Sample Size Estimation Chulaluk Komoltri DrPH (Bios) Faculty of Medicine Siriraj Hospital
Transcription
Sample Size Estimation Chulaluk Komoltri DrPH (Bios) Faculty of Medicine Siriraj Hospital
Sample Size Estimation Chulaluk Komoltri DrPH (Bios) Faculty of Medicine Siriraj Hospital Sample Size Estimation • Why ? - n is large enough to provide a reliable answer to the question - too small n Æ a waste of time - too many n Æ a waste of money & other resources May be unethical e.g., delayed beneficial therapy placebo • Study Objective: - Hypothesis generating (Pilot study) Æ No sample size estimation - Hypothesis confirmation Æ Sample size estimation - n is usually determined by the primary objective of the study - method of calculating n should be given in the proposal, together with the assumptions made in the calculation Pilot study Example: (Mar 23,1999, #1515) This study for n=20 eligible burn patients will generate hypothesis about the predictive values of various patient characteristics for predicting number of days to return to work. Pilot study (cont’d) Example: (Oct 27, 1998, #1465) This is a pilot study providing preliminary descriptive statistics that will be used to design a larger, adequately powered study. N=24 normal healthy volunteers will be randomized to parallel groups to study the effect of 4 antidepressant drugs… Hypothesis confirmation study Sample size determination: 2 Objectives I. Estimation of parameter(s) Æ Precision (95% CI) Specify α error - Estimate prevalence, sensitivity, specificity - Estimate single mean, single proportion - etc. II. Test H0 Æ Statistical power (1- β) Specify α, β error 2.1 Single group - Test of single proportion, mean - Test of Pearson’s correlation - etc. 2.2 Two groups - Test difference of - 2 independent proportions, means, survival curves - 2 dependent proportions, means - Test equivalence of - 2 independent proportions, means - etc. 2.3 > 2 groups Commonly used formulas: Summary 1) Estimation 1.1) Estimate single proportion Æ 95% CI of π = p ± d (π = True pop’n proportion p = Expected proportion e.g., prevalence q = 1-p d = Margin of error in estimating p) 2 zα/2 pq n = d2 1.2) Estimate single mean Æ 95% CI of μ =⎯x ± d (μ = True pop’n mean ⎯x = Expected mean d = Margin of error in estimating mean) n = [zα/2 SD / d]2 2) Test 2.1) Test of difference in 2 independent proportions (p1, p2) p1, p2 = Proportion of … in group 1 and 2 p = (p1+p2)/2 n/group = [ zα/2 2pq + z β p1q1 + p 2 q 2 p1 − p 2 2.2) Test of difference in 2 independent means (Δ) σ = Common SD of outcome var. in group 1, 2 Δ = Difference in mean b/t 2 groups n/group = 2 [ (zα/2 + z β )σ Δ ] 2 2.3) Test of difference in > 2 independent means ]2 2.4) Test of significance of 1 proportion H0: π = π0 H1: π = π1 n =[ zα p 0 q 0 + z β p1q1 p 0 − p1 2.5) Test of significance of 1 mean H0: μ = μ0 H1: μ = μ1 Δ = |μ1 - μ0| σ = SD of outcome var. n = [ (z α + z β )σ Δ ]2 ]2 2.6) Test of significance of 1 correlation n F(Z) = = (Zα/2 + Zβ) 2 + 3 [F(Z0) + F(Z1)] 0.5 ln [(1+ρ)/(1-ρ)] I. Estimation 1.1 Estimate Prevalence Example: (Mar 18, 2000, #1688) This is a cross-sectional study of the prevalence of pulmonary hypertension (PHT) in patients aged 15-70 years with sickle cell disease. The primary endpoint is PHT diagnosis based on observed pulmonary pressure by droppler echocardiogram. A sample of n = 140 will provide 95% CI for true prevalence rate of PHT of 0.10 ± 0.05. 95% CI for true prevalence (π) = 0.10 ± 0.05 (1- α)100% ″ = p ± d = p ± zα/2√pq/n d = zα/2√pq/n Æ solve for n 2 zα/2 pq n = 2 d where p = estimated prevalence = 0.1 q = 1-p = 0.9 d = allowable error in estimating prevalence (margin of error) = 0.05 α = probability of type I error = 0.05 (2-sided), z 0.025 = 1.96 1.96 2 (0.1)(0.9) n = = 138.3 = 139 2 0.05 How big is d ? 1. Absolute d 2. Relative d: d ≤ 20% of prevalence(p) p d 95% CI n 0.80 0.05*p = 0.04 0.05 0.10*p = 0.08 0.10 0.15*p = 0.12 0.15 0.20*p = 0.16 0.20 0.76, 0.84 0.75, 0.85 0.72, 0.88 0.70, 0.90 0.68, 0.92 0.65, 0.95 0.64, 0.96 0.60, 1.00 384 246 96 62 43 28 24 16 2 zα/2 pq n = 2 d pq d (error) α n I. Estimation (cont’d) 1.2 Estimate Sensitivity, Specificity Example: - 95% CI for Sensitivity = 85% ± 5% Æ nDi =? - 95% CI for Specificity = 90% ± 5% Æ nNon-Di = ? Gold standard + Test + a b c d a+c b+d Sensitivity = a / (a+c) Specificity = d / (b+d) Sensitivity Specificity p±d 85 ± 5 90 ± 5 95% CI (80, 90) (85, 95) n = 196 nDi nNon-Di = 139 Ex. Title: Diagnosis of Benign Paraxysmal Positional Vertigo (BPPV) by Side-lying test as an alternative to the Dix-Hallpike test Investigator: Dr. Saowaros Asawavichianginda Design: Diagnostic study Subjects: Dizzy patients, aged 18-80 yrs, onset < 2 wks Dizzy pts. 1. Dix-Hallpike test 2. Side-lying test BPPV No BPPV Sample size: Based on 95% CI of true sensitivity (Sn) = 0.9 ± 0.1 2 zα/2 pq n = 2 d where p q d α = = = = expected sensitivity = 0.9 1-p = 0.1 allowable error = 0.1 0.05 (2-sided), Z0.025 = 1.96 So, n = 34.56 = No. of patients with BPPV from Dix-Hallpike test Since prevalence of BPPV among dizzy patients = 40% Thus, no. of dizzy patients = 34.56 = 86.4 = 87 0.4 Dix-Hallpike test (Gold std) + (BPPV) - (No BPPV) Side-lying test + Sn - 1 – Sn 35 52 87 1.3 Estimation of 1 Mean การศึกษานี้มีวัตถุประสงคเพื่อประมาณคาเฉลี่ยของ subcarinal angle ในคนไทยปกติ และจากการศึกษาของ ... ในคนปกติจํานวน 100 รายอายุ ... ป พบวาคาเฉลี่ยของ subcarinal angle เทากับ 60.8 (SD=11.8) ถากําหนดให 95% confidence interval (CI) ของคาเฉลี่ยของ subcarinal angle ในประชากรไทย (μ) มีคาเทากับ 61 ± 2 (SD=13) จะตองทําการศึกษาในคนไทยปกติจํานวน 163 คนดังรายละเอียดการคํานวณดังนี้ เมื่อ ดังนั้น n = [zα/2 SD / d]2 SD = Standard deviation ของ subcarinal angle = 13 d = Margin of error ในการประมาณคาเฉลี่ย = 2 α = Probability of type I error (2-sided) = 0.05 z0.025 = 1.96 n = [1.96*13/2]2 = 162.31 = 163 II. Test 2.1 Test for Difference in 2 Independent Proportions Example: (May 25, 1999, #1549) This is a randomized (1:1), double-blind, parallel-group, multi-center trial of drug A (dose1, 2) in chronic hepatitis C patients aged 18+ years. The primary efficacy endpoint is sustained viral response rate after treatment. N = 141 per group will provide 80% power to detect an absolute difference in sustained viral response rate of 11% (7% vs. 18%) at 2-sided α of 0.05. Clinical significance vs. Statistical significance N = 141 per group will provide 80% power to detect an absolute difference in sustained viral response rate of 11% (7% vs. 18%) at 2-sided α of 0.05. Clinical (Practical) significance Statistical significance Hypotheses or or where H0 H1 H1 H1 : : : : π1 - π2 π1 - π2 π1 - π2 π1 - π2 = ≠ > < 0 0 (2-sided) 0 (1-sided, upper tail) 0 (1-sided, lower tail) π1 = True (population) response rate in group 1 π2 = True (population) response rate in group 2 1-sided, 2-sided test n (2-sided test) > n (1-sided test) 2-sided test is conservative Æ use more often Decision to use either 1- or 2-sided test should be made at the design stage, not after looking at the data α, β (Efficacy trial) Truth H0 true (A=B) Decision (from p-value) Accept H0 Reject H0 No error (1- α) α H0 false (A≠B, Difference) β No error (1- β) Power α = Pr (incorrect conclusion of difference = False positive (FP) β = = = = 1-β ) Pr (incorrect conclusion of equivalence) False negative (FN) Pr ( correct conclusion of difference ) True positive (TP) Truth H0 true (Not guilty) Decision Accept H0 (Not guilty) Reject H0 (Guilty) H0 false (Guilty) No error, 1-α Type II error, β Type I error, α No error, 1-β, Power α = Probability of wrongly put innocent person into jail β = Probability of wrongly set the criminal free 1-β = Probability of correctly put criminal into jail α is more important than β, so usually set β = 4 α How big is α, β? 1. Type I error (α, test size, significance level) - To replace a standard drug with a new drug, type I error is serious, Æ use small α (0.01, 0.02) - To add to the body of the published knowledge, type I error is less serious Æ use α = 0.05, 0.10 2. Type II error (β) - Power (1 - β) - Power is conventionally set at 80% - 90% - Typically, α is 4 times as serious as β α = 0.05, β = 0.20 (power = 0.80) Calculation: n1 = n2 = n Based on Chi-square test without continuity correction Zα if 1-sided n/group = [ where zα/2 2pq + z β p1q1 + p 2 q 2 p1 − p 2 ]2 p1 = response rate in group 1 = 0.07 = 0.93 q1 = 1 - p1 p2 = response rate in group 2 = 0.18 q2 = 1 – p2 = 0.82 p q = (p1 + p2) / 2 = 1–p α = 0.05 (2-sided), 1- β = 0.80, Æ n/group = 141 = 0.125 = 0.875 z0.025 = 1.96 z0.2 = 0.842 n / group α = 0.05 2-sided 1-sided p1 p2 Power 7 18 80 90 141 188 111 153 7 20 80 90 108 144 85 117 (p1 – p2) Power α n Calculation: n1 = n2 = n Based on Chi-square test with continuity correction n′ = n 4 ⎤ ⎡ 4 ⎥ ⎢1 + 1 + n p1 - p 2 ⎥⎦ ⎢⎣ 2 141 ⎡ 4 = ⎢1 + 1 + 4 ⎢⎣ 141 0.18 - 0.07 = 158.7 ~ 159 ⎤ ⎥ ⎥⎦ 2 Ex: Title: Efficacy of polyethylene plastic wrap for the prevention of hypothermia during the immediate postnatal period in low birth weight premature infants Investigator: Dr. Santi Punnahitananda Design: RCT, 2-parallel arms Subjects: Infants with ≤ 34 gestational wks, birth weight ≤ 1800 gms Outcome: Infant’s body temperature taken on nursery admission Infants, ≤ 34 gestational wks, BW ≤ 1800 gms Randomization Plastic wrap No Plastic wrap Body temp. Æ Hypothermia Body temp. Æ Hypothermia Sample size estimation: Based on Test of 2 independent proportions Our unit Æ hypothermia in low birth weight, premature infants = 55% (p1 = 0.55) Assume that plastic wrap would reduce hypothermia to 20% (p2 = 0.2) n/group = [ zα/2 2pq + z β p1q1 + p 2 q 2 p1 − p 2 ] 2 ตัวอยาง ในการศึกษาเพื่อหาปจจัยตางๆที่มีความสัมพันธกับการพยายามทํารายตนเอง ผูวิจัยสนใจในผลของการมีประวัติการเจ็บปวยดวยโรคทางจิตตอการพยายามทํา รายตนเอง การศึกษาในอดีตพบวาผูปวยที่ไมเคยทํารายตนเอง (control) มีประวัติการ เจ็บปวยดวยโรคทางจิต 4% และผูวิจัยคาดวาผูปวยที่เคยทํารายตนเองแตไม เสียชีวิต (case) จะมีประวัติการเจ็บปวยดวยโรคทางจิตมากกวาคือ 10% เนื่องจากโดยปกติจํานวนผูปวยที่ไมเคยทํารายตนเองมีมากกวาจํานวนผูปวยที่ เคยทํารายตนเอง จึงกําหนดให control มีจํานวนเปน 2 เทาของ case เพื่อใหการศึกษานี้มี power 80% ในการพบวาความแตกตางของประวัติการ เจ็บปวยดวยโรคทางจิต 10% vs. 4% มีนัยสําคัญทางสถิติที่ 2-sided type I error = 0.05 จะตองใช case 200 คนและ control 400 คน n1 = ncase = [zα/2√(r+1)pq + zβ√r p1q1 + p2q2 ]2 r (p1 – p2)2 เมื่อ r = n2/n1 = ncontrol / ncase = 2 case = 0.10 p1 = สัดสวนการมีประวัตกิ ารเจ็บปวยดวยโรคทางจิตในกลุม q1 = 1- p1 = 0.90 control = 0.04 p2 = สัดสวนการมีประวัตกิ ารเจ็บปวยดวยโรคทางจิตในกลุม q2 = 1- p2 = 0.96 p = (p1 + rp2) / (r+1) = 0.06 q = 1- p = 0.94 α = β = ดังนั้น โอกาสที่จะเกิด type I error = 0.05 (2-sided), z0.025 = 1.96 โอกาสที่จะเกิด type II error = 0.2, z0.2 = 0.842 ncase = [0.8062 + 0.3935]2 = 199.9 0.0072 II. Test (cont’d) 2.2 Test for Difference of 2 Independent Means Example: (Aug 24, 1999, #1575) For patients with idiopathic membranous glomerulopathy, a phase II, randomized (1:1), double-blind, placebo-controlled, multi-center study of drug A will be conducted to determine efficacy. The primary efficacy endpoint is the change from baseline in proteinuria at Week 18. N = 45 per group will provide 80% power to detect a difference in mean change in loge of urine protein of –1.22 for placebo and –2.00 for an active drug, assuming SD = 1.30, 2-sided α of 0.05. A drop-out rate of 20% is expected, so N = 55 per group will be recruited. id trt 1 2 0 0 n1 0 n1+1 n1+2 1 1 n1+n2 1 ln_pro0 ln_pro18 pro_d trt: 0=placebo, 1=Drug A ln_pro0 = loge of proteinurea at Wk 0 (baseline) ln_pro18 = loge of proteinurea at Wk 18 pro_d = change at Wk18 of loge of proteinurea from baseline Hypotheses or or H0 H1 H1 H1 : : : : μ1 - μ2 μ1 - μ2 μ1 - μ2 μ1 - μ2 = ≠ > < 0 0 (2-sided) 0 (1-sided, upper tail) 0 (1-sided, lower tail) where μ1 = true (population) mean in group 1 μ2 = true (population) mean in group 2 Zα if 1-sided Calculation: n1 = n2 = n n/group = 2 [ (zα/2 + z β )σ Δ ] 2 σ = Common standard deviation of change in loge urine protein = 1.30 (σ1 = σ2 = σ) Δ = Difference in mean change between 2 groups that is considered clinically important = (-1.22) – (-2.00) = 0.78 Δ / σ = Effect size (ES) = effect of treatment in SD unit α = 0.05 (2-sided), z0.025 = 1.96 z0.2 = 0.842 1 - β = 0.80, where Æ n / group = Drop-out 20% Æ n / group = 44 44 = 55 (1- dropout) Δ σ 0.78 0.50 n/group = 2 [ Power n / group 1.30 80 90 45 60 1.50 80 60 1.30 80 108 1.50 80 143 (zα/2 + z β )σ Δ ]2 (mean1 – mean2) σ Power α n Ex: Title: Can knee immobilization after total knee replacement (TKA) save blood from wound drainage Investigator: Dr. Vajara Wilairatana Design: Randomized controlled trial Subjects: Pts. with hip disease that require TKA Pts. with hip disease that require TKA Randomization Knee elevation 40° Blood loss A-P splint and Knee elevation 40° Blood loss n/group = 2 [ (zα/2 + z β )σ Δ ] 2 where Δ = Difference in mean postoperative blood loss between 2 groups σ = SD of postoperative blood loss Kim YH et al. Knee splint in 69 knees, mean wound drainage = 436 ml, SD = 210 ml Ishii et al. 30 non-splint knees, mean blood loss = 600 ml, SD = 293 Ex: Title: Early postoperative pain and urinary retention after closed hemorrhoidectomy: Comparison between spinal and local anesthesia Investigator: Dr. Sahapol Anannamcharoen Design: RCT Subjects: Pts. with grade 3 or 4 hemorrhoidal disease Pts. with hemorrhoidal disease Randomization Spinal anesthesia Perianal nerve block Visual analogue scale (VAS) pain score (0-10) Sample size if parametric test (2-sample t-test) is used Sample size if Non-parametric (Mann-Whitney) test is used (VAS pain score is usually positively skewed !!) II. Test 2.4 Test of Significance of 1 Proportion Example: (Feb 29, 2000, #1649) N = 100 subjects with nontuberculous mycobacteria infection will be recruited for this multi-center study. The primary objective is to test if the frequency of cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation is 4%. If more CF carriers are found at a statistically significant number, then this would suggest that CFTR alleles may be important in predisposing to this disease. N = 96 will provide 90% power to test H0 : π = π0 = 0.04, against 1-sided H1 : π = π1 = 0.115, using α = 0.05. Hypotheses H0 : π = π0 (π0 = 0.04 ) H1 : π > π0 (π1 = 0.115) Calculation n =[ where zα p 0 q 0 + z β p1q1 p 0 − p1 p0 = q0 = 1 – p0 0.04 = 0.96 p1 = q1 = 1 – p1 0.115 = 0.885 ] 2 α = 0.05 (1-sided), z0.05 = 1.645 1- β = 0.90, z0.1 = 1.282 Æ n = 96 II. Test (cont’d) 2.5 Test of Significance of 1 Mean Example: The average weight of men over 55 years of age with newly diagnosed heart disease was 90 kg. However, it is suspected that the average weight is now somewhat lower. How large a sample would be necessary to test, at 5% level of significance with a power of 90%, whether the average weight is unchanged versus the alternative that it has decreased from 90 to 85 kg with an estimated SD of 20 kg? Hypotheses H0 : μ = μ0 (μ0 = 90) H1 : μ < μ0 (μ1 = 85) Calculation n = [ where (z α + z β )σ Δ σ = estimated SD Δ = | μ1 - μ0| ] 2 = 20 = 5 α = 0.05 (1-sided), z0.05 = 1.645 1- β = 0.90, z0.1 = 1.282 Æ n = 137.08 = 138 II. Test (cont’d) 2.6 Test of Significance of 1 Correlation Coefficient H0: ρ = ρ0 H1: ρ = ρ1 “การศึกษาความสัมพันธระหวางการวัดพังผืดในตับดวยวิธี Transient Elastography กับการวินิจฉัยดวยวิธีเจาะชิ้นเนือ ้ ตับใน ผูปวยโรคเรื้อนกวาง (psoriasis)ที่ไดรับการรักษาดวยยาเมโธเทร็กเซท (methotrexate; MTX) ในคนไทย” จากวัตถุประสงคหลักของการวิจัยเพื่อหาความสัมพันธระหวาง คาที่ไดจากการวัดพังผืดในตับดวยวิธี Transient Elastography กับคาที่ไดจากการวินิจฉัยภาวะพังผืดดวยวิธีเจาะชิ้นเนือ้ ตับ การ คํานวณขนาดตัวอยางจึงเปนการคํานวณเพื่อทดสอบคา Correlation coefficient โดยมีสมมติฐานทางสถิติดงั นี้ H0 : ρ 0 = 0 H1 : ρ1 = 0.3 (Ref #1) n = (Zα/2 + Zβ) 2 + 3 [F(Z0) + F(Z1)] α = Probability of type I error = 0.05 (2-sided) Z0.025 = 1.96 β = Probability of type II error = 0.1 1-β = Power = 0.90 Z0.1 = 1.282 F(Z) = Fisher’s Z transformation = 0.5 ln [(1+ρ)/(1-ρ)] Under H0: ρ=0 F(Z0) = 0.5 x ln [(1+0)/(1-0)] Under H1: ρ=0.3 F(Z1) = 0.5 x ln [(1+0.3)/(1-0.3)] = 0.31 Thus, n = [ (1.96+1.282)/(0-0.31) ]2 + 3 = 112.4 = 113 = 0 More than one primary outcome If one of these endpoints is regarded as more important than others, then calculate n for that primary endpoint. If several outcomes are regarded as equally important, then calculate n for each outcome in turn, and select the largest n as the sample size required to answer all the questions of interest. Caution: Calculation of sample size needs a number of assumptions and ‘guesstimates’, so such calculation only provides a guide to the number of subjects required. Sample size estimation: 1. Formulas 2. Published tables, nomograms 3. Softwares e.g., - nQuery Advisor - PS (Power and Sample Size Program) - etc. References Blackwelder WC. Proving the Null Hypothesis in Clinical Trials. Controlled Clinical Trials 1982; 3: 345-353. Breslow NE, Day NE. Statistical Methods in Cancer Research Vol. II – The Design and Analysis of Cohort Studies. Oxford : Oxford University Press; 1987. Chow SC, Liu JP. Design and Analysis of Clinical Trials. Concept and Methodologies. New York: John Wiley & Sons, Inc. 1998. Fleiss JL. Statistical Methods for Rates and Proportions. New York : John Wiley & Sons; 1981. Karlberg J, Tsang K. Introduction to Clinical Trials: Clinical Trials Research Methodology, Statistical Methods in Clinical Trials, The ICH GCP Guidelines. Hong Kong: The Clinical Trials Centre. 1998. Lachin JM. Introduction to Sample Size Determination and Power Analysis for Clinical Trials. Controlled Clinical Trials 1981; 2: 93-113. Lemeshow S, Hosmer DW, Klar J, Lwanga SK. Adequacy of Sample Size in Health Studies. New York : John Wiley & Sons; 1990.