How to read out a Majorana qubit in a topological insulator
Transcription
How to read out a Majorana qubit in a topological insulator
How to read out a Majorana qubit in a topological insulator Anton Akhmerov with Johan Nilsson and Carlo Beenakker PRL 102, 216404 (2009) (Related work: Fu&Kane PRL 102, 216403 (2009) ) Lyon mini-school on topological insulators, December 11 2009 InstituutLorentz Majorana fermions & edge state interferometry 1. Majorana bound states form qubit a = γ1 + iγ2 , a† = γ1 − iγ2 (Kitaev): Majorana fermions & edge state interferometry Das Sarma et al., Stern & Halperin, Bonderson et al. 1. Majorana bound states form qubit a = γ1 + iγ2 , a† = γ1 − iγ2 (Kitaev): 2. Majorana mode at the edges ψ(ε) = ψ † (−ε) Majorana fermions & edge state interferometry Das Sarma et al., Stern & Halperin, Bonderson et al. 1. Majorana bound states form qubit a = γ1 + iγ2 , a† = γ1 − iγ2 (Kitaev): 2. Majorana mode at the edges ψ(ε) = ψ † (−ε) 3. Can measure qubit in Fabry-Perot interferometer due to non-abelian braiding statitics Majorana fermions & edge state interferometry Das Sarma et al., Stern & Halperin, Bonderson et al. Main question: How to do the same with Majorana qubit in TI? Topological insulators Has time reversal and electron-hole symmetries v σp − EF ∆ H= ∆∗ EF − v σp But no edge modes Topological insulators Edge Majorana mode (Fu&Kane) v σp + mσz − EF H= ∆∗ ∆ EF − v σp + mσz Neutral unlike 5/2 QHE ⇒ no charge current Topological insulators Edge Majorana mode v σp − mσz − EF H= ∆∗ ∆ EF − v σp − mσz Direction controlled by magnetization (Can this help?) Electron to Majorana converter Electron to Majorana converter 1. No backscattering Electron to Majorana converter 1. No backscattering 2. Electron-hole symmetry completely fixes coupling Electron to Majorana converter 1. No backscattering 2. Electron-hole symmetry completely fixes coupling 3. c → ψ1 + iψ2 , c † → ψ1 − iψ2 Electron to Majorana converter 1. 2. 3. 4. No backscattering Electron-hole symmetry completely fixes coupling c → ψ1 + iψ2 , c † → ψ1 − iψ2 Charge is not conserved (goes into superconductor) ±1 → 0 + 0 Setup 1: Mach-Zehnder cin → ψ1 + iψ2 → cout G =0 Setup 1: Mach-Zehnder † cin → ψ1 + iψ2 → ψ1 − iψ2 → cout G =2 e2 h Setup 1: Mach-Zehnder Measures parity of the number of vortices Setup 2: Fabry-Perot Setup 2: Fabry-Perot e2 (tγ1 + (−1)nf tγ2 )2 h Allows for the Majorana qubit readout (if coherent phase slips may occur) I ∼V Setup 2: Fabry-Perot e2 (tγ1 + (−1)nf tγ2 )2 h Measures the fermion number parity I ∼V Conclusions 1. Deterministic conversion of an electron into a pair of Majorana fermions 2. Maximal current via two neutral modes 3. Vortex parity measurement 4. Readout of a topological qubit. (Potentially) Conclusions Thank you all. The end.