ALLEN JEE-MAIN SAMPLE PAPER # 01 TARGET - 2014
Transcription
ALLEN JEE-MAIN SAMPLE PAPER # 01 TARGET - 2014
ALLEN TM CAREER INSTITUTE Path to Success KOTA (RAJASTHAN) ALLEN JEE-MAIN SAMPLE PAPER # 01 TARGET - 2014 egRoiw . kZ lw p uk,¡ IMPORTANT INSTRUCTIONS Do not open this Test Booklet until you are asked to do so. bl ijh{kk iq fLrdk dks rc rd u [kksysa tc rd dgk u tk,A ijh{kk iqfLrdk ds bl i`"B ij vko';d fooj.k uhys@dkys ckWy ikbaV isu ls rRdky HkjsaA isfUly dk iz;ksx fcYdqy oftZr gaSA ijh{kkFkhZ viuk QkeZ ua- (fu/kkZfjr txg ds vfrfjä) ijh{kk iqfLrdk @ mÙkj i= ij dgha vkSj u fy[ksaA ijh{kk dh vof/k 3 ?ka V s gSA bl ijh{kk iqfLrdk esa 90 iz'u gaSA vf/kdre vad 360 gSaA 1. Immediately fill in the form number on this page of the Test Booklet with Blue/Black Ball Point Pen. Use of pencil is strictly prohibited. 1. 2. The candidates should not write their Form Number anywhere else (except in the specified space) on the Test Booklet/Answer Sheet. 2. 3. The test is of 3 hours duration. 3. 4. The Test Booklet consists of 90 questions. The maximum marks are 360. 4. 5. There are three parts in the question paper A,B,C consisting of Mathematics, Physics and Chemistry having 30 questions in each part of equal weightage. Each question is allotted 4 (four) marks for correct response. 5. bl ijh{kk iqfLrdk es a rhu Hkkx A, B, C gSa] ftlds izR;sd Hkkx esa xf.kr] HkkSfrd foKku ,oa jlk;u foKku ds 30 iz'u gaS vkSj lHkh iz'uksa ds vad leku gASa izR;sd iz'u ds lgh mÙkj ds fy, 4 (pkj)vad fuèkkZfjr fd;s x;s gAaS 6. One Fourth mark will be deducted for indicated incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the Answer Sheet. 6. 7. Use Blue/Black Ball Point Pen only for writting particulars/marking responses on Side–1 and Side–2 of the Answer Sheet. Use of pencil is strictly prohibited. 7. 8. No candidate is allowed to carry any textual material, printed or written, 8. izR;sd xyr mÙkj ds fy, ml iz'u ds dqy vad dk ,d pkSF kkbZ vad dkVk tk;sxkA mÙkj iqfLrdk esa dksbZ Hkh mÙkj ugha Hkjus ij dqy izkIrkad esa ls ½.kkRed vadu ugha gksxkA mÙkj i= ds i` " B&1 ,oa i` " B&2 ij okafNr fooj.k ,oa mÙkj vafdr djus gsrq dsoy uhys@ dkys ckWy ikba V isu dk gh iz;ksx djsaA isf Uly dk iz ;ksx fcYdqy oftZr gSA ijh{kkFkhZ }kjk ijh{kk d{k @ gkWy esa ifjp; i= ds vykok fdlh Hkh izdkj dh ikB~; lkexzh eqfær ;k gLrfyf[kr dkxt dh ifpZ;ksa] istj] eksckby Qksu ;k fdlh Hkh izdkj ds bysDVªkfud midj.kksa ;k fdlh vU; izdkj dh lkexzh dks ys tkus ;k mi;ksx djus dh vuqefr ugha gSaA bits of papers, pager, mobile phone any electronic device etc, except the Identity Card inside the examination hall/room. 9. jQ dk;Z ijh{kk iqfLrdk esa dsoy fu/kkZfjr txg ij gh dhft;sA 10. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator on duty in the Room/Hall. However, the candidate are allowed to take away this Test Booklet with them. 10. 11. Do not fold or make any stray marks on the Answer Sheet. 11. ijh{kk lekIr gksus ij] ijh{kkFkhZ d{k@gkWy NksM+us ls iwoZ mÙkj i= d{k fujh{kd dks vo'; lkiSa nsAa ijh{kkFkhZ vius lkFk bl ijh{kk iq fLrdk dks ys tk ldrs gaS A mÙkj i= dks u eksMa+s ,oa u gh ml ij vU; fu'kku yxk,saA 9. Rough work is to be done on the space provided for this purpose in the Test Booklet only. Corporate Office ALLEN Career Institute, “SANKALP”, CP-6, Indra Vihar, Kota (Rajasthan)-324005, Trin : +91 - 744 - 2436001 Fax : +91-744-2435003, E-Mail: [email protected] Website: www.allen.ac.in 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 HAVE CONTROL ¾® HAVE PATIENCE ¾® HAVE CONFIDENCE Þ 100% SUCCESS BEWARE OF NEGATIVE MARKING PART A - MATHEMATICS 2. If ƒ(x) = tan–1x + ln(1 + x2) – x, then ƒ(x) is 1. increasing in the interval (1) (0, ¥) (2) (–1, 1) (3) (0, 2) (4) (–¥, 0) È (2, ¥) If " a Î R one root of equation 2. 2 2 2 x + 2ax + b – a – 6 = 0 is less than 1 and one root is greater than 1, then range of 'b' is(1) (–¥,–2) (2) (–2,2) ( (3) - 5, 5 3. ) (1) (0, ¥) (2) (–1, 1) (3) (0, 2) (4) (–¥, 0) È (2, ¥) 2 ;fn " a Î R lehdj.k x + 2ax + b2 – a2 – 6= 0 dk ,d ewy 1 ls de rFkk ,d ewy 1 ls cM+k gks] rks 'b' dk ifjlj gksxk& (1) (–¥,–2) (2) (–2,2) ( (3) - 5, 5 (4) (2,¥) x2 Value of lim is x ® 0 sin(2 p sec x) (1) 4. ;fn ƒ(x) = tan–1x + ln(1 + x2) – x gks] rks ƒ(x) fuEu vUrjky esa o/kZeku gksxk& A LL EN 1. 1 2p (2) 1 p (3) 2 p 3. (4) 4 p x2 dk eku gksxk& x ® 0 sin(2 p sec x) 1 2p Coefficient of x 5 in the expansion of 10 5. 9 1ö æ 1ö æ ç x + ÷ ç x - ÷ is xø è xø è (1) 9C3 (2) 9C4 (3) – 9C3 (4) –9C4 SPACE FOR ROUGH WORK / ALLEN (2) 1 p (3) 2 p (4) 4 p oØ y = (x – 2)2 rFkk js[kkvksa y = x o y = 0 }kjk ifjc¼ {ks=Qy gksxk& (1) 5 6 10 5. (4) (2,¥) lim (1) Area bounded by curve y = (x – 2)2 and lines 4. y = x & y = 0, is 5 6 2 (2) (3) (4) 1 (1) 6 5 3 ) (2) 6 5 (3) 2 3 (4) 1 9 1ö æ 1ö æ 5 ç x + ÷ ç x - ÷ ds izlkj esa x dk xq.kkad gksxk xø è xø è (1) 9C3 (2) 9C4 (3) – 9C3 (4) –9C4 jQ dk;Z ds fy;s txg H-1/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 7. 8. 9. 2 2 2 Sum of series 2 + 2.3 + 3.4 + ...... + 9.10 is (1) 2440 (2) 2600 (3) 2640 (4) 2500 Let ƒ : R ® R be a differentiable function such that ƒ(1) = 3ƒ'(1) = 2. Let g(x) = ƒ(–11x + 3ƒ2(x)), then g'(1) is equal to (1) 9 (2) 11 (3) –6 (4) –2 Equation of line through origin in the plane P : x + 2y = 2z which intersects the perpendicular drawn from points (5, 1, –1) to the plane P, is (1) x = –y = z (2) x = –4y = 4z (3) 4x = –y = 4z (4) 4x = – 4y = z There are 3 bags A, B & C. Bag A contains 1 Red & 2 Green balls, bag B contains 2 Red & 1 Green balls and bag C contains only one green ball. One ball is drawn from bag A & put into bag B then one ball is drawn from B & put into bag C & finally one ball is drawn from bag C & put into bag A. When this operation is completed, probability that bag A contains 2 Red & 1 Green balls, is - 6. 7. 2 2 2 Js.kh 2 + 2.3 + 3.4 + .. + 9.102 dk ;ksxQy gksxk& (1) 2440 (2) 2600 (3) 2640 (4) 2500 ekuk ƒ : R ® R vodyuh; Qyu bl izdkj gS fd ƒ(1) = 3ƒ'(1) = 2 gAS ekuk g(x) = ƒ(–11x + 3ƒ2(x)) gks] rks g'(1) cjkcj gksxk& (1) 9 8. (2) 11 (3) –6 (4) –2 lery P : x + 2y = 2z esa ewyfcUnq ls xqtjus okyh js[kk dk lehdj.k] tks fcUnq (5, 1, –1) ls lery P A LL EN 6. 2 (1) 1 4 (2) 1 2 (3) 1 3 (4) ij [khpsa x;s yEc dks izfrPNsn djrh g]S gksxh& (1) x = –y = z (2) x = –4y = 4z (3) 4x = –y = 4z (4) 4x = – 4y = z 9. 1 6 SPACE FOR ROUGH WORK / H-2/31 3 FkSys A, B rFkk C gAS Fky S s A esa 1 yky ,oa 2 gjh xsnsa] Fky S s B esa 2 yky ,oa 1 gjh xsan rFkk Fky S s C esa dsoy 1 gjh xsan gSA FkSys A ls 1 xsan fudky dj mldks Fky S s B esa j[krs g]S mlh le; Fky S s B ls 1 xsan fudky dj Fky S s C esa j[krs gS rFkk vUr esa Fky S s C ls 1 xsan fudky dj Fky S s A esa j[krs gAS ;g izfØ;k iw.k± gksus ij izkf;drk rkfd Fky S s A esa 2 yky rFkk 1 gjh xsan gks] gksxh - (1) 1 4 (2) 1 2 (3) 1 3 (4) 1 6 jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 10. If mean deviation of sample 1, 2, 3, x about 3 is 1 (where x > 3), then possible value of variance is 1 2 (2) 1 4 (1) 1 2 (2) 1 4 (3) 5 4 (4) 5 2 (3) 5 4 (4) 5 2 2p e |sin x| dx is equal to e|sin x| + e|cosx| 11. 0 (1) 0 (2) 2p (3) p (4) 1 r r If a and b are two diagonals of a quadrilateral r r r r rr such that | a - b | = a.b , | a | = 1 , | b | = 2 , 12. then area of quadrilateral is (1) 13. ò e |sin x| dx cjkcj gksxk& e|sin x| + e|cosx| A LL EN ò 0 12. ;fn 3 ds lkis{k izfrn'kZ 1, 2, 3, x (tgk¡ x > 3) dk ek/; fopyu 1 gks ] rks iz l j.k dk la Hko eku gksxk& (1) 2p 11. 10. 1 2 (2) 3 (3) 1 dk {ks=Qy gksxk- (4) 3 2 If a curve passing through (1,1) satisfies the 13. differential equation x2dy = y2dx + xyd(xy), then ln|xy| is equal to (1) 1 1 - 2 2 x y 1 1 (3) y x (2) 1 1 x y 1 1 (4) 2 - 2 y x SPACE FOR ROUGH WORK / ALLEN (1) 0 (2) 2p (3) p (4) 1 r r ;fn a rFkk b prqHkqZt ds nks fod.kZ bl izdkj gS fd r r r rr r | a - b | = a.b , | a | = 1 , | b | = 2 gks] rks prqHkqZt (1) 1 2 (2) 3 (3) 1 (4) 3 2 ;fn fcUnq (1,1) ls xqtjus okyk oØ vody lehdj.k x2dy = y2dx + xyd(xy) dks larq"V djrk gS] rks ln|xy| cjkcj gksxk& (1) 1 1 - 2 2 x y (2) 1 1 x y (3) 1 1 y x (4) 1 1 y2 x2 jQ dk;Z ds fy;s txg H-3/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 14. Equation of a tangent to the curve 16xy = 9 14. passing through a point equidistent from coordinate axes on the curve y + x3 = 0 in second quadrant, is (1) x + 4y = 3 (2) 2x + y = –1 (3) 2x + 3y = 1 ìe ax x£0 ƒ(x) = Let . If x = 0 is point í î b tan x + c x > 0 of local maxima, then - 15. (4) x + y = 0 ìe ax x£0 ƒ(x) = ekuk gSA ;fn x = 0 í î b tan x + c x > 0 (2) a > 0, b ¹ 0, c £ 1 (3) a < 0, b ¹ 0, c ³ 1 (3) a < 0, b ¹ 0, c ³ 1 (4) a > 0, b ¹ 0, c ³ 1 (4) a > 0, b ¹ 0, c ³ 1 If ƒn(q) = cosnq + sin2nq " n Î N, then number of solution of ƒ1(q) = ƒ2(q) in q Î [0, 2p], is (1) 1 18. (3) 2x + 3y = 1 (1) a < 0, b ¹ 0, c £ 1 (2) a > 0, b ¹ 0, c £ 1 17. (2) 2x + y = –1 LFkkuh; mfPp"B fcUnq gks] rks - (1) a < 0, b ¹ 0, c £ 1 16. (1) x + 4y = 3 A LL EN 15. (4) x + y = 0 oØ 16xy = 9 dh Li'kZ js[kk dk lehdj.k tks f}rh; prqFkk±'k esa oØ y + x3 = 0 ij fLFkr fcUnq tks funsZ'khZ v{kksa ls leku nwjh ij fLFkr g]S ls xqtjrh g]S gksxh& (2) 2 (3) 3 16. (4) 4 ;fn ƒn(q) = cosnq + sin2nq " n Î N gks] rks vUrjky [0, 2p] esa ƒ1(q) = ƒ2(q) ds gyksa dh la[;k gksxh- (1) 1 (2) 2 (3) 3 (4) 4 If normal at point (h, k) on parabola y2 = 8x 17. meets parabola again at point (18, 12), then sum of all possible value of h, is - ;fn ijoy; y2 = 8x ds fcUnq (h,k) ij vfHkyEc ijoy; dks iqu% fcUnq (18, 12) ij feyrk gS] rks h ds lHkh laHko ekuksa dk ;ksxQy gksxk& (1) 8 (1) 8 (2) 12 (3) 10 (4) 6 (2) 12 (3) 10 (4) 6 If tangents drawn from point (1, 2) to ellipse 18. x2 + 2y2 = 1 cuts x-axis at points A(x1, 0) & B(x2, 0), then H.M. of x1 & x2 is - ;fn fcUnq (1, 2) ls nh?kZo`Ùk x2 + 2y2 = 1 ij [khaph xbZ Li'kZ js[kk;sa x- v{k dks fcUnq A(x1, 0) rFkk B(x2, 0) ij dkVrh gS] rks x1 rFkk x2 dk gjkRed ek/; gksxk& (1) –9 (1) –9 (2) 9 (3) –7 (4) 7 SPACE FOR ROUGH WORK / H-4/31 (2) 9 (3) –7 (4) 7 jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 20. 21. Equation of directrices of hyperbola whose foci 19. are (6, 8) & (10, 8) and eccentricity 2, are 7 9 (1) x = 9, x = 7 (2) x = - , x = 2 2 17 15 (3) x = , x = (4) x = ± 16 2 2 Number of integral values of m for which 20. y-coordinate of point of intersection of lines y = mx + 1 & x + y = 2 is also an integer, is (1) 0 (2) 1 (3) 2 (4) 3 Let PA & PB are tangents to circle 21. S1 º x2 + y2 – 2x – 2y + 1 = 0. If circumcircle of DPAB is circle S2 and circle S1 bisects circumference of S2, then diameter of circle S2 is (1) 1 22. 23. ml vfrijoy ; dh fu;rk dk lehdj.k] ftldh ukfHk;k¡ (6, 8) ,oa (10, 8) rFkk mRdsUnzrk 2 g]S gksxh& (1) x = 9, x = 7 (3) x = 17 15 ,x= 2 2 (2) (3) 2 (4) 3 2 Number of different words that can be formed 22. from all letters of word APPLICATION such that two vowels never come together is (1) (45)7! (2) 8! (3) 6!7! (4) (32)6! 1 Height of tower AB is of tower CD and 23. 4 distance between their feet is 50 3 m. If angle 7 9 (2) x = - , x = 2 2 (4) x = ± 16 m ds iw.kk±d ekuksa dh la [;k ftlds fy;s js[kkvksa y = mx + 1 rFkk x + y = 2 ds izfrPNsn fcUnq dk y- funsZ'kkad Hkh ,d iw.kk±d g]S gksxh& (1) 0 (2) 1 (3) 2 (4) 3 2 2 ekuk PA rFkk PB o`Ùk S1 º x + y –2x–2y+1 = 0 ds Li'kZ js[kk;sa gSA ;fn f=Hkqt PAB dk ifjo`Ùk] o`Ùk S2 gks rFkk o`Ùk S1, S2 dh ifjf/k dks lef}Hkkftr djrk gks] rks o`Ùk S2 dk O;kl gksxk& A LL EN 19. (1) 1 (2) 2 (3) 2 (4) 3 'kCn APPLICATION ds lHkh v{kjksa ls fufeZr fd;s tk ldus okys fHkUu 'kCnksa dh la[;k rkfd nks Loj dHkh Hkh lkFk uk gks] gksxh& (1) (45)7! (2) 8! (3) 6!7! (4) (32)6! ,d ehukj AB dh Å¡pkbZ ehukj CD dh Å¡pkbZ dh of elevation of top of tower CD is double of angle of depreciation of its foot both from top of tower AB, then height of tower CD is - 1 gS rFkk buds iknksa ds e/; nwjh 50 3 m gAS ;fn 4 ehukj AB ds 'kh"kZ ls ehukj CD ds 'kh"kZ dk mUu;u dks.k ogh ls ehukj CD ds ikn ds voueu dks.k dk nksxquk gks]rks ehukj CD dh Å¡pkbZ gksxh& (1) 50 m (1) 50 m (2) 100 m (3) 150 m (4) 200 m SPACE FOR ROUGH WORK / ALLEN (2) 100 m (3) 150 m (4) 200 m jQ dk;Z ds fy;s txg H-5/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 24. Domain of the function 24. ƒ(x) = sin -1 (cos(tan -1 x)) + cos-1 (sin(cot -1 x)) is (1) R (2) [–1, 1] ƒ(x) = sin -1 (cos(tan -1 x)) + cos-1 (sin(cot -1 x)) dk izkar gksxk& (4) ( -¥, -1] È [1, ¥) (3) [0, 1] (2) [–1, 1] (3) [0, 1] (4) ( -¥, -1] È [1, ¥) é 1 + a 2 + a 4 1 + ab + a 2 b 2 1 + ac + a 2 c 2 ù ê ú 25. ;fn A = ê1 + ab + a 2 b2 1 + b2 + b 4 1 + bc + b2 c 2 ú ê1 + ac + a 2 c 2 1 + bc + b 2 c 2 1 + c 2 + c 4 ú ë û rFkk det(A) = det(4I), tgk¡ I, 3 × 3 dk rRled vkO;wg g]S rks (a – b)3 + (b – c)3 + (c – a)3 dk eku gks ldrk g-S and det(A) = det(4I), where I is 3 × 3 identity matrix, then (a – b)3 + (b – c)3 + (c – a)3 can be equal to - 26. (1) R A LL EN é 1 + a2 + a4 1 + ab + a2 b2 1 + ac + a2c2 ù ê ú 25. If A = ê1 + ab + a2 b2 1 + b2 + b4 1 + bc + b2c2 ú ê1 + ac + a2c2 1 + bc + b2c2 1 + c2 + c4 ú ë û Qyu (1) –24 (2) 6 (3) –6 (4) 12 26. If system of equation (1) –24 (2) 6 (3) –6 (4) 12 ;fn lehdj.k fudk; (tanq)x + (cotq)y + (8cos2q)z = 0 (tanq)x + (cotq)y + (8cos2q)z = 0 (cotq)x + (8cos2q)y + (tanq)z = 0 (cotq)x + (8cos2q)y + (tanq)z = 0 (8cos2q)x + (tanq)y + (cotq)z = 0 (8cos2q)x + (tanq)y + (cotq)z = 0 have non trivial solution, then sin4q is equal to - ds vfujFkZd gy gks] rks sin4q dk eku gksxk& 3 (1) 2 (3) - 1 2 (1) - (2) –1 1 (4) 2 SPACE FOR ROUGH WORK / H-6/31 (3) - 3 2 1 2 (2) –1 (4) 1 2 jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 27. Dual of negation of the statement "He is 27. gS- laborious and intelligent" is(1) He is not laborious and not intelligent (1) oks uk rks ifjJeh rFkk uk gh cqf}eku gAS (2) He is laborious or not intelligent (2) oks ifjJeh gS ;k cqf}eku ugha gAS (3) He is not laborious or not intelligent (3) og ifjJeh ugha gS ;k cqf}eku ugha gSA (4) He is not laborious and not intelligent (4) og ifjJeh ugh gS rFkk cqf}eku ugha gSA r Statement-1 : If aˆ + 2bˆ + 3cˆ = 0 , then 28. r dFku -1 : ;fn aˆ + 2bˆ + 3cˆ = 0 gks] rks | aˆ + bˆ |= 1 A LL EN 28. dFku ^^og ifjJeh rFkk cqf}eku g*S * dk nksgjk izfrokn ˆ = 1. | aˆ + b| gksxkA and rFkk Statement-2 : Sum of two unit vectors is always a unit vector. dFku -2 : nks bdkbZ lfn'kksa dk ;ksxQy lnSo ,d bdkbZ lfn'k gksxkA (1) Statement-1 is True, Statement-2 is True ; (1) Statement-2 is a correct explanation for Statement-1. dFku-I dh lgh O;k[;k gSA (2) (2) Statement-1 is True, Statement-2 is True ; (3) Statement-1 is True, Statement-2 is False. dFku -I lR; g S _ dFku -II lR; g S_ dFku -II dFku-I dh lgh O;k[;k ugha gSA Statement-2 is NOT a correct explanation for Statement-1. dFku -I lR; g S _ dFku -II lR; g S _ dFku -II (3) dFku-I lR; gS] dFku-II vlR; gSA (4) dFku-I vlR; gS] dFku-II lR; gSA (4) Statement-1 is False, Statement-2 is True. SPACE FOR ROUGH WORK / ALLEN jQ dk;Z ds fy;s txg H-7/31 ALLEN JEE-MAIN SAMPLE PAPER # 01 30. Statement-1 : z is a complex number which 29. satisfies |z – 1 – i| = 1. If z1 & z2 are two distinct values of z for which |z – 2| + |z – 2i| is minimum, then |z1 – z2| = 2 and Statement-2 : If z = 2 or z = 2i, then |z – 2| + |z – 2i| is minimum. (1) Statement-1 is True, Statement-2 is True ; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True ; Statement-2 is NOT a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is False. (4) Statement-1 is False, Statement-2 is True. Statement-1 : log103 + log106 < log10(81/4). 30. and Statement-2 : If ƒ(x) = log10x, then ƒ"(x) < 0 " x Î R+ (1) Statement-1 is True, Statement-2 is True ; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True ; Statement-2 is NOT a correct explanation for Statement-1. (3) Statement-1 is True, Statement-2 is False. (4) Statement-1 is False, Statement-2 is True. dFku -1 : z ,d lfEeJ la[;k g]S tks |z – 1 – i| = 1 dks larq"V djrh gAS ;fn z1 rFkk z2, z ds nks fHkUu eku gS ftlds fy;s |z – 2| + |z – 2i| U;w u re g S ] rks |z1 – z2| = 2 gksxkA rFkk dFku -2 : ;fn z = 2 ;k z = 2i gks] rks |z – 2| + |z – 2i| U;wure gksxkA (1) dFku -I lR; g S _ dFku -II lR; g S _ dFku -II dFku-I dh lgh O;k[;k gSA A LL EN 29. 2014 SPACE FOR ROUGH WORK / H-8/31 (2) dFku -I lR; g S _ dFku -II lR; g S_ dFku -II dFku-I dh lgh O;k[;k ugha gSA (3) dFku-I lR; gS] dFku-II vlR; gSA dFku-I vlR; gS] dFku-II lR; gSA dFku -1 : log103 + log106 < log10(81/4). rFkk dFku -2 : ;fn ƒ(x) = log10x gks] rks ƒ"(x) < 0 " x Î R+ gksxkA (4) (1) dFku -I lR; g S _ dFku -II lR; g S _ dFku -II dFku-I dh lgh O;k[;k gSA (2) dFku -I lR; g S _ dFku -II lR; g S_ dFku -II dFku-I dh lgh O;k[;k ugha gSA (3) dFku-I lR; gS] dFku-II vlR; gSA (4) dFku-I vlR; gS] dFku-II lR; gSA jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 PART B - PHYSICS 32. The relative density of a metal may be found 31. by hanging a block of the metal from a spring balance and noting that in air the balance reads (5 ± 0.05) N while in water it reads (4 ± 0.05) N. The relative density would be quoted as: fdlh /kkfRod CykWd dks fLizax rqyk ls yVdkdj /kkrq dk lkisf{kd ?kuRo Kkr fd;k tk ldrk gAS ekuk ok;q esa fLizax rqyk dk ikB~;kad (5 ± 0.05) N o ty esa (4 ± 0.05)N izkIr gksrk gS rks bldk lkisf{kd ?kuRo gksxk %& (1) (5 ± 0.05) (2) 5 ± 11% (1) (5 ± 0.05) (2) 5 ± 11% (3) (5 ± 0.10) (4) 5 ± 6% (3) (5 ± 0.10) (4) 5 ± 6% A LL EN 31. An electromagnetic wave of wavelength l0 32. (in vacuum) passes from P towards Q crossing three different media of refractive index m, 2m and 3m respectively as shown in figure. fP and fQ be the phase of the wave at points P and Q. Find the phase difference fQ – fP. [Take : m=1] P µ (3) p 2 2.25l0 3l0 3.5l0 µ 3µ 2µ (2) p 4 (4) p SPACE FOR ROUGH WORK / ALLEN P Q 2.25l0 (1) 0 fuokZr esa rjaxn/S ;Z l0 okyh ,d fo|qr pqEcdh; rjax fp=kuqlkj Øe'k% m, 2m rFkk 3m viorZukadksa okys rhu fofHkUu ek/;eksa dks ikj djrs gq, fcUnq P ls fcUnq Q dh rjQ xeu djrh gAS fcUnqvksa P rFkk Q ij rjax dh dyk fP rFkk fQ gS] dykUrj fQ – fP Kkr dhft;sA [m=1 ysa] Q 3µ 2µ (1) 0 (3) 3l0 3.5l0 p 2 (2) p 4 (4) p jQ dk;Z ds fy;s txg H-9/31 ALLEN JEE-MAIN SAMPLE PAPER # 01 In a long cylindrical vessel made of perfectly 33. conducting walls, an ideal mono-atomic gas is confined with the help of a light piston, which can slide inside the cylinder without friction. Number of atoms of the gas in the vessel are N. Initially the piston is held against the pressure pi of the gas with the help of two pins. In this state temperature of the gas is T. Atmospheric pressure is po. ,d yEck csyukdkj ik= iw.kZr;k pkyd nhokjksa ls cuk gSA bl ik= esa ,d vkn'kZ ,dijekf.od xl S ,d gYds fiLVu dh lgk;rk ls Hkjh gS rFkk ;g fiLVu csyu ds vUnj fcuk ?k"kZ.k xfr dj ldrk gAS bl ik= esa xl S ds ijek.kqvksa dh la [;k N gAS izkjEHk esa bl fiLVu dks nks fiuksa dh lgk;rk ls xl S ds pi nkc ds fo:¼ jksddj j[kk x;k gAS bl voLFkk esa xl S dk rkieku T gS o ok;qe.Myh; nkc po gAS A LL EN 33. 2014 When the pins are removed and the holes are closed, the gas expands rapidly and finally the piston settles to a position where the force on the piston due to the gas pressure balances the force due to the atmospheric pressure. Which of the following is a correct expression for the work done by the gas during its rapid expansion? (1) Zero fiuksa dks gVkus ij rFkk fNæ dks cUn dj nsus ij] xl S 'kh?kzrk ls izlkfjr gksrh gS vkjS var esa fiLVu ml fLFkfr esa vk tkrk gS tgk¡ xl S ds nkc ds dkj.k fiLVu ij yxus okyk cy] ok;qe.Myh ; nkc ds dkj.k yxus okys cy ds cjkcj gks tkrk gAS xl S ds bl rhoz izlkj ds nkSjku xl S }kjk fd;k x;k dk;Z gksxk %& (1) 'kwU; æ p0 ö (2) NkT ln ç ÷ è p1 ø æ p0 ö (2) NkT ln ç p ÷ è 1ø æ p ö (3) NkT ç 1 - 0 ÷ p1 ø è (4) Information is insufficient to decide æ p ö (3) NkT ç 1 - 0 ÷ p1 ø è (4) vk¡dM+s vi;kZIr gAS SPACE FOR ROUGH WORK / H-10/31 jQ dk;Z ds fy;s txg ALLEN 35. 36. 37. A LL EN 34. 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 The K, L and M energy levels of platinum lie 34. IysfVue ds K, L o M ÅtkZ Lrj Øe'k% 78, 12 o roughly at 78, 12 and 3 keV respectively. The 3 keV ij gksrs gaSA X-fdj.k LiDS Vªe esa Ka o Kb js[kk ratio of wavelength of Ka line to that of Kb dh rjaxn/S ;Z dk vuqikr gksxk %& line in X-ray spectrum is22 3 22 25 22 3 22 25 (1) (2) (3) (4) (1) (2) (3) (4) 3 22 25 22 3 22 25 22 A red star and a green star radiate energy at 35. ,d yky rkjk o ,d gjk rkjk leku nj ls ÅtkZ the same rate which star is bigger in size. fofdfjr djrs gaSA fdl rkjs dk vkdkj cM+k gS %& (1) red (1) yky (2) green (2) gjk (3) both have same size (3) nksuksa dk vkdkj leku gAS (4) Can't say anything (4) dqN ugha dg ldrsA For a prism its refractive index is cot A/2 then 36. ,d fizTe ds fy, viorZukad cot A/2 g]S rks U;wure minimum angle of deviation is :fopyu dks.k dk eku D;k gksxk %& (1) 180 – A (2) 180 – 2A (1) 180 – A (2) 180 – 2A (3) 90 – A (4) A/2 (3) 90 – A (4) A/2 Two identical coaxial rings each of radius R 37. nks ,d tSlh lek{kh; oy;ksa esa ls izR;sd dh f=T;k are separated by a distance of 3R . They are uniformly charged with charges +Q and –Q respectively. The minimum kinetic energy with which a charged particle (charge +q) should be projected from the center of the negatively charged ring along the axis of the rings such that it reaches the center of the positively charged ring is :Qq Qq (1) (2) 4 pe0 R 2pe 0 R (3) Qq 8pe0 R (4) 3Qq 4 pe0 R SPACE FOR ROUGH WORK / ALLEN R gS rFkk ;s ,d&nwljs ls 3R nwjh ij j[kh gqbZ gSaA bUgsa Øe'k% +Q rFkk –Q vkos'kksa }kjk ,d leku :i ls vkosf'kr fd;k tkrk gSA ,d vkosf'kr d.k (vkos'k +q) dks ½.kkosf'kr oy; ds dsUæ ls oy; dh v{k ds vuqfn'k fdl U;wure xfrt ÅtkZ ds lkFk iz{ksfir fd;k tk, rkfd ;g /kukosf'kr oy; ds dsUæ rd igq¡p lds :- (1) Qq 4 pe0 R (2) Qq 2pe 0 R (3) Qq 8pe0 R (4) 3Qq 4 pe0 R jQ dk;Z ds fy;s txg H-11/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 38. Two large parallel planes charged uniformly with surface charge density s and –s are located as shown in the figure. Which one of the following graphs shows the variation of electric field along a line perpendicular to the planes as one moves from A to B ? s A LL EN (4) x x A charged particle enters into a uniform magnetic field with velocity v0 perpendicular 39. 3 R, 2 where R is the radius of the circular path of the particle in the field. The magnitude of change in velocity of the particle when it comes out of the field is :- to it, the length of magnetic field is x = (3) x E (3) x 3v 0 2 (4) v0 SPACE FOR ROUGH WORK / H-12/31 x E (4) v0 2 (2) x E (2) E (1) (2) (1) 2v0 B E E E –s A x 39. s B E (3) fp= esa iznf'kZr nks yEcs lekUrj lery ] i`"Bvkos'k ?kuRo s rFkk –s }kjk ,d leku :i ls vkosf'kr gSaA A ls B dh vksj tkus ij bu leryksa ds yEcor~ js[kk ds vuqfn'k fo|qr {ks= esa ifjorZu dks n'kkZus okyk vkjs[k gksxk :- –s A (1) 38. x ,d vkosf'kr d.k v0 osx ls ,d le:i pqEcdh; {ks= esa blds yEcor~ izo's k djrk gAS pqEcdh; {ks= dh yEckbZ x = 3 R g]S tgk¡ R bl {ks= esa d.k ds 2 o`Ùkkdkj iFk dh f=T;k gSA tc d.k {ks= ls ckgj fudyrk gS rks blds osx es a ifjorZ u dk ifjek.k gksxk %& (1) 2v0 (2) v0 2 (3) 3v 0 2 (4) v0 jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 40. A piece of conducting wire of resistance R is 40. cut into 2n equal parts. Half the parts are connected in series to form a bundle and remaining half in parallel to form another bundle. These bundles are then connected to give the maximum resistance. The resistance of the combination is (3) 41. R 1 + n2 2 Ræ 1 ö ç1 + 2 ÷ 2è n ø (2) R 2(1 + n 2 ) 1ö æ (4) R ç n + ÷ nø è ( ) In the circuit shown, when the switch S is closed- 41. (1) no charge flows through S (2) charge flows from A to B (3) charge flows from B to A (4) charge flows initially from A to B and later from B to A SPACE FOR ROUGH WORK / ALLEN R 1 + n2 2 (1) Ræ 1 ö ç1 + 2 ÷ 2è n ø (2) (3) R 2(1 + n 2 ) 1ö æ (4) R ç n + ÷ nø è A LL EN (1) izfrjks/k R okys ,d pkyd rkj ds VqdM+s dks leku 2n Hkkxksa esa dkVk tkrk gSA buesa ls vk/ks VqdM+ksa dks Js.khØe esa tksM+dj ,d c.My cuk;k tkrk gS rFkk 'ks"k vk/ks Hkkxksa dks lekUrj Øe esa tksM+dj ,d vU; c.My cuk;k tkrk gAS vc bu c.Myksa dks vkil esa bl izdkj tksM+k tkrk gS rkfd vfèkdre izfrjks/k izkIr fd;k tk ldsA bl la;kstu dk izf rjks/k gksxk ( ) iznf'kZr ifjiFk esa ] tc fLop S cUn fd;k tkrk g&S (1) S ls dksbZ vkos'k izokfgr ugha gksrk gAS (2) A ls B dh vksj vkos'k izokfgr gksrk gAS (3) B ls A dh vksj vkos'k izokfgr gksrk gAS (4) izkjEHk esa vkos'k A ls B dh vksj o ckn esa B ls A dh vksj izokfgr gksrk gSA jQ dk;Z ds fy;s txg H-13/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 42. A uniform conducting rectangular loop of sides 42. l, b and mass m carrying current i is hanging horizontally with the help of two vertical strings. There exists a uniform horizontal magnetic field B which is parallel to the longer side of loop. The value of tension which is least is ,d le:i pkyd vk;rkdkj ywi dh Hkqtk,a l o b gaS rFkk bldk nzO;eku m gAS blesa i /kkjk izokfgr gks jgh gAS bls nks ÅèokZ/kj jfLl;ksa dh lgk;rk ls {kfS rt :i ls yVdk j[kk gAS ;gka ,d le:i {kSfrt pqEcdh; {ks= B fo|eku gS tks fd ywi dh cM+h Hkqtk ds lekUrj gSA jfLl;ksa esa ruko dk U;wure eku gksxk b A LL EN b B l (1) mg – Bbi (3) 43. (2) mg + Bbi mg - 2Bbi 2 (4) (1) mg – Bbi mg + 2Bbi 2 (3) An infinitely large nonconducting plane of 43. uniform surface charge density s has circular aperture of certain radius R carved out from it. The electric field at a point which is at a distance ‘a’ from the centre of the aperture and perpendicular to the plane is s 2 2e 0 B l . The (2) mg + Bbi mg - 2Bbi 2 (4) ,dleku i`"B vkos'k ?kuRo s okys ,d vuUr yEcs vpkyd ry esa ls ,d fuf'pr f=T;k R okys o`Ùkh; }kjd dks dkVk x;k gSA ry ds yEcor~ rFkk }kjd ds dsUnz ls a nwjh ij fLFkr ,d fcUnq ij fo|qr {ks= dk eku s 2 2e 0 gAS }kjd dh f=T;k R dk eku gksxk radius of aperture R is (1) a (2) 2a a (3) 2 (4) 2a SPACE FOR ROUGH WORK / H-14/31 mg + 2Bbi 2 (1) a (2) 2a (3) a 2 (4) 2a jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 44. A non-planar circular loop consists of two 44. semi-circles each of radius R, one of which lies in yz-plane & the other is in xz-plane as shown and carries a current I. The magnetic force experienced by positive charge of value Q moving with velocity v along x direction when it is at the origin is : y ,d vleryh; o`Ùkkdkj ywi fp=kuqlkj izR;sd R f=T;kvksa okys nks v¼Zo`Ùkksa ls feydj cuk gS ] ftuesa ls ,d yz-ry esa rFkk nwljk xz-ry esa fLFkr gS rFkk blesa I èkkjk izokfgr gks jgh gAS x fn'kk ds vuqfn'k v osx ls xfr'khy Q /kukos'k tc ewy fcUnq ij gS rks bl ij yxus okyk pqEcdh; cy gksxk%& y I I x A LL EN x z z (1) Qvm0 I 4R (2) Qvm0 I 2R Qvm0 I (4) 0 2 2R A rectangular loop PQRS, is being pulled with 45. constant speed into a uniform transverse magnetic field by a force F (as shown). E.m.f. induced in side PS and potential difference between points P and S respectively are (Resistance of the loop = r) (3) 45. Fr Bl (2) zero, Zero (4) Fr Fr , 6Bl 6Bl × P l S 2l × ×Q × × × × ×R × × × F × × × × B × (2) (3) Qvm0 I 2 2R (4) 0 Qvm0 I 2R fdlh vk;rkdkj ywi PQRS dks fp=kuqlkj cy F }kjk le:i vuqizLFk pqEcdh; {ks= esa fu;r pky ls [khapk tkrk gSA Hkqtk PS esa izsfjr fo|qr okgd cy rFkk fcUnqvksa P o S ds e /; foHkokUrj Øe'k % gS (ywi dk izfrjksèk = r) Fr Bl (2) 'kwU;, 'kwU; Fr (3) 'kwU;, 6Bl (4) SPACE FOR ROUGH WORK / ALLEN Qvm0 I 4R (1) 'kwU;, (1) Zero, Fr (3) Zero, 6Bl (1) × P l S Fr Fr , 6Bl 6Bl 2l × ×Q × × × × × F × × × × × ×R × B jQ dk;Z ds fy;s txg H-15/31 × 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 47. 48. An open capillary tube is lowered in a vessel 46. with mercury. The difference between the levels of the mercury in the vessel and in the capillary tube Dh = 4.6mm. What is the radius of curvature of the mercury meniscus in the capillary tube? Surface tension of mercury is 0.46 N/m, density of mercury is 13.6 gm/cc. 1 1 m (2) m (1) 340 680 1 (3) m (4) Information insufficient 1020 In a series L.C.R. a.c. circuit at off–resonance, 47. the value of the angular frequency for which the some voltage leads the current in the circuit, is :1 1 (1) w < (2) w > LC LC 1 (3) w = (4) None of these LC A uniform rod hinged at its one end is allowed 48. to rotate in vertical plane. Rod is given an angular velocity w in its vertical position as shown in figure. The value of w for which the force exerted by the hinge on rod is zero in this position is– (1) (3) ,d [kqyh ds'kuyh dks ikjs ls Hkjs ik= esa Mqcks;k tkrk gAS ik= rFkk ds'kuyh esa ikjs ds Lrjksa ds e/; vUrj Dh = 4.6mm gSA ds' kuyh esa cuus okys ikjs ds uopUæd dh oØrk f=T;k D;k gksxh tcfd ikjs dk i`"Bruko 0.46 N/m o ikjs dk ?kuRo 13.6 gm/cc gSA 1 1 m (2) m 340 680 1 m (4) vk¡dM+s vi;kZIr gAS (3) 1020 Ük`a[kykc¼ L.C.R. izR;korhZ /kkjk ifjiFk dh vuqukn (1) A LL EN 46. g L (2) g 2L (4) 2g L (1) w < 1 LC (2) w > (3) w = 1 LC (4) buesa ls dksbZ ugha (1) L 3g L 1 LC ,d leku NM+] ,d fljs ij dhydhr gS rFkk Å/okZèkj ry esa ?kweus ds fy, Lora= gAS NM+ dks bldh ÅèokZèkj fLFkfr ls fp=kuqlkj dks.kh; osx w nsrs gaSA w dk eku ftl ds fy;s bl fLFkfr esa dhyd }kjk NM+ ij yxk;k cy 'kwU; g]S gksxk& w SPACE FOR ROUGH WORK / H-16/31 vUR; fLFkfr esa dks.kh; vko`fÙk ds fdl eku ds fy;s lzksr dh oksYVrk ifjiFk dh /kkjk ls vxz gksxh\ (3) g L (2) g 2L (4) 2g L w L 3g L jQ dk;Z ds fy;s txg ALLEN 50. A LL EN 49. 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 A star is modeled as a uniform spherical 49. ,d rkjs dk foU;kl bl izdkj gS fd tSls inkFkZ dk distribution of matter. How gravitational le:i xksyh; forj.k gksA bldh lrg ij xq:Rokd"kZ.k pressure on surface depends on volume of the nkc] rkjs ds vk;ru ij fdl izdkj fuHkZj djrk g\ S star? –1/3 –1/3 (1) P µ V (2) P µ V (1) P µ V (2) P µ V –2/3 –2/3 –4/3 (3) P µ V (4) P µ V–4/3 (3) P µ V (4) P µ V A transverse wave is propagating along +x 50. ,d vuqizLFk rjax +x fn'kk ds vuqfn'k lapfjr gks jgh g SA t = 2 sec ij x = 4m ij fLFkr d.k direction. At t = 2 sec, the particle at x = 4m y = 2 mm ij gAS le; xqtjus ds lkFk bldk y funsZ'kkad is at y = 2 mm. With the passage of time its y c<+rk gS rFkk vfèkdre 4 mm rd igq¡p tkrk gAS rjax coordinate increases and reaches to a lehdj.k gks ldrh gS (;gk¡ w o k ds lkekU; vFkZ maximum of 4 mm. The wave equation may g AS )%& be (using w and k with their usual meanings) p p (1) y = 4 sin(w(t + 2) + k(x - 2) + ) (1) y = 4 sin(w(t + 2) + k(x - 2) + ) 6 6 p (2) y = 4 sin(w(t + 2) + k(x) + ) 6 p (2) y = 4 sin(w(t + 2) + k(x) + ) 6 (3) y = 4 sin(w(t - 2) - k(x - 4) + 51. 5p ) 6 (3) y = 4 sin(w(t - 2) - k(x - 4) + 5p ) 6 p (4) y = 4 sin(w(t - 2) - k(x - 4) + ) 6 Two tuning forks A and B produce 8 beats/s 51. when sounded together. A gas column 37.5 cm long in a pipe closed at one end resonate to its fundamental mode with fork A whereas a column of length 38.5 cm of the same gas in a similar pipe is required for a similar resonance with fork B. The frequencies of these two tuning forks, are :- p (4) y = 4 sin(w(t - 2) - k(x - 4) + ) 6 A vkjS B nks Lofj= f}Hkqt lkFk&lkFk Lofjr gksus ij çfr lsd.M 8 foLian mRiUu djrs gSaA ,d fljs ls cUn ikbZi esa ,d xl S dk 37.5 lseh yEck LrEHk viuh ewy fo/kk esa Lofj = A ls vuqukfnr gksrk gS tcfd Lofj= B blh xl S ds ,sls gh ikbZi esa 38.5 lseh LrEHk (1) 308 Hz, 300 Hz (2) 208 Hz, 200 Hz (3) 300 Hz, 400 Hz (4) 350 Hz, 500 Hz (1) 308 Hz, 300 Hz (3) 300 Hz, 400 Hz SPACE FOR ROUGH WORK / jQ dk;Z ds fy;s txg ALLEN ls vuqukfnr gksrk gAS nksuksa Lofj= f}Hkqtksa dh vko`fÙk;k¡ gksxh %& (2) 208 Hz, 200 Hz (4) 350 Hz, 500 Hz H-17/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 53. Parallel rays are incident on a thick plano-convex 52. lens having radius of curvature R, refractive index µ and thickness t. When rays are incident on plane surface they converge at a distance x from plane surface. When rays are incident on curved surface then rays converge at y distance from curved surface. Then ,d eks Vs leryksÙ ky ysU l dh oØrk f=T;k R, viorZukad µ o eksVkbZ t gAS bl ysUl ij lekUrj fdj.ksa vkifrr gksrh gAS tc ;s lery lrg ij vkifrr gksrh gS rks lery lrg ls x nwjh ij vfHklfjr gks tkrh gSA tc ;s oØh; lrg ij fxjrh gS rks oØh; lrg ls y nwjh ij vfHklfjr gksrh gSA rc%& (1) x = y (2) x < y (1) x = y (2) x < y (3) x > y (4) data insufficient (3) x > y (4) vkadM+s vi;kZIr gAS A LL EN 52. Three alternating voltage sources V1 = 3 sinwt volt, V2= 5 sin(wt + f1) volt and V3 = 5 sin(wt – f2) volt connected across a resistance R = 53. 7 W as 3 shown in the figure (where f 1 and f 2 corresponds to 30° and 127° respectively). Find the peak current (in Amp) through the resistor. rhu iz R;korhZ oksY Vrk lz k s r V 1 = 3sinwt oks Y V , V2=5sin(wt + f1) oksYV rFkk V3 = 5 sin(wt – f2) volt dks fp=kuqlkj R = tksM+k x;k gAS (;gka f1 rFkk f2 ds eku Øe'k% 30° o 127° g) S izfrjks/kd ls izokfgr f'k[kj /kkjk (Amp es)a Kkr dhft,A V3 V3 V1 (1) 3 (2) 4 (3) 5 (4) 6 SPACE FOR ROUGH WORK / H-18/31 Ö7/3W V2 Ö7/3W V2 7 W izfrjks/k ds fljksa ij 3 (1) 3 V1 (2) 4 (3) 5 (4) 6 jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 54. 55. A 54. foLFkkiu /kkjk %& (1) eqä bysDVªkWuksa ds izokg ds dkj.k mRiUu pkyu /kkjk ds leku gksrh gS (2) /kuk;uksa ds izokg ds dkj.k mRiUu pkyu /kkjk ds leku gksrh gSA (3) /kukRed rFkk ½.kkRed nksuksa izdkj ds eqä vkos'k okgdksa ds izokg ds dkj.k mRiUu pkyu /kkjk ds leku gksrh gSA (4) ;g pkyu /kkjk ugha gksrh cfYd ;g le; ifjorhZ fo|qr {ks= ds dkj.k mRiUu gksrh gAS 55. fn, x, ifjiFk fp= ds fy, lR;rk lkj.kh gksxh%& A LL EN Displacement current (1) is same as conduction current due to flow of free electron (2) is same as conduction current due to flow of positive ions (3) is same as conduction current due to flow of both positive and negative free charge carriers (4) is not a conduction current but is caused by time varying electric field Truth table for the given circuit figure is :C A C E B D A B E (1) 0 0 1 1 0 1 0 1 1 0 1 0 (3) 0 0 1 1 0 1 0 1 0 1 0 1 B A B E (2) 0 0 1 1 0 1 0 1 1 0 0 1 (4) 0 0 1 1 0 1 0 1 0 1 1 0 SPACE FOR ROUGH WORK / ALLEN E D A B E (1) 0 0 1 1 0 1 0 1 1 0 1 0 (3) 0 0 1 1 0 1 0 1 0 1 0 1 A B E (2) 0 0 1 1 0 1 0 1 1 0 0 1 (4) 0 0 1 1 0 1 0 1 0 1 1 0 jQ dk;Z ds fy;s txg H-19/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 56. An electron (mass m) with an initial velocity 56. v = n 0 ˆi is in an electric field E = E0 ˆj . If v = n0 ˆi gS rFkk ;g fo|qr {ks= E = E0 ˆj esa gAS ;fn l0 = h/mn0, it's de-Brogile wavelength at time t is given by (2) l 0 (1) l0 l0 1+ 57. 2 (4) 2 2 0 2 2 0 e Et m n gksxh %& e 2 E 20 t 2 1+ 2 2 m n0 (2) l 0 1 + (1) l0 l0 æ e 2 E 20 t 2 ö ç1 + 2 2 ÷ m n0 ø è Poynting vector (which gives the direction of electromagnetic waves) is defined as : r r r r r r (2) J = E.B (1) J = E × B r r r E×B (3) J = 2 58. l0 = h/mn0 gks rks le; t ij bldh Mh&czkXs yh rjaxnèS ;Z l0 A LL EN (3) ,d m æO;eku okys bys D Vª k W u dk iz k jfEHkd os x (3) 57. r r r r r (4) J = E × B + E.B For a paramagnetic material, the dependence of 58. the magnetic susceptibility cm on the absolute temperature T is given by : (1) cm µ T (2) cm µ exp (constant × T) 2 2 2 0 2 2 0 e Et 1+ m n æ e 2 E 20 t 2 ö ç1 + 2 2 ÷ m n0 ø è r r r (1) J = E × B r r r (2) J = E.B r r r E×B (3) J = 2 r r r r r (4) J = E × B + E.B ,d vuqpqEcdh; inkFkZ ds fy, pqEcdh; lqxzkfgrk cm dh ije rki T ij fuHkZjrk nh tkrh gS %& (1) cm µ T (2) cm µ exp (constant × T) (3) cm µ (1/T) (4) cm = constant (4) cm = fu;r H-20/31 l0 fo|qr pqEcdh; rjaxksa dh fn'kk n'kkZus okyk Poynting lfn'k fy[kk tkrk gS %& (3) cm µ (1/T) SPACE FOR ROUGH WORK / (4) e 2 E 20 t 2 m 2 n 02 jQ dk;Z ds fy;s txg ALLEN ALLEN JEE-MAIN SAMPLE PAPER # 01 60. Statement 1 : When a closed organ pipe 59. vibrates, the pressure of the gas at the closed end remains constant. and Statement–2 : In a stationary–wave system, displacement nodes are pressure antinodes, and displacement antinodes are pressure nodes. (1) Statement–1 is True, Statement–2 is True; Statement–2 is a correct explanation for Statement–1. (2) Statement–1 is True, Statement–2 is True; Statement–2 is not a correct explanation for Statement–1. (3) Statement–1 is True, Statement–2 is False. (4) Statement–1 is False, Statement–2 is True. Statement 1 : When a bottle of cold carbonated 60. drink is opened, a slight fog forms around the opening. and Statement 2 : Adiabatic expansion of the gas causes lowering of temperature which starts condensation of water vapours. (1) Statement–1 is True, Statement–2 is True; Statement–2 is a correct explanation for Statement–1. (2) Statement–1 is True, Statement–2 is True; Statement–2 is not a correct explanation for Statement–1. (3) Statement–1 is True, Statement–2 is False. (4) Statement–1 is False, Statement–2 is True. oDrO;–1: tc ,d cUn vkW xZu ikbi dEiUu djrk gS rks cUn fljs ij xSl dk nkc fu;r jgrk gSA vkS j oDrO;–2 : fdlh vizxkeh rjax fudk; esa foLFkkiu fuLiUn] nkc izLiUn gksrs gaS rFkk foLFkkiu izLiUn] nkc fuLiUn gksrs gSaA (1) oäO;&1 lR; g]S oäO;&2 lR; g]S oäO;&2] oäO;&1 dk lgh Li"Vhdj.k gAS (2) oäO;&1 lR; g]S oäO;&2 lR; gS ; oäO;&2] oäO;&1 dk lgh Li"Vhdj.k ugha gAS (3) oäO;&1 lR; g,S oäO;&2 vlR; gAS A LL EN 59. 2014 SPACE FOR ROUGH WORK / ALLEN (4) oäO;&1 vlR; g]S oäO;&2 lR; gAS oDrO;–1: tc B.Ms dkcksZuVs M s is; ls Hkjh ,d cksry dks [kksyk tkrk gS rks cksry ds eq¡g ij pkjksa vksj gYds ls >kx cu tkrs gaSA vkS j oDrO;–2 : xl S ds :¼ks"e izlkj ds dkj.k rkieku ?kV tkrk gS ftlls ty ok"i dk la?kuu izkjEHk gks tkrk gSA (1) oäO;&1 lR; g]S oäO;&2 lR; g]S oäO;&2] oäO;&1 dk lgh Li"Vhdj.k gAS (2) oäO;&1 lR; g]S oäO;&2 lR; gS ; oäO;&2] oäO;&1 dk lgh Li"Vhdj.k ugha gAS (3) oäO;&1 lR; g,S oäO;&2 vlR; gAS (4) oäO;&1 vlR; g]S oäO;&2 lR; gAS jQ dk;Z ds fy;s txg H-21/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 PART C - CHEMISTRY 62. 63. e.m.f. of the cell 2Ag+ + Cu ® Cu+2 + 2Ag Given : EºAg/Ag+ = –0.8 V ; EºCu+2/Cu = 0.3 V (3) lsy dk e.m.f. gksxk& 2Ag+ + Cu ® Cu+2 + 2Ag fn;k gS % EºAg/Ag+ = –0.8 V ; EºCu+2/Cu = 0.3 V (1) –0.5 V (2) 0.5 V (3) –1.1 V (4) 1.1 V pH of a solution obtained by mixing equal 62. volume of 0.2 M NaOH & 0.2 M CH3COOH (Ka = 10–5) is : (1) 7 (2) 5 (3) 9 (4) 9.5 + If shortest wavelength of He ion in Balmer 63. series is X metres then longest wavelength in Paschen series of Li+2 ion is : (1) 64. 61. (1) –0.5 V (2) 0.5 V (3) –1.1 V (4) 1.1 V 0.2 M NaOH rFkk 0.2 M CH3COOH ds leku vk;ru dks feykus ij izk Ir foy;u dh pH D;k gksxh\(Ka = 10–5) (1) 7 (2) 5 (3) 9 (4) 9.5 + ;fn ckej Js.kh esa He vk;u dh y?kq re rjaxnS/;Z X ehVj gS rks Li+2 vk;u dh ik'pu Js.kh esa nh?kZre A LL EN 61. rjaxn/S ;Z gksxh & 36 X 5 (2) 16 X 7 (1) 36 X 5 (2) 16 X 7 9 X 5 (4) 5 X 9 (3) 9 X 5 (4) 5 X 9 Which one of the following graph is incorrect depiction of first order process "A ® P" 64. fuEu oØksa esa ls dkSulk oØ izFke dksfV izØe "A ® P" dk xyr izn'kZu gAS (1) (1) (2) log[A] (2) log[A] log [P] t t t t [P] [A] (3) rate of disappearance of [A] (4) t (3) ds foyksiu rate of appearance of [P] dh nj t SPACE FOR ROUGH WORK / H-22/31 log [P] (4) ds cuus t dh nj t jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 65. Calculate the number of milli moles of SO2. If in the following reaction 10 ml of 0.1 M KMnO4 solution are required for titration. 65. –2 –2 67. SO2 + MnO¯ ® SO4 + Mn+2 4 SO2 + MnO¯ ® SO4 + Mn+2 4 (1) 2.5 (2) 0.5 (1) 2.5 (2) 0.5 (3) 1.25 (4) None of these (3) 1.25 (4) buesa ls dksbZ ugha Which of the following reactions is spontaneous only at relatively low temperature- 66. fuEu vfHkfØ;kvksa esa ls dkuS lh dsoy lkis{k U;wu rki ij Lor% gksrh gS - A LL EN 66. ;fn fuEu vfHkfØ;k esa vuqekiu ds fy , 0.1 M KMnO4 foy;u ds 10 ml dh vko';drk gksrh gS rks SO2 ds fefy eksyksa dh la[;k Kkr dhft,A (1) NH4Br(s) + 188 kJ ® NH3(g) + Br2(l) (1) NH4Br(s) + 188 kJ ® NH3(g) + Br2(l) (2) NH3(g) + HCl(g) ® NH4Cl(s) + 176kJ (2) NH3(g) + HCl(g) ® NH4Cl(s) + 176kJ (3) 2H2O2(l) ® 2H2O(l) + O2(g) + 196 kJ (3) 2H2O2(l) ® 2H2O(l) + O2(g) + 196 kJ (4) Both (2) & (3) (4) (2) o (3) nksuksa Select the incorrect statement:- 67. xyr dFku dk p;u dhft,s& (1) Stoichiometry of crystal remains uneffected due to schottky defect (1) fØLVy dh jllehdj.kferh] 'kkWV dh =qfV ds (2) Frenkel defect usually shown by ionic compound having low coordination number (2) Ýsady =qfV] mu vk;fud ;kSfxdksa }kjk iznf'kZr (3) F-centres generation is responsible factor for imparting the colour to the crystal (3) F-dsUæksa dk fuekZ.k fØLVy ds jax ds fy, mÙkjnk;h (4) Density of crystal always increases due to substitutional impurity defect (4) fØLVy dk ?kuRo loZnk izfrLFkkiuh; v'kqf¼ =qfV SPACE FOR ROUGH WORK / ALLEN dkj.k vizHkkfor jgrh gAS dh tkrh gS] ftuesa lkekU;r% leUo;u la[;k de gksrh gS gksrs gaAS ds dkj.k c<rk gSA jQ dk;Z ds fy;s txg H-23/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 69. Arrange the following aqueous solutions in order of increasing freezing points (that is lowest first) :- I. 0.10 m Ba3(PO4)2 II. 0.10 m Na2SO4 III. 0.10 m C2H5OH IV. 0.10 m KCl V. 0.10 m Li3PO4 (1) I < V < II < IV < III IV. 0.10 m KCl V. 0.10 m Li3PO4 (1) I < V < II < IV < III (2) III º IV < II < V < I (2) III º IV < II < V < I (3) IV < II < V < I < III (3) IV < II < V < I < III (4) I < V < II < IV = III (4) I < V < II < IV = III How many litres of oxygen at 1 atm & 273 K will be required to burn completely 2.2 g of propane (C3H8) :- 69. (1) 11.2 L (3) 5.6 L (2) 22.4 L (4) 44.8 L (2) 3 atm (3) 0.3 atm (4) 0.18 atm Which of the following complex is paramagnetic in nature. (1) K2[NiF6] 71. (2) [Co(H2O)6]+3 (2) 22.4 L (4) 44.8 L 1000 K rFkk 0.5 atm ds nkc ij ,d ik= esa CO2 xl S Hkjh xbZ gAS xzQ s kbV dks feykus ij CO2 dk dqN Hkkx CO esa :ikUrfjr gks tkrk gS ;fn lkE; ij dqy nkc 0.8 atm gks rks lkE; fu;rkad dk eku D;k gksxk\ (1) 1.8 atm (2) 3 atm (3) 0.3 atm (4) 0.18 atm fuEu esa ls dkSuls ladqy dh izd`f r vuqpqE cdh ; gS - (1) K2[NiF6] (2) [Co(H2O)6]+3 II II (3) K4[ Fe (CN)5(O2)] (4) None of these SPACE FOR ROUGH WORK / H-24/31 1 atm rFkk 273 K ij 2.2 g izkis us (C3H8) dks iw.kZr% tykus ds fy, fdrus yhVj vkWDlhtu dh vko';drk gksrh gaS& A vessel at 1000 K contains CO 2 with a 70. pressure of 0.5 atm. Some of the CO2 is converted into CO on the addition of graphite. The value of equilibrium constant if the total pressure at equilibrium is 0.8 atm is: (1) 1.8 atm 71. fuEu tyh; foy;uksa dks fgekad fcUnq esa o`f¼ ds Øe esa O;ofLFkr dhft;s & (vFkkZr~ U;wuere dks igys j[krs gq,)s I. 0.10 m Ba3(PO4)2 II. 0.10 m Na2SO4 III. 0.10 m C2H5OH (1) 11.2 L (3) 5.6 L 70. 68. A LL EN 68. (3) K4[ Fe (CN)5(O2)] (4) buesa ls dksbZ ugha jQ dk;Z ds fy;s txg ALLEN ALLEN JEE-MAIN SAMPLE PAPER # 01 72. 73. Which of the following compound has 72. 3c – 4e– bond (1) AlCl3 (2) BeCl2 (3) Both (1) and (2) (4) None of these Select which of the following reaction is not 73. correct (only product wise)(1) Mg3N2 + H2O ® Mg(OH)2 + NH3 (2) Mg2C3+H2O®Mg(OH)2 +CH3–CºCH (4) Cu(NO3)2 Which of the following mixture is used for making Holme's signal. (1) Ca3P2 + Ca(OH)2 (2) Ca3P2 + CaC2 (3) CaC2 + PH3 76. (1) AlCl3 (2) BeCl2 (3) (1) rFkk (2) nksuksa (4) buesa ls dksbZ ugha ml vfHkfØ;k dk p;u dhft, tks lgh ugha gS (dsoy mRikn ds fy,) D ® Al(OH)3+CH3–CºCH (3) Al4C3+H2O¾¾ A LL EN D ® MgO + CO2 (4) MgCO3 ¾¾ Which of the following metal nitrate gives 74. metal and oxygen on heating (1) KNO 3 (2) AgNO3 (3) Be(NO3)2 75. fdl ;kfS xd esa 3c – 4e– ca/k mifLFkr gS (1) Mg3N2 + H2O ® Mg(OH)2 + NH3 (2) Mg2C3+H2O®Mg(OH)2 +CH3–CºCH D ® Al(OH)3+CH3–CºCH (3) Al4C3+H2O¾¾ 74. 75. (4) None of these Which of the following statement is incorrect 76. (1) When P4 reacts with SOCl2 then S2Cl2 is formed (2) When P4 reacts with SO2Cl2 then S2Cl2 is formed (3) Tin stone is diamagnetic in nature (4) Bayer's process is used for the concentration of red bauxite SPACE FOR ROUGH WORK / ALLEN 2014 D ® MgO + CO2 (4) MgCO3 ¾¾ fuEu esa ls dkuS lh /kkrq ukbVªVs xeZ djus ij /kkrq rFkk vkWDlhtu nsrh gS (1) KNO 3 (3) Be(NO3)2 (2) AgNO3 (4) Cu(NO3)2 fuEu esa ls dkSulk feJ.k gkWYe~l ladrs (Holme's signal) fuekZ.k ds fy, mi;ksx fd;k tkrk gS (1) Ca3P2 + Ca(OH)2 (2) Ca3P2 + CaC2 (3) CaC2 + PH3 (4) buesa ls dksbZ ugha fuEu esa ls dkuS lk dFku xyr gS (1) tc P4 ] SOCl2 ds lkFk vfHkfØ;k djrk gS rc S2Cl2 dk fuekZ.k gksrk gS (2) tc P4 ] SO2Cl2 ds lkFk vfHkfØ;k djrk gS rc S2Cl2 dk fuekZ.k gksrk gS (3) Vhu LVksu izfrpqEcdh; izd`fr dk gksrk gS (4) cs;j izØe dk mi;ksx yky ckWDlkbM ds lkUnz.k ds fy, fd;k tkrk gS jQ dk;Z ds fy;s txg H-25/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 77. Which of the following cation is colourless in 77. fuEu esa ls dkSulk /kuk;u tyh; foy;u esa jaxghu aq. solution gksrk gSA (1) Ni+2 79. 80. 81. (1) Ni+2 (3) Co+3 (4) Ti+4 Select the correct statement : 78. (2) Cr+3 (3) Co+3 (4) Ti+4 lgh dFku dk p;u dhft, (1) O3 is diamagnetic in nature (1) O3 izfrpqEcdh; izd`fr dh gksrh gS (2) O3 has parmanent bleaching action (2) O3 LFkk;h fojt a u dk dk;Z djrk gS (3) O3 is bent in shape (3) O3 eqM+h gqbZ vkd`fr esa gksrh gS (4) All of these (4) mijksDr lHkh Which of the following compound produces 79. fuEu esa ls dk Sulk ;kSfxd ty vi?kVu djkus ij H3PO4 on hydrolysis. H3PO4 dk fuekZ.k djrk gS A LL EN 78. (2) Cr+3 (1) PCl5 (2) P4O10 (1) PCl5 (2) P4O10 (3) POCl3 (4) All of these (3) POCl3 (4) mijksDr lHkh Which of the following species is diamagnetic 80. dkSulh Lih'kht izfrpqEcdh; gksrh gS (1) O2+2 (2) N2 (1) O2+2 (2) N2 (3) Na+ (4) All of these (3) Na+ (4) mijksDr lHkh Which compound does not react with NaHCO3 81. dkuS lk ;kSfxd NaHCO3 ds lkFk vfHkfØ;k ugha djrk but having chiral centre ? gS ysfdu blesa fdjSy dsUnz mifLFkr gksrk gS ? (1) Ascorbic acid (2) Tartaric acid (1) ,LdkWfcZd vEy (2) VkVZfjd vEy (3) Carbolic acid (4) Citric acid (3) dkcksZfyd vEy (4) flfVªd vEy SPACE FOR ROUGH WORK / H-26/31 jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 82. A(C10H12) [no chiral centre] 82. A(C10H12) [dksbZ fdjsy dsUnz ugha ] A gives white precipitate with ammoniacal solution of AgNO3 A ] AgNO3 ds veksuhd`r foy;u ds lkFk 'osr O3 NaOH ® B (C8H12O4) ¾¾¾ ® C (C6H12) A ¾¾¾ H2 O + CaO NaOH 3 ® B(C 8 H 12 O 4 ) ¾¾¾ ® C(C 6 H 1 2 ) A ¾¾¾ H2 O + CaO Cl2 / hn ¾¾¾ ® only one monochloro derivative. Cl2 / hn ¾¾¾ ® dsoy ,d eksuksDyksjks O;q RiUuA A gS& vo{ksi nsrk gS O A is CºCH (2) H2C=HC CH=CH2 CºCH (1) H3C–H2C A LL EN 83. (1) H3C–H2C CH=CH2 (2) H2C=HC (3) HCºC CºCH (3) HCºC CºCH (4) H2C=C | CH3 CH3 (4) H2C=C | CH3 CH3 1-Methyl cyclopentanol ® 2-methyl cyclopentanol. To carry out following conversion the sequence of reagent used is - 83. (1) H2SO4 (Conc.) ; CH3Cl ; aq. KOH (2) H2SO4 (Conc.) ; HgSO4 ; H2O, NaBH4 (3) H2SO4 (Conc.) ; B2H6 + H2O2, NaOH (4) PCl3 ; CH3I ; H2O SPACE FOR ROUGH WORK / ALLEN 1-esfFky lkbDyksiUs VsukWy® 2-esfFky lkbDyksiUs VsukWy mijksDr :ikUrj.k dks izkIr djus ds fy, mi;ksx fd;s x;s vfHkdeZdks dk Øe gS - (1) H2SO4 (lkUæ) ; CH3Cl ; tyh; KOH (2) H2SO4 (lkUæ) ; HgSO4 ; H2O, NaBH4 (3) H2SO4 (lkUæ) ; B2H6 + H2O2, NaOH (4) PCl3 ; CH3I ; H2O jQ dk;Z ds fy;s txg H-27/31 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 NO2 Br 84. CH2(CO2Et)2 NaNH2 (1) NO2 NO2 B,B is 84. CH2(CO2Et)2 Cl (2) O 2N Br NaNH2 (1) O2N NO2 NO2 (4) Br Cl (2) O 2N (3) O 2N NO2 (4) Br CH(CO2Et)2 85. 86. The number of stereoisomers of 1, 3, 5-trichloro 1, 4-pentadiene is(1) 1 (2) 2 (3) 3 (4) 4 Major organic product (alkene) in the reaction is: 85. 86. Br Br (2) Me 3COK ¾¾¾¾ ® (leq.) Br Br (1) Br (4) SPACE FOR ROUGH WORK / H-28/31 CH(CO2Et)2 1, 3, 5- Vª k bZ D yks j ks 1, 4- is U VkMkbZ b u ds f=foe leko;fo;ksa dh la [;k gS (1) 1 (2) 2 (3) 3 (4) 4 vfHkfØ;k esa eq [; dkcZfud mRikn (,Ydhu) gS : Me 3COK ¾¾¾¾ ® (leq.) Br (3) NO2 Br Br (1) NO2 Cl CH(CO2Et)2 NO2 B, B gS CH(CO2Et)2 A LL EN O 2N NO2 Br Cl Cl A CH(CO2Et)2 NO2 CH(CO 2Et)2 CH(CO2Et)2 (3) Br Cl A CH(CO2Et)2 O2N NO2 Br (2) Br (3) Br Br (4) jQ dk;Z ds fy;s txg ALLEN 2014 ALLEN JEE-MAIN SAMPLE PAPER # 01 O 87. O + H3O ¾¾¾¾¾¾ ® (complete hydrlysis) O organic 87. product : (1) O OH (1) O O OH OH OH (2) O OH OH OH HO A LL EN HO O (3) O (3) OH (4) None of these 88. CHCl3 + KOH X (C7H9N) NaNO2 + HCl Bad smell 88. CHCl3 + KOH X (C7H9N) NaNO2 + HCl Alcohol (not soluble in NaOH) NH2 NH2 (1) (2) ,YdksgkWy (NaOH esa foys; ugha) X ] HCl esa foys; gAS X gksxk: SPACE FOR ROUGH WORK / (2) CH3 CH2–NH2 (4) NH2 NH2 CH3 NH–CH3 nqxZU/k (1) CH3 ALLEN OH (4) buesa ls dksbZ ugha X is soluble in HCl. X will be : (3) dkcZ f ud mRikn : OH (2) + H3 O ¾¾¾¾¾ ® (iw.kZ tyvi?kVu) O CH3 NH–CH3 (3) CH2–NH2 (4) jQ dk;Z ds fy;s txg H-29/31 ALLEN JEE-MAIN SAMPLE PAPER # 01 90. An optically active monobasic acid having 89. molecular weight 116 does not declourise Baeyer's reagent. A on treatment with Br2/red phosphorous produce B which is still optically active. B on dehydro bromination followed by decarboxylation by (NaOH + CaO) gives major product C which does not show stereoisomerism. Structure of A can be : CH3 | (1) CH3CH2–CH–CH2CO2H CH3 | (2) CH3CH2–CH2–CH–CO2H (3) CH3–CH–CH2–CH2–CO2H | CH3 CH3 | (4) H3C–C—CH–CO2H | | CH3 CH3 CH3 | (1) CH3CH2–CH–CH2CO2H CH3 | (2) CH3CH2–CH2–CH–CO2H (3) CH3–CH–CH2–CH2–CO2H | CH3 CH3 | H C— CH–CO2H (4) 3C– | | CH3 CH3 Which of the following option is 90. INCORRECT ? (1) Amino acid is solid at isoelectric point (2) Lactose is example of disaccharide & reducing sugar (3) Nylon 66 is condensation polymer & have amide linkage (4) In RNA molecules, the sugar moiety is b-D-2 deoxyribose. fuEu fodYiksa esa ls dkSulk xyr gS ? (1) vehuks vEy leo| S qr fcUnq ij Bksl gksrk gS (2) ysDVksl] MkbZld S sjkbM rFkk vipk;h 'kdZjk dk mnkgj.k gksrk gS (3) uk;ykWu 66 l?a kuu cgqyd gS vkjS blesa ,ekbM ca/ku gksrk gS (4) RNA v.kq esa 'kdZjk dk vk/kk Hkkx b-D-2 MhvkWDlhjkbckst gksrk gS 116 vkf.od Hkkj okyk ,d izdkf'kd lfØ; ,dy {kkjh; vEy] cs;j vfHkdeZd dks jaxghu ugha dj ldrkA A dh fØ;k Br2/yky QkLQksjl ds lkFk djkus ij B izkIr gksrk gS tks izdkf'kd lfØ; gAS B dk fogkbMª k s c z k s e huhdj.k djkus ds i'pkr~ (NaOH + CaO) }kjk fodkcksZDlhyhdj.k djkus ij eq[; mRikn C nsrk g]S tks f=foe leko;ork ugha n'kkZrk gSA A dh lajpuk gks ldrh gS : A LL EN 89. 2014 SPACE FOR ROUGH WORK / H-30/31 jQ dk;Z ds fy;s txg ALLEN ALLEN JEE-MAIN SAMPLE PAPER # 01 jQ dk;Z ds fy;s txg A LL EN SPACE FOR ROUGH WORK / 2014 SPACE FOR ROUGH WORK / ALLEN jQ dk;Z ds fy;s txg H-31/31