CHAPTER 3 MATERIALS AND METHODS
Transcription
CHAPTER 3 MATERIALS AND METHODS
23 CHAPTER 3 MATERIALS AND METHODS 3.1 INTRODUCTION The present study is focused on the effect of material variables, machine variables and processing treatments on dynamic elastic behavior of cotton / spandex knitted fabrics. In order to study these objectives, different kinds of knitted fabrics were produced. The fabric samples were subjected to heat setting, dyeing and compacting, and tested for their dynamic elastic properties. The details of the materials used and the experimental procedures adopted in the study are described in this chapter. 3.2 MATERIALS 3.2.1 Yarns and Fabrics In general, 14.76 tex cotton hosiery yarn and 20 denier spandex was used to produce spandex back plated cotton knitted fabric. The spandex brand name called Texlon produced by Hyosung Chemical Inc Ltd, was used throughout the study. 3.3 METHODS 3.3.1 Fabric Production In order to produce spandex back plated cotton knitted fabric, the circular single jersey machine was used. In a circular knitting machine, there 24 are multiple numbers of feed positions arranged in a circular form, so as to feed individual knitting positions as the knitting needles, carried by the moving cylinder, are rotated past the positions. 1. Variable diameter pulley drive shafts 2. Variable diameter pulleys 3. Belt drive 4. Positive storage and spandex feeder drive pulley 5. Spandex yarn feeder 6. Spandex drum surface driven rods 7. Spandex package 8. Guide roll and stop motion for spandex yarn 9. Spandex yarn 10. Carrier plate 11. Cotton yarn 12. Needle 13. Positive storage feeder Figure 3.1 Drive to cotton and spandex yarn packages Figures 3.1 and 3.2 show one feed position of a circular knitting machine having a series of knitting needles that move reciprocally in response to a cam below a rotating cylinder that holds the needles. 25 For plating knit operations, spandex yarns are fed from separate attachment called memminger lycra attachment. The spandex packages were kept on the surface driven rods and directly fed to needle through guide roller and stop motion. The cotton yarns are fed from the positive storage feeders. This attachment gets drive from separate variable diameter pulleys from the machine. Spandex packages get drive from the surface driven rollers in its attachment. The cotton yarn loop length and spandex feed tension adjustments can be varied for the two yarns separately. (a) Spandex supply package (b) Positive storage feeder for cotton yarn Figure 3.2 Feeding of cotton and spandex yarns A spandex and cotton yarns are delivered to the knitting needles by a carrier plate. The carrier plate simultaneously directs both the yarns to the knitting position. The spandex and cotton yarns are introduced to the knitting needles at a same rate to form a single jersey knit fabric as shown in Figure 3.3. 26 1. Spandex yarn 2. Change of direction roll 3. Cotton yarn 4. Carrier plate 5. Needle 6. Spandex yarn plated on back side of fabric 7. Cotton yarn at front side of fabric 8. Loops formed by needles 9. Spandex yarn feed slot 10. Guide hole for cotton Figure 3.3 Knitting of spandex and cotton yarns The cotton yarn is delivered from the package to a positive storage feeder that passes the yarn to the carrier plate and knitting needles. The yarn passes through a guide hole in the carrier plate. Optionally, more than one cotton yarn may be fed to the knitting needles through different guide holes in the carrier plate. The spandex is delivered from a surface driven package and passes through a broken thread detector and a guide slot within the carrier plate. The guide slots are separated from one another in the carrier plate so as to present the cotton yarn and spandex to the knitting needles (laycock 2006). 27 For single jersey knitted fabric in circular knitting machines, the process of co-knitting spandex is called “plating”. In this process, cotton and spandex yarns are knitted parallel to each other. The cotton yarn forms loops in the face side of the fabric and the spandex forms loops at the back side of the fabric. The formation of loops with cotton and spandex yarns is shown in Figures 3.4 (a) and (b). (a) Needle loop formation (b) Spandex plated cotton fabric structure Figure 3.4 3.3.2 Processing Treatments 3.3.2.1 Heat setting Plating technique The cotton / spandex single jersey knitted fabric was heat set at 2000C using heating chamber (ASKME Make, chamber length of 228.6 cm and fabric stretch at width wise direction is 25% of machine diameter). Cotton fabric was n’t heat set. 3.3.2.2 Dyeing Spandex fibres are less fastness to dyes than most companion fibers, and this must be taken into account during dyeing and subsequent wet 28 processing. Dyeing temperature above 104°C will lower the spandex fineness. Spandex will start melting losing its fibre shape, and will result in lower power. When dyeing temperature goes above 120°C, it will result in spandex degradation (26). The spandex plated cotton knitted fabric was first bleached using hydrogen peroxide bleaching for two hours. Then peroxide nutrition treatment was given for one hour. Wetting oil was added to dye bath. The fabric samples were dyed with 2% shade hot brand reactive dyes. The fabric was soaked in the dye bath for four hours. Again the samples were treated with salt and soda and steamed at 650C temperature. Then, the sample was treated with soap solution and acetic nutrition treatment for one hour. 3.3.2.3 Compacting These fabrics were compacted using tubular compacting machine (Albert make, Speed of 4 meters per minute, Chamber length of 1 meter, 26 % over feed, Fabric stretch in width wise direction was kept at 11% of machine diameter and at the temperature of 940C). Then, the fabrics were relaxed for 48 hours. 3.3.3 Testing 3.3.3.1 Determination of dynamic work recovery Assessment of dynamic work recovery of the fabrics is a newly developed method based on the Kawabata (1982) evaluation system for fabric total handle measurement. The evaluation method is based upon tensile resilience (RT %) measurement of Kawabata Evaluation System. The RT measurement will produce stress strain hysteresis for applied force of 500 gf / cm (constant rate of loading). For this applied force, the fabric extension is in the range of 5 – 15 %. But, elastic fabrics or garments expand (due to body skin 29 movement) up to 50 % as mentioned in the chapter 1.1. The dynamic work recovery of the fabric (equation (3.1)) is evaluated by constant rate of elongation principle using Instron. r e20-50% Tensile energy (loading) = ∫ F de 0 s e20 - 50% ∫ F de Tensile energy (unloading ) = 0 s e20-50% ∫ F de Dynamic work recovery % = e20-050% X 100 r F ∫ de 0 r s F = Stress value during loading ( F ) and unloading ( F ), where, e = strain (%), de = extension with respect to time. That is, Tensile energy (unloading) Dynamic work recovery % = Χ 100 Tensile energy (loading) The simplified form as mentioned in Figure 1.4, Area under unloading curve Dynamic work recovery % = Χ 100 (3.1) Area under loading curve 3.3.3.2 Fabric stress strain analysis The fabrics were tested for their dynamic elastic behaviour such as dynamic work recovery and stress at specific extension based on ASTM D 4964 – 96 method (CRE principle) at different extension levels such as 20%, 30 30%, 40% and 50% extension using Instron tester. Since, human body movement expands the skin by 10 to 50% at different parts (Voyce et al. 2005), The applied load was 5 KN at a speed of 500 millimeters per minute for 10 cycles, 10 sample size and gauge length of 100 mm. 3.3.3.3 Geometrical characteristics The average wales per centimeter and courses per centimeter were measured with the help of counting glass. The average loop length was measured with the aid of the HATRA course length tester (method described in B.S. Handbook no. 11, 1974, pp 4/102-4/106). The fabric areal density was measured using an electronic scale according to method ISO 3801:1977. The fabric thickness was measured with the aid of thickness gauge (under the applied load of 50 grams per square centimeter) according to method ISO 5084:1996. Fabric geometrical characteristics were measured at ten different places in the fabric in each case. The given materials and methods are common for all the chapters from 4 to 9. The detailed specifications of the materials, machines and process treatments are discussed under each objective mentioned in the respective chapters.
Similar documents
Global Spandex Market Value Expected to Grow US$ 8,704.6 Mn By 2021
Demand for Spandex is influenced by a number of factors. Steadily increasing population, coupled with an increase in disposable incomes, especially in developing regions and growing preference for and subsequent adoption of spandex-based stretch clothing in these regions are expected to drive growth of the global spandex market during the forecast period. Besides, increasing demand for use in activewear and sportswear is another major factor expected to fuel growth of the spandex market over the forecast period. Also, growth in demand from the healthcare sector, especially for use in diapers and compression stockings & surgical hoses, is expected to drive growth of the spandex market throughout the forecast period.
More information