH (eds) Springer, Berlin etc. 1988 66) Salinsky MC. Oken BS, Morehead L Test-retest reliability in EEG frequency analysis EEG Clin Neurophysiol 79 (1991) 382-392 26 67) Santamaria J, Chiappa KH The EEG of Drowsiness Demos, New York 1987 68) Scahill RI, Frost C, Jenkins R et al. A longitudinal study of brain volume changes in normal aging serial registered magnetic resonance imaging Arch Neurol 60 (20039 989-994 69) Schmitt FA, Davis DG, Wekstein DR „Preclinical“ AD revisted Neurology 55 (2000) 370-376 70) Schott J, Simon JE, Whitwell JL et al. Global brain atrophy as a surrogate marker of progress in Alzheimer’s disease: a one year, prospective, longitudinal MRI study using the brain boundary shift integral. Neurology 60 (2003) Suppl. 1:A 161 71) Smith CD, Chebrolu H, Wekstein DR Brain structural alterations before mild cognitive impairment Neurology 68 (2007) 1268-1278 72) Soong A, Stuart C Evidence of chaotic dynamics underlying the human alpha-rhythm electroencephalogram Biol Cyber 62 (1989) 55-62 73) Stassen H Computerized recognition of persons by EEG spectral pattern EEG Clin Neurophysiol. 49 (1980) 190-194 74) Terry RD, DeTheresa R, Hansen LA Neocortical cell counts in normal human adult aging Ann Neurol 21 (1987) 530-539 75) Thompson PM, Hayshi KM, de Zubicaray G et al. Dynamic mapping of Alzheimer’s disease (p. 87-112) In: The Living Brain and Alzheimer’s Disease. Hyman BT. Demonet JF, Christen Y (eds.) Springer Berlin-Heidelberg-New York. 2004 76) Tolonen U, Ahonen A, Sulg IA et al. Serial measurement of quantitative EEG and cerebral blood flow and circulation time after brain infarction Acta neurol scand 63 (1983) 145-155 77) Torres F, Faoro, Loewenson R et al. The electroencephalogram of elderly subjects revisted EEG Clin Neurophysiol 56 (1983) 381-389 78) Ulrich G Psychiatrische Elektroenzephalographie G. Fischer, Jena 1994 79) Ulrich G QUEIDA :Quantitative Electroencephalographic Ipsative Difference Assessment. Books on Demand, Hamburg 2001 80) Ulrich G, Frick K A new quantitative approach to the assessment of stages of vigilance as defined by spatiotemporal EEG-patterns Percept Mot Skills 62 (1986) 567-576 27 81) Ulrich G, Frick K, Lewinsky M Lithium and the theoretical concept of „dynamic restriction“: a comparison of the effects on different levels of quantitative EEG analysis Lithium 4 (1993) 33-44 82) Uttal W R The New Phrenology. The Limits of Localizing Cognitive Processes in the Brain Bradford MIT Cambridge, MA 2001 83) van Dis H, Corner M, Dapper R et al. Individual differences in the human electroencephalogram during quiet wakefulness EEG Clin Neurophysiol. 47 (1979) 87-94 84) Weinberger DR, McClure RK Neurtoxicity, neuroplasticity and magnetic resonance imaging morphometry; what is happening in the schizophrenic brain? Arch Gen Psychiat 59 (2002) 553-558 85) West MJ, Coleman PD, Flood DG et al. Differences in the pattern of hippocampal loss in normal aging and Alzheimer’s disease Lancet 344 (1994) 769-772