Document 6539413
Transcription
Document 6539413
Sample Solutions of Assignment 7 for MAT3270A a Note: Any problems to the sample solutions, email Mr. Yao Xiao (yxiaomath.cuhk.edu.hk) directly. 1. Compute the Wronskian of the following functions a). et , tet , t2 et b). 1, t, cos t, sin t c). 1, t, e−t , te−t Answer: a). W = 2e3t . b). W = 1. c). W = −5e−2t . 2. Use Abel’s formula to find the Wronskian of the following ODEs: 000 00 0 2 a). ty + 2y − t3 y + et y = 0 00 b). t2 y (4) + ty − 4y = 0 Answer: a). By Abel’s formula, W 0 = − 2t W , hence W = C . t2 b). By Abel’s formula, W 0 = 0, hence W = C. 3. Show that if y1 is a solution of 000 00 0 y + p1 y + p2 y + p3 y = 0 0 then the substitution y = y1 (t)v(t) leads to the following second order equation for v : 0 00 0 y1 y1 y1 000 00 0 v + 3 + p1 v + 3 + 2p1 + p2 v = 0 y1 y1 y1 Answer: By direct computation, we have y 0 = y10 v + v 0 y1 y 00 = y100 v + 2y10 v 0 + v 00 y1 (3) y (3) = y1 v + 3y100 v 0 + 3y10 v 00 + v (3) y1 1 2 Then 000 00 0 y + p1 y + p2 y + p3 y (3) = y1 v + 3y100 v 0 + 3y10 v 00 + v (3) y1 + p1 (y100 v + 2y10 v 0 + v 00 y1 ) + p2 (y10 v + v 0 y1 ) + p3 y1 v 0 00 000 0 00 0 = v y1 + 3y1 + p1 y1 v + 3y1 + 2p1 y1 + p2 y1 v Hence 00 0 0 y1 y1 y1 00 0 v + 3 + p1 v + 3 + 2p1 + p2 v = 0 y1 y1 y1 000 4. Use Problem 3 to solve the following ODE: 000 00 0 (2 − t)y + (2t − 3)y − ty + y = 0, t < 2; y1 (t) = et Answer: . The original ODE can be written as 2t − 3 00 t 0 1 000 y + y − y + y=0 2−t 2−t 2−t Let y = et v, according, the equation of v is t − 3 00 v 000 + v =0 t−2 Then v = C1 te−t + C2 t + C3 . Hence y = et v = C1 t + C2 tet + C3 et 5. Solve the following equations a). y (7) − 8y (5) + 16y (3) = 0(There are some typo in the previous paper we handed out,please change it accordingly) 00 0 b). y (5) + y (4) + 2y (3) + 2y + y + y = 0 c). y (4) − y = 0, y(0) = 1, 0 y (0) = 0, 00 y (0) = −1, 000 y (0) = 0 d). y (4) − y = 3t + cos t 000 00 0 e). y − 3y + 2y = t + et , 000 0 f). y + y = tan t, 0<t< y(0) = 1, π 2 0 y (0) = − 41 , 00 y (0) = − 32 3 000 00 0 g). t3 y − 3t2 y + 6ty − 6y = t4 (Hint: t, t2 and t3 are solutions of the homogeneous equation.) Answer: . a). The characteristic equation is r7 − 8r6 + 16r3 = r3 (r2 − 4)2 = 0. We get r1 = 0, r2 = 0, r3 = 0, r4 = 2, r5 = 2, r6 = −2, r7 = −2. The general solutions are y(t) = c1 + c2 t + c3 t2 + c4 e2t + c5 te2t + c6 e−2t + c7 te−2t . b). The characteristic equation is r5 + r4 + 2r3 + 2r2 + r + 1 = 0 Thus the possible values of r are r1,2 = i, r3,4 = −i, r5 = −1, and the general solution of the equation is y(t) = (c1 + c2 t) cos t + (c3 + c4 t) sin t + c5 e−t c).The characteristic equation is r4 − 1 = 0 Thus the possible values of r are r1 = 1, r2 = −1, r3 = i, r4 = −i, and the general solution of the equation is y(t) = c1 et + c2 e−t + c3 cos t + c4 sin t. From the initial data, we have c1 + c2 + c3 = 1 c1 − c2 + c4 = 0 c1 + c2 − c3 = −1 c1 − c2 − c4 = 0 hence c1 = 0, c2 = 0, c3 = 1, c4 = 0. Then y = cos t 4 d). It is easy to know that the general solution of the homogeneous equation is Y (t) = c1 et + c2 e−t + c3 cos t + c4 sin t. Since f = 3t + cos t, we can assume a particular solution is A0 t + A1 + t(C1 cos t + C2 sin t) then −A0 t + A1 − 4C2 cos t − 4C1 sin t = 3t + cos t hence A0 = −3, A1 = 0, C1 = 0, C2 = − 41 . Then the general solution of the ODE is 1 c1 et + c2 e−t + c3 cos t + c4 sin t − 3t − t sin t. 4 e). It is easy to know that the general solution of the homogeneous equation is Y (t) = c1 + c2 e2t + c3 e3t . Since f = t + et , we can assume a particular solution is A0 t + A1 + C1 tet then 2A0 + C1 et = t + et hence A0 = 21 , A1 = 0, C1 = 1. Then the general solution of the ODE is 1 y(t) = c1 + c2 e2t + c3 e3t + t + tet . 2 From the initial data, we have 1 =1 2 1 2c2 + 3c3 + 1 = − 4 1 4c2 + 9c3 + 2 = − 2 c1 + c2 + c3 + solve this equation, we get c1 = 89 , c2 = − 58 , c3 = 0. Then the solution is 9 8 + 85 e2t + 12 t + tet . f). It is easy to know that 1, cos t, sin t are the solutions of the homogeneous equation. By direct computation, 1 W = 0 0 1 W2 = 0 0 0 cos t sin t − sin t cos t = 1, W1 = 0 1 − cos t − sin t 1 0 sin t 0 cos t = − cos t, W3 = 0 0 1 − sin t cos t sin t − sin t cos t = 1, − cos t − sin t cos t 0 − sin t 0 = − sin t, − cos t 1 5 Then the general solution of the ODE is Z Z Z tan t tan t cos t tan t sin t y(t) = c1 + c2 cos t + c3 sin t + + cos t − + sin t − 1 1 1 2 2 = c1 + c2 cos t + c3 sin t − ln cos t + cos t − x sin t tan t. g). It is known that t, t2 , t3 are the solutions of the homogeneous equation. Since f = t4 , we can assume the a particular solution is ct4 and substitute it into the ODE, we get −42ct4 = t4 , c = − 1 . 42 Hence the general solution of the ODE is y = c1 t + c2 t2 + c3 t3 − 1 4 t. 42 6. Use the method of undetermined coefficients to find the solutions of the following inhomogeneous ODEs. 00 a). y (4) − 4y = t2 + 3et + cos t 00 b). y (4) + 2y + y = 3 + cos 2t + t sin 3t + e5t Answer: . a). It is easy to know that the general solution of the homogeneous equation is c1 + c2 t + c3 e2t + c4 e−2t . Since g = t2 +3et +cos t, we can assume the particular solution is c1 t4 +c2 et +c3 cos t+c4 sin t.and substitute it into the ODE, we get −48c1 t2 − 3c2 et + 5c3 cos t + 5c4 sin t = t2 + 3et + cos t. hence 1 1 , c2 = −1, c3 = , c4 = 0. 48 5 The general solution of the original ODE is c1 = − y(t) = c1 + c2 t + c3 e2t + c4 e−2t − t4 − et + 1 cos t. 5 b). It is easy to know that the general solution of the homogeneous equation is (c1 + c2 t) cos t + (c3 + c4 t) sin t. 6 Since g = 3 + cos 2t + t sin 3t + e5t , we can assume the particular solution is c1 + c2 cos 2t + c3 sin 2t + (c4 t + c5 ) cos 3t + (c6 t + c7 ) sin 2t + c8 e5t . Substitute it into the ODE, we get c1 + 9c2 cos 2t + 9c3 sin 2t + 64c4 t cos 3t + 64c6 sin 3t + (64c5 − 96c6 ) cos 3t + (64c7 + 96c1 ) sin 3t + 576c8 e5t 3 + cos 2t + t sin 3t + e5t . = Hence 1 3 1 1 c1 = 3, c2 = , c3 = 0, c4 = 0, c5 = , c6 = , c7 = 0, c8 = . 9 128 64 576 The general solution of the original ODE is y(t) = (c1 + c2 t) cos t + (c3 + c4 t) sin t + 3 + 1 3 1 1 5t cos 2t + cos 3t + t sin 3t + e . 9 128 64 576 7. Find the solution of the following IVB: 000 00 0 y − 3y + 2y = t + et , y(0) = 1, 0 y (0) = −2, 00 y (0) = −3 Answer: . It is easy to know that the general solution of the homogeneous is c1 + c2 e2t + c3 e3t . Since g = t + et , we can assume a particular solution is c1 t2 + c2 t + c3 et . Substitute it into the ODE, we get −3(2c1 + c3 ) + 2(2c1 t + c2 + c3 ) = t + et Hence 3 1 c1 = , c2 = , c3 = −1. 4 4 Then the general solution of the original ODE is 1 3 c1 + c2 e2t + c3 e3t + t2 + t − et . 4 4 7 From the initial data, we have c1 + c2 + c3 = 2 11 2c2 + 3c3 = − 4 7 4c2 + 9c3 = − 2 hence c1 = 19 2 89 , c2 = − , c3 = . 24 8 3 The solution of IVB is y(t) = 89 19 2t 2 3t 1 2 3 − e + e + t + t − et 24 8 3 4 4 8. Use the method of variation of parameters to find general solutions of the following ODEs: 000 0 000 0 000 0 a). y + y = tan t, b). y + y = sec t, c). y − y = csc t, 0<t<π −π/2 < t < π/2 y(π/2) = 2, 0 y (π/2) = 1, 00 y (π/2) = −1 Answer: . a). It is easy to know that 1, cos t, sin t are the solutions of the homogeneous equation. By direct computation, 1 cos t sin t W = 0 − sin t cos t 0 − cos t − sin t 1 0 sin t W2 = 0 0 cos t 0 1 − sin t 0 cos t sin t = 1, W1 = 0 − sin t cos t 1 − cos t − sin t = 1, 1 cos t 0 = − cos t, W3 = 0 − sin t 0 = − sin t, 0 − cos t 1 Then the general solution of the ODE is Z Z Z sec t cos t sec t sin t sec t + cos t − + sin t − y(t) = c1 + c2 cos t + c3 sin t + 1 1 1 1 1 + sin t = c1 + c2 cos t + c3 sin t + ln − t cos t − sin t ln cos t. 2 1 − sin t 8 b). It is easy to know that 1, cos t, sin t are the solutions of the homogeneous equation. By direct computation, 1 cos t 0 cos t sin t sin t W = 0 − sin t cos t = 1, W1 = 0 − sin t cos t = 1, 0 − cos t − sin t 1 − cos t − sin t 1 0 sin t 1 cos t 0 W2 = 0 0 cos t = − cos t, W3 = 0 − sin t 0 = − sin t, 0 1 − sin t 0 − cos t 1 Then the general solution of the ODE is Z Z Z tan t tan t cos t tan t sin t y(t) = c1 + c2 cos t + c3 sin t + + cos t − + sin t − 1 1 1 2 2 = c1 + c2 cos t + c3 sin t − ln cos t + cos t − x sin t tan t. c). It is easy to know that 1, et , e−t are the solutions of the homogeneous equation. By direct computation, 0 et e−t 1 et e−t W = 0 et −e−t = 2, W1 = 0 et −e−t = −2, 1 et e−t 0 et e−t 1 et 0 1 0 e−t W2 = 0 0 −e−t = e−t , W3 = 0 et 0 = et , 0 et 1 0 1 e−t Then the general solution of the ODE is Z Z −t Z t 2 csc t e csc t e csc t t −t t −t y(t) = c1 + c2 e + c3 e + − +e +e 2 2 2 Z −t Z t sin t e csc t e csc t = c1 + c2 et + c3 e−t − ln + et + e−t . 1 + cos t 2 2 From the initial data, we get π π π π c1 + c2 e 2 + c3 e − 2 = 2 c2 e 2 − c3 e − 2 = 1 π π c2 e 2 + c3 e− 2 = −1 π Solve this equation, we have c1 = 3, c2 = 0, c3 = −e 2 . Then the solution of the original IVB is Z t −s Zt s π sin t e csc s e csc s −t t −t y(t) = 3 − e 2 − ln +e ds + e ds. 1 + cos t 2 2 π 2 π 2 9 Section 4.1 Determine the intervals in which solutions are sure to exists. 2. ty 000 + sin ty 00 + 3y = cos t Answer: y 000 + Since sin t 00 y t cos t sin t 3 , t ,t t + 3t y = cos t . t are not continuous at 0. Hence the interval is t > 0, or t < 0. 4.y 00 + ty 00 + t2 y 0 + t3 y = 2 ln t Answer: Since t,t2 ,t3 ,2 ln t are continuous on (0, +∞),hence the interval is (0, +∞). 6.(x2 − 4)y (6) + x3 y 000 + 9y = 0 Answer: y (6) + Since x3 , 9 x2 −4 x2 −4 x3 y 000 x2 −4 + 9 y x2 −4 = 0. are not continuous at ±2.Hence the interval is (−∞, −2) and (2, +∞). In each of Problem determine whether the given set of functions is linearly dependent or linearly independent. If they are linearly dependent, find a linear relation among them. 8. f1 (t) = 2t − 3, f2 (t) = 4t2 + 2, f3 (t) = 3t2 + t Answer: 8. By direct computation, 2t − 3 4t2 + 2 3t2 + t 8t 6t + 1 W (f1 , f2 , f3 ) = 2 0 8 6 =0 So f1 , f2 , f3 are linear dependent, f1 (t) + 3f2 (t) − 2f3 (t) = 0. In each problems 11 throuth 16,verify that the given functions are solutions of the differential equation,and determine their Wronskian. 10 11.y 000 + 4y 0 = 0;1,cos 2t,sin 2t Answer: 1 cos 2t sin 2t 0 −2 sin 2t 2 cos 2t W (1, cos 2t, sin 2t) = 0 −4 cos 2t −4 sin 2t =8 13.y 000 − 3y 00 − y 0 + 3y = 0;et ,e−t ,e3t Answer: et e−t e3t W (et , e−t , e3t ) = et −e−t 3e3t et e−t 9e3t = −16e3t 15.xy 000 − y 00 = 0;1,x,x3 Answer: 1 x x3 W (1, x, x3 ) = 0 1 3x2 = 6x 0 0 6x 17. Show that W (5, cos2 t, cos 2t) = 0 for all t. Can you establish this result without direct evaluation of Wronskian? Answer: By direct computation, we have 5 cos2 t cos 2t 2 W (5, cos t, cos 2t) = 0 −2 sin t cos t −2 sin 2t 0 −2 cos 2t −4 cos 2t It is easy to know that cos2 t = 1 1 × 5 + cos 2t 10 2 i.e. 5, cos2 t, cos 2t are linearly dependent, so W (5, cos2 t, cos 2t) = 0. 18. Verify the differential operator defined by L[y] = y (n) + p1 (t)y (n−1) + ... + pn (t)y is a linear differential operator. That is show that L[c1 y1 + c2 y2 ] = c1 L[y1 ] + c2 L[y2 ]. =0 11 where y1 and y2 are n times differentiable functions and c1 and c2 are arbitrary constants. Hence show that if y1 , y2 , ..., yn are solutions of L[y] = 0, then the linear combination c1 y1 + ... + cn yn is also a solution of L[y] = 0. Answer: Direct computation easily gives the answer. 19. Let the linear differential operator L be defined by L[y] = a0 y (n) + a1 y (n−1) + · · · + an y, where a0 , a1 , · · · , an are real constants. (a). Find L[tn ]. (b). Find L[ert ]. 000 (c). Determine four solutions of the equation y (4) − 5y + 4y = 0. Do you think the four solutions form a fundamental set of solutions? why? Answer: (a) Since (tn )0 = ntn−1 , (tn )00 = n(n − 1)tn−2 ,· · · ,(tn )(n) = n!, so L[tn ] = a0 n · (n − 1) · · · 2 · 1 + a1 n · (n − 1) · · · 2t + · · · + an tn . (b) Since (ert )0 = rert , (ert )(n) = rn ert , so L[ert ] = a0 rn ert + a1 rn−1 ert + · · · + an ert = (a0 rn + · · · + an )ert . (c) The characteristic equation is r4 − 5r2 + 4 = 0, we have r1 = 1, r2 = −1, r3 = 2, r4 = −2. Since W [et , e−t , e2t , e−2t ] 6= 0, −∞ < t < ∞, so the four solutions forms a fundamental set of solutions. 20.In this problem we show how to generalize Theorem3.3.7(Abel’s theorem) to higher order equations. We first outline the procedure for the third order equation 000 00 0 y + p1 (t)y + p2 (t)y + p3 (t)y = 0 Let y1 , y2 , and y3 be solutions of this equation on an interval I. (a) If W = W (y1 , y2 , y3 ), show that y1 y2 y3 0 0 0 0 W = y1 y2 y3 y 000 y 000 y 000 1 2 3 . 12 Hint: The derivative o fa 3-by-3 determinant is the sum of three 3-by-3 determinants obtained by differentiating the first, second,and third rows, respectively. 000 000 000 (b) Substitute for y1 , y2 , andy3 from the differential equation; multiply the first row by p3 , multiply the second row by p2 , and add these to the last row to obtain 0 W = −p1 (t)W. (c) Show that Z W (y1 , y2 , y3 ) = c exp[− p1 (t)dt]. It follows that W is either always zero or nowhere zero on I. (d) Generalize this argument to the nth order equation y (n) + p1 (t)y (n−1) + · · · + pn (t)y = 0 with solutions y1 , . . . , yn . That is, establish Abel’s formula, Z W (y1 , . . . , yn )(t) = c exp[− p1 (t)dt], for this case. y1 y2 y3 y10 y20 y30 y1 y2 y3 y1 y2 y3 00 00 00 0 0 0 0 0 0 Answer: (a). W = y1 y2 y3 + y1 y2 y3 + y1 y2 y3 = y10 y20 y30 00 00 000 000 000 000 00 000 000 00 00 00 y1 y2 y3 y1 y2 y3 y1 y2 y3 y1 y2 y3 0 (b). According the equation, we have 000 00 0 000 00 0 000 00 0 y1 = −(p1 (t)y1 + p2 (t)y1 + p3 (t)y1 ) y2 = −(p1 (t)y2 + p2 (t)y2 + p3 (t)y2 ) y3 = −(p1 (t)y3 + p2 (t)y3 + p3 (t)y3 ) then, y1 y2 y3 0 0 0 0 y y y3 W = 1 2 00 0 00 0 00 −(p1 (t)y + p2 (t)y + p3 (t)y1 ) −(p1 (t)y + p2 (t)y + p3 (t)y2 ) −(p1 (t)y + p2 (t)y 0 + p3 (t)y3 ) 1 1 2 2 3 3 the first row × p3 + the second row × p2 + the last row =⇒ y y y 1 2 3 0 0 0 0 = −p1 (t)W y1 y2 y3 W = −p1 (t)y 00 −p1 (t)y 00 −p1 (t)y 00 1 2 3 . 13 (c).By (b), dW/dt W R R = −p1 (t) ⇒ ln W = − p1 (t)dt + C ⇒ W (y1 , y2 , y3 )(t) = c exp [− p1 (t)dt] (d).For the nth order equation y1 y2 ··· y1 y2 ··· yn 0 0 0 . . .. .. .. y1 y2 ··· yn 0 . W = , and W = (n−2) (n−2) .. .. .. .. . . . . y1 y2 ··· (n−1) (n−1) (n−1) (n) (n) y1 y2 · · · yn y1 y2 ··· Substitute for y1n , · · · , ynn from the differential equation, yn .. . (n−2) yn (n) yn . (n) y1 = −[p1 (t)y1n−1 + · · · + pn (t)y1 ] .. . (n) yn = −[p1 (t)ynn−1 + · · · + pn (t)yn ] like (a), row (1) ×pn (t) + · · · + row (n − 1) × p2 (t)+ row (n), then y1 y2 ··· yn .. .. .. .. 0 . . . . = −p1 (t)W W = (n−2) (n−2) (n−2) y1 y2 ··· yn (n−1) (n−1) (n−1) −p1 (t)y1 −p1 (t)y2 R · · · −p1 (t)yn so, W (y1 , · · · , yn )(t) = c exp [− p1 (t)dt]. 26. Show that if y1 is a solution of y 000 + p1 (t)y 00 + p2 (t)y 0 + p3 (t)y = 0, then the substitution y = y1 (t)v(t) leads to the following second order equation for v 0 : y1 v 000 + (3y10 + p1 y1 )v 00 + (3y100 + 2p1 y10 + p2 y1 )v 0 = 0. Proof: By direct computation and use the fact that y1000 + p1 (t)y100 + p2 (t)y10 + p3 (t)y1 = 0, it is easy to obtain the result. Section 4.2 In each of the problem express the given complex number in the form R(cos θ + i sin θ) = Reiθ . 14 1. 2 + 2i 3. −4 √ 5. − 3 − i √ Answer: 1.The magnitude of 2 + 2i is 2 2 and the polar angle is π/4. Hence √ 2 + 2i = 2 2ei(π/4+2kπ) . k∈Z 3.The magnitude of −4 is 4 and the polar angle is π. Hence −4 = 4ei(π+2kπ) k∈Z √ 5.The magnitude of − 3 − i is 2 and the polar angle is 67 π. Hence √ 7 − 3 − i = 2e( 6 π+2kπ)i k∈Z In each of the problem follow the procedure illustrated in Example 4 to determine the indicated roots of the given complex number. 8. (1 + i)1/2 10. [2(cos 2π/3 + i sin 2π/3)]1/2 Answer: 8. In polar form 1 + i = √ 2ei(π/4+2mπ) , where m is any integer. 1 Thus (1+i) 2 = 21/4 ei(π/8+mπ) . Setting m=0,1 successively, we obtain the roots 21/4 eiπ/8 , 21/4 ei7π/8 . 10. In polar form 2(cos 2π/3 + i sin 2π/3) = 2ei(2π/3+2mπ) , where m is any integer. √ Thus [2(cos 2π/3+i sin 2π/3)]1/2 = 2ei(π/3+mπ) . Setting m=0,1 successively, we obtain the roots √ √ √ √ ( 3 + i)/ 2, −( 3 + i)/ 2. In each of the problem find the general solution of the given differential equation. 11. y 000 − 3y 00 + 4y = 0 13. 2y 000 − y 00 − 2y 0 + y = 0 15. y (6) + y = 0 24. y 000 + 5y 00 + 6y 0 + 2y = 0 15 Answer: 11. The characteristic equation is r3 − 3r2 + 4 = (r − 2)2 (r + 1) = 0 The roots are r1 = r2 = 2 and r3 = −1. Thus the general solution is y(t) = (c1 + c2 t)e2t + c3 e−t 13. The characteristic equation is 2r3 − r2 − 2r + 1 = (r − 1)(r + 1)(2r − 1) The roots are r1 = 1, r2 = −1, and r3 = 21 . Thus the general solution is 1 y(t) = c1 et + c2 e−t + c3 e 2 t 15. The characteristic equation is r6 + 1 = 0 √ 3 2 The roots are r1 = + 12 i, r2 = √ 3 2 − 12 i, r3 = i, r4 = −i, r5 = − √ 3 2 + 12 i, and r6 = − √ 3 2 − 12 i. Thus the general solution is √ y(t) = e 3t 2 (c1 cos √ 3t t t t t + c2 sin ) + c3 cos t + c4 sin t + e− 2 (c5 cos + c6 sin ) 2 2 2 2 24. The characteristic equation is r3 + 5r2 + 6r + 2 = (r + 1)(r2 + 4r + 2) = 0 √ √ The roots are r1 = −1, r2 = −2 + 2, and r3 = −2 − 2. Thus the general solution is √ y(t) = c1 e−t + c2 e(−2+ 2)t √ + c3 e(−2− 2)t 37. Show that the general solution of y 4 − y = 0can be written as y = c1 cos t + c2 sin t + c3 cosh t + c4 sinh t. 0 00 000 Determine the solution satisfying the initial conditions y(0) = 0, y (0) = 0, y (0) = 1, y (0) = 1. Why is it convenient to use the solutions cosh t and sinh t rather than et and e−t ? 16 Answer: The characteristic equation is r4 − 1 = 0 the roots are r1 = i, r2 = −i, r3 = 1, r4 = −1. Since sinh t + cosh t = et and cosh t − sinh t = e−t , the general solution is y(t) = c1 cos t + c2 sin t + c3 cosh t + c4 sinh t From the initial data, we have c1 + c3 = 0 c2 + c4 = 0 −c1 + c3 = 1 −c2 + c4 = 1 hence c1 = c2 = − 21 , c3 = c4 = 12 . Then 1 1 y(t) = (cosh t − cos t) + (sinh t − sin t) 2 2 0 0 0 We know, cosh t = sinh t, sinh t = cosh t, but (e−t ) = −e−t . Hence, using the solutions cosh t 0 00 000 and sinh t, it is convenient to compute the y (t), y (t), y (t) and easy to obtain c1 , c2 , c3 , c4 according the initial conditions. 38. Consider the equation y (4) − y = 0, (a) use Able’s formula to find the Wronskian of a fundamental set of solutions of the given equation. (b) Determine the Wronskian of the solutions et , e−t , cos t and sin t. (c) Determine the Wronskian of the solutions cosh t, sinh t, cos t and sin t. Answer: (a). Since P1 (t) = 0, =⇒ W = C, where C is a constant. (b). W (et , e−t , cos t, sin t) = −8. (c). W (cosh t, sinh t, cos t, sin t) = 4. 17 40. In this problem we outline one way to show that if r1 , ..., rn are all real and different, then er1 t , ..., ern t are linearly independent on −∞ < t < ∞. To do this, we consider the relation c1 er1 t + ... + cn ern t = 0, −∞ < t < ∞ (i) and show all the constants are zero. (a) Multiply Eq.(i) by er1 t and differentiate with respect to t, thereby obtaining c2 (r2 − r1 )e(r2 −r1 )t + ... + cn (rn − r1 )e(rn −r1 )t = 0 (b) Multiply the result of part(a) by e−(r2 −r1 )t and differentiate with respect to t to obtain c3 (r3 − r2 )(r3 − r1 )e(r3 −r2 )t + ... + cn (rn − r2 )(rn − r1 )e(rn −r2 )t = 0 (c) Continue the procedure from parts (a) and (b), eventually obtaining cn (rn − rn−1 ) · · · (rn − r1 )e(rn −rn−1 )t = 0. Hence cn = 0, and therefore c1 er1 t + ... + cn−1 ern−1 t = 0 (d) Repeat the preceding argument to show that cn1 = 0. In a similar way it follows that cn−2 = · · · = c1 = 0. Thus the functions er1 t , ..., ern t are linearly independent. Answer: Follow the procedure, carrying out direct computations, we can show the functions er1 t , ..., ern t are linearly independent. Section 4.3 Determine the general solution of the given differential equation. 1.y 000 − y 00 − y 0 + y = 4e−t + 3 3.y 000 + y 00 + y 0 + y = 2e−t + 4t 4.y 000 − y 0 = 2 sin t 6.y (4) + 2y 00 + y = 4 + cos 2t Answer: 1.The characteristic equation of homogeneous equation is r3 − r2 − r + 1 = 0, 18 the roots are r1 = 1, r2 = 1, r3 = −1. So the general solution of homogeneous equation is y(t) = c1 et + c2 e−t + c3 tet . Let the particular solution is Y (t) = Ate−t + B, by computation, we have A = 1, B = 3. The general solution is y = c1 et + c2 e−t + c3 tet + te−t + 3. Answer: 3.The characteristic equation of homogeneous equation is r3 + r2 + r + 1 = 0, the roots are r1 = −1, r2 = i, r3 = −i. So the general solution of homogeneous equation is y(t) = c1 e−t + c2 cos t + c3 sin t. Let the particular solution is Y (t) = At + B + Ce−t t, by computation, we have A = 4, B = −4, C = 1. The general solution is y = c1 e−t + c2 cos t + c3 sin t + 4(t − 1) + te−t . Answer: 4.The characteristic equation of homogeneous equation is r3 − r = 0, the roots are r1 = 0, r2 = 1, r3 = −1. So the general solution of homogeneous equation is y(t) = c1 + c2 et + c3 e−t . Let the particular solution is Y (t) = A sin t + B cos t, by computation, we have A = 0, B = 1. The general solution is y = c1 + c2 et + c3 e−t + cos t. Answer: 6.The characteristic equation of homogeneous equation is r4 + 2r2 + 1 = 0, 19 the roots are r1 = i, r2 = −i, r3 = i, r4 = −i. So the general solution of homogeneous equation is y(t) = c1 cos t + c2 sin t + c3 t cos t + c4 t sin t. Let the particular solution is Y (t) = A cos 2t + B sin 2t + C, by computation, we have A = 91 , B = 0, C = 4. The general solution is y = c1 cos t + c2 sin t + c3 t cos t + c4 t sin t + 1 cos 2t + 4. 9 In each of problem determine a suitable form for Y (t) if the method of undetermined coefficients is to be used. Do not evaluate the constants. 13. y 000 − 2y 00 + y 0 = 3t3 + 2et Answer: The characteristic equation of homogeneous equation is r3 − 2r2 + r = 0 the roots are r1 = 0, r2 = r3 = 1. So the general solution of homogeneous equation is Y (t) = c1 + c2 et + c3 tet . Since g = t3 + 2et , we can assume a particular solution is Y = t(c1 t3 + c2 t2 + c3 t + c4 ) + c5 t2 et 18. y (4) + 2y 000 + 2y 00 = 3et + 2te−t + e−t sin t Answer: The characteristic equation of homogeneous equation is r4 + 2r3 + 2r2 = 0, the roots are r1 = r2 = 0, r3 = −1 + i, r4 = −1 − i. So the general solution of homogeneous equation is y(t) = c1 + c2 t + c3 e−t cos t + c4 e−t sin t. 20 Hence we can assume the particular solution is Y (t) = Aet + (B0 t + B1 )e−t + te−t (C cos t + D sin t). Section 4.4 In each of problem use the method of variation of parameters to determine the general solution of the given differential equation. 2. y 000 − y 0 = 4t 5. y 000 − y 00 + y 0 − y = 2e−t sin t The characteristic equation of homogeneous equation is r3 − r = 0 the roots are r1 = −1, r2 = 0, r3 = 1. So the general solution of homogeneous equation is yc (t) = c1 e−t + c2 + c3 et . By method of variation of parameters, a particular solution is Y (t) = 3 X m=1 −t Zt ym (t) g(s)Wm (s) ds W (s) t Where y1 = 1, y2 = e , y3 = e . By direct computation, 1 e−t et −t t e = −2 W1 = W = 0 −e 0 e−t et 1 0 et 1 W2 = 0 0 et = −et W3 = 0 0 1 et 0 0 e−t et 0 −e−t et = 2 1 e−t et e−t 0 −e−t 0 = −e−t e−t 1 hence Zt Zt 1 t 1 −t s e sds + e e−s sds Y (t) = − sds + e 2 2 1 1 1 = − t2 + (t − 1) − (t + 1) = −2t2 + 2 2 2 2 Zt 21 Then the general solution is y(t) = c1 + c2 et− + c3 et − 2t2 Answer: 5.The characteristic equation of homogeneous equation is r3 − r2 + r − 1 = 0 the roots are r1 = 1, r2 = i, r3 = −i. So the general solution of homogeneous equation is yc (t) = c1 et + c2 cos t + c3 sin t. By method of variation of parameters, a particular solution is Zt 3 X g(s)Wm (s) ds Y (t) = ym (t) W (s) m=1 Where y1 = et , y2 = cos t, y3 = sin t. By direct computation, 0 cos t 1 cos t sin t W = et 1 − sin t cos t = 2et W1 = 0 − sin t 1 − cos t 1 − cos t − sin t 1 cos t 1 0 sin t t t t W2 = e 1 0 cos t = −e (cos t − sin t) W3 = e 1 − sin t 1 − cos t 1 1 − sin t hence 2 Y (t) = − e−t cos t 5 Then the general solution is 2 y(t) = c1 et + c2 cos t + c3 sin t − e−t cos t 5 sin t cos t = 1 − sin t 0 0 = −et (sin t + cos t) 1 8. Find the general solution of the given differential equation. Leave your answer in terms of one or more integrals. y 000 − y 0 = csc t. 0 < t < π. Answer: . The characteristic equation of homogeneous equation is r3 − r = 0 22 the roots are r1 = 0, r2 = 1, r3 = −1. So the general solution of homogeneous equation is yc (t) = c1 + c2 et + c3 e−t . By method of variation of parameters, a particular solution is Y (t) = 3 X Zt ym (t) m=1 −t t Where y1 = 1, y2 = e , y3 = e 1 W = 0 0 1 W2 = 0 0 g(s)Wm (s) ds W (s) . By direct computation, 0 et e−t t −t e −e = 2 W1 = 0 1 et e−t 0 e−t −t −t 0 −e = −te W3 = 1 e−t et e−t et −e−t et e−t = −2 1 e−t 0 0 −e−t 0 = et 0 e−t 1 hence 1 Y (t) = − ln t + ln(cos t + 1) + et 2 Z t t0 1 e−s ds + e−t sin s 2 Z t t0 es ds. sin s Then the general solution is t y(t) = c1 + c2 e + c3 e −t 1 − ln t + ln(cos t + 1) + et 2 Z t t0 e−s 1 ds + e−t sin s 2 Z t t0 es ds. sin s 13. Given that x, x2 , and 1/x are solutions of the homogeneous equation corresponding to x3 y 000 + x2 y 00 − 2xy 0 + 2y = 2x4 , x>0 determine a particular solution. Answer: The original ODE can be written as 1 2 2 y 000 + y 00 − 2 y 0 + 3 y = 2x x x x By method of variation of parameters, a particular solution is Y (t) = 3 X m=1 Zt ym (t) g(s)Wm (s) ds W (s) 23 Where y1 = x, y2 = x2 , y3 = x1 . By direct computation, 1 1 x x2 0 x2 x x 6 1 1 W = 1 2x − x2 = W1 = 0 2x − x2 = −3 2 2 0 2 x 1 2 x3 x3 1 x x2 0 x 0 x 2 W3 = 1 2x 0 = x2 W2 = 1 0 − x12 = 2 x 0 2 1 0 1 x3 hence Zx Zx Zx 1 1 1 x3 1 Y (x) = x 2s(− s)ds + x2 2s( )ds + 2s( )ds = x4 2 3 x 6 15 Then a particular solution is 1 Y (t) = x4 . 15 14. Find a formula involving integrals for a particular solution of the differential equation 000 00 0 y − y + y − y = g(t). Answer: The characteristic equation of homogeneous equation is r3 − r2 + r − 1 = 0 the roots are r1 = 1, r2,3 = ±i. So the general solution of homogeneous equation is yc (t) = c1 et + c2 cos t + c3 sin t By method of variation of parameters, a particular solution is Z t 3 X g(s)Wm (s) Y (t) = ym (t) ds W (s) m=1 Where y1 = et , y2 = cos t, y3 = sin t. By direct computation, et cos t 0 cos t sin t sin t t t W = e − sin t cos t = 2e W1 = 0 − sin t cos t et − cos t − sin t 1 − cos t − sin t et 0 sin t W2 = et 0 cos t et 1 − sin t =1 et cos t 0 = −et cos t + et sin t W3 = et − sin t 0 = −et cos t − et sin t t e − cos t 1 24 Hence 1 Y (t) = 2 Z t t−s e Z t Z −(cos s − sin s)g(s)ds + sin t g(s)ds + cos t t −(sin s + cos s)g(s)ds Then a particular solution is 1 Y (t) = 2 Z t [et−s − sin (t − s) − cos (t − s)]g(s)ds 16. Find a formula involving integrals for a particular solutions of the differential equation. y 000 − 3y 00 + 3y 0 − y = g(t), if g(t) = t−2 et , determine Y (t). Answer: The characteristic equation of homogeneous equation is r3 − 3r2 + 3r − 1 = 0 the roots are r1 = r2,3 = 1. So the general solution of homogeneous equation is yc (t) = c1 et + c2 tet + c3 t2 et . By method of variation of parameters, a particular solution is Z t 3 X g(s)Wm (s) Y (t) = ym (t) ds W (s) m=1 Where y1 = et , y2 = tet , y3 = t2 et . By direct computation, t 2 t 0 et te t e tet t2 et t 3t t 2 t 2 t = 2e W1 = 0 (t + 1)e (t + 2t)e (t + 2t)et W = e (t + 1)e 1 (t + 2)et (t2 + 4t + 2)et et (t + 2)et (t2 + 4t + 2)et et 0 et t2 et tet 0 t (t2 + 2t)et = −2e2t t W3 = et (t + 1)et 0 = e2t W2 = e 0 et 1 (t2 + 4t + 2)et et (t + 2)et 1 Hence 1 Y (t) = 2 Z t et−s (t − s)2 g(s)ds. t0 If g(t) = t−2 et , Then a particular solution is Y (t) = −tet ln |t|. = t2 et 25