3 C H
Transcription
3 C H
CHAPTER 3 Resistive Network Analysis C H A P TE R 3 R e s i s t i ve N e t w o r k An a l ys i s 本章的重點在於介紹各種電路分析的方法: ë ë ë ë ë Node voltage method. Mesh current method. Nodal and mesh analysis with controlled source. Principles of superposition. One-port network and equivalent circuits > > reduction of an arbitrary circuit to equivalent circuit form ( Thevenin & Norton equivalent circuit) ë Graphical and numerical techniques for analysis of nonlinear circuit elements. 3. 1 T HE NODE V OLTAG E M E T HOD The node voltage method is the most general method for analysis of electrical circui ts. This method is based on: ë ë ë ë ë Defining the voltage at each node as an independent variable. One of the nodes is selected as reference node. Each of the other node voltage is referenced to this reference node. Ohm’s law is applied between any two adjacent nodes in order to determine the current flowing in each branch. Each branch current is expressed in terms of one or more node voltage. 下圖即是用來介紹如何利用 nodal voltage method 來 定 義 branch’ current: i= v a − vb R 3-1 CHAPTER 3 Resistive Network Analysis 只 要 每 一 個 branch current 都 已 經 清 楚 定 義 之 後 , 就 可 以 Applying KCL at each node: ∑i = 0 下 圖 即 是 介 紹 利 用 KCL 的 過 程 : 其中, By KCL: i1 − i2 − i3 = 0 va − vb vb − vc vb − vd − − =0 R1 R2 R3 3-2 CHAPTER 3 Resistive Network Analysis METHODOLOGY:Nodal voltage analysis method ë ë ë ë Select a reference node ( usually ground ) . All other node voltages will be referenced to this node. Define the remaining n-1 node voltages as the independent variables. Apply KCL at each of the n-1 nodes, expressing each current in terms of the adjacent node voltages. Solve the linear system of n-1 equations in n-1 unknown. Consider the circuit: The reference( ground) node is chosen to be the node at the bottom of the circuit, and the direction of current flow is selected arbitrarily( 假 設 i s 為 正 向 電 流 )。 Applying KCL at node a: iS − i1 − i2 = 0 Applying KCL at node b: i2 − i3 = 0 Applying KCL at node c: i1 + i3 − iS = 0 (3.2) (3.3) (3.4) The currents are expressed as functions of node voltage: i1 = va − vc R1 (3.5) 3-3 CHAPTER 3 Resistive Network Analysis i2 = va − vb R2 i3 = vb − vc R3 (3.6) 其 中 , eq.(3.4) 可 以 由 eq.(3.2)與 eq.(3.3)相 減 取 得 , 此 一 結 果 正 驗 證 了 : In a circuit containing n nodes, we can write at most n-1 independent equations 。 將 equation( 3.5) 與 ( 3.6) 代 入 ( 3.2) 與 ( 3.3) 可 以 得 到 : is − v a va − v b − =0 R1 R2 va − v b vb − −=0 R2 R3 or 1 + 1 va + − 1 v b = is R1 R2 R2 (3.7) (3.8) − 1 va + 1 + 1 v b = 0 (3.9) R2 R 2 R3 ððð Solve va and vb E xa mple 3 . 1 No da l Ana ly s i s P ro b le m : Find all unknown current and voltages G i ve n: Source currents, resistor values. I1 = 10mA 、 I2 = 50mA 、 R1 = 1KΩ 、 R2 = 2KΩ 、 R3 = 10KΩ 、 R4 = 2KΩ 3-4 CHAPTER 3 Resistive Network Analysis F i nd : All node voltages and branch current? A nal ys i s : The reference node is chosen to be the node at the bottom of the circuit. Applying KCL at node 1 and node 2: At node 1 I1 − At node 2 v1 − 0 v 1 − v 2 v1 − v 2 − − =0 R1 R2 R3 v1 − v 2 v1 − v 2 v 2 − 0 + − − I2 = 0 R2 R3 R4 1 1 1 1 − 1 v 2 = I1 ððð + + v1 + − R1 R2 R3 R2 R3 1 1 1 1 1 − + + − v 1 + v 2 = −I2 R2 R3 R2 R3 R3 Solving v1 and v2 Solving branch currents. 3-5 CHAPTER 3 Resistive Network Analysis E xa mple 3 . 2 No da l Ana ly s i s P ro b le m : Write the nodal equations and solve for the node voltages. G i ve n: Source currents, resistor values. ia = 1mA 、 ib = 2mA 、 R1 = 1KΩ 、 R2 = 500Ω 、 R3 = 2.2KΩ 、 R 4 = 4. 7KΩ F i nd : All node voltages and branch current? A nal ys i s : The reference node is chosen to be the node at the bottom of the circuit. Applying KCL at node a and node b: va v a − vb − =0 R1 R2 va − vb vb vb + ib + − − =0 R2 R3 R4 ia − Rewriting these equations to obtain a linear equation: 3-6 CHAPTER 3 Resistive Network Analysis 1 + 1 v a + − 1 vb = ia R1 R2 R2 − 1 va + 1 + 1 + 1 vb = ib R2 R2 R3 R4 ððð代入 ia、ib、R1、R2、R3、R4 可以得到 3va − 2vb = 1 − 2vz + 2. 67vb = 2 3 . 1 . 1 No da l Ana ly s i s w i t h Vo lt a ge S o ur c e s 前 面 的 幾 個 例 子 中 , 出 現 在 circuit 中 的 source 都 是 current source, 如 果 current source 換 成 voltage source, 則 要 如 何 利 用 nodal analysis? ððð以 nodal analysis 來 解 答 不 僅 沒 有 問 題 , 而 且 會 更 容 易 ! 以下圖所示的電路為例: 因 node a 已 知 , 即 va =vs , 所 以 , 只 需 要 兩 個 nodal equations ( at node b and node c): vs − vb vb v b − vc − − =0 R1 R2 R3 (node b) 3-7 CHAPTER 3 Resistive Network Analysis vb − vc vc + is − =0 R3 R4 (node c) Rewriting these equations: 1 + 1 + 1 v b + − 1 vc = vs R1 R1 R2 R3 R3 (3.11) − 1 vb + 1 + 1 vc = iS R3 R3 R4 E xa mple 3 . 4 No da l Ana ly s i s w i t h Vo lt a ge S o ur c e s P ro b le m : Find the node voltage: G i ve n: Source current and voltage, resistor values. I = −2mA 、 V = 3V 、 R1 = 1KΩ 、 R2 = 2KΩ 、 R3 = 3KΩ F i nd : Node voltages? A nal ys i s : The reference node is chosen to be the node at the bottom of the circuit. Applying KCL at node a and node b: 3-8 CHAPTER 3 Resistive Network Analysis I− va − 0 va − v b − =0 R1 R2 va − vb vb − 3 − =0 R2 R3 代 入 I、 R1 、 R2 ððð 1.5 va − 0.5 vb = −2 − 0.5 va + 0. 833vb = 1 ððððððva =-1 . 1 6 7 V vb =0.5V 3-9 CHAPTER 3 Resistive Network Analysis 3 . 2 T H E ME S H C U R R E N T ME T H O D 相 較 於 之 前 所 介 紹 的 node voltage method 係 以 node voltage 作 為 independent variables, mesh current method 則 是 以 mesh current 作 為 independent variables。 Mesh current method? 以下圖所示為例,先建立電流方向,並以該方向建立跨越電阻的電 壓降極性: 只 要 around a mesh 的 電 流 方 向 確 定 , 即 可 apply KVL around the mesh( 如 下 圖 ): . METHODOLOGY:Mesh current method ë Define each mesh current consistently, we shall always define mesh current C.W., for convenience.( Using mesh currents as the independent variables)。 ë Applying KVL around each mesh, expressing each voltage in term of one or more mesh current. 3-10 CHAPTER 3 Resistive Network Analysis ë Solve the resulting linear system of equation with mesh currents as the independent variables.( The number of equations is equal to the number of meshes in the circuit.) 再 次 強 調 , 在 mesh analysis 中 , 電 流 方 向 選 擇 的 一 致 性 是 非 常 重 要 的 ! 為 了 避 免 產 生 困 擾 , 在 本 課 程 所 介 紹 的 mesh current method 中 , 一 律 將 mesh current 的 方 向 設 定 為 順 時 針 向 ! Consider a two-mesh circuit: ððð The mesh current i1 a n d i2 are used to generate two equations in the two unknowns. For mesh 1: v 2 = (i1 − i2 )R2 ððð The complete expression for mesh 1 is: v s − i1R1 − (i1 − i2 )R2 = 0 3-11 CHAPTER 3 Resistive Network Analysis For mesh 2: v 2 = (i2 − i1)R2 ððð The complete expression for mesh 2 is: (i2 − i1)R2 + i2R3 + i2R4 = 0 (3.15) Combining the equations for the two meshes, we obtain the following system of equations: (R1 − R2)i1 − R 2i2 = vs − R2i1 + (R 2 + R3 + R 4)i2 = 0 ððð Solve mesh current i 1 and i 2 3-12 CHAPTER 3 Resistive Network Analysis E xa mple 3 . 5 Me s h Ana ly s i s P ro b le m : Find the mesh currents: G i ve n: Source voltage, resistor values. F i nd : Mesh currents? A nal ys i s : Assume clockwise mesh currents i 1 and i 2 . Write the mesh equation (KVL): V1 − i1R1 − V 2 − (i1 − i2)R2 = 0 − (i2 − i1)R2 + V 2 − i2R3 − V 3 − i2R4 = 0 Rearranging the linear system of equations, we obtain: …… ððð Solve mesh current i1 and i 2 3-13 CHAPTER 3 Resistive Network Analysis E xa mple 3 . 6 Me s h Ana ly s i s P ro b le m : Write the mesh current equations: G i ve n: Source voltage, resistor values. F i nd : Mesh current equations? A nal ys i s : Assume clockwise mesh currents i 1 、 i 2 and i 3 . Applying KVL around mesh 1: V1 − R1(i1 − i3) − R2(i1 − i2) = 0 Applying KVL around mesh 2: − R2(i2 − i1) − R3(i2 − i3 ) + V 2 = 0 Applying KVL around mesh 3: − R1(i3 − i1) − R4i3 − R3(i3 − i2) = 0 Rearranging these equations in standard forms: (3 + 8)i1 − 8i2 − 3i3 = 12 − 8i1 + ( 6 + 8 )i2 − 6i3 = 6 − 3i1 − 6i2 + (3 + 6 + 4)i3 = 0 3-14 CHAPTER 3 Resistive Network Analysis 3 . 2 . 1 Me s h Ana ly s i s w i t h C ur r e nt S o ur c e s 之前所介紹(指 mesh current analysis)的電路中,似乎僅有 voltage source,但是若電路中出現 current source 的話,要如何處理? 以下圖所示的電路為例,吾人還是和之前的分析一樣,把 mesh current 仙 界定清楚: 只 是 其 中 的 mesh current 必 須 滿 足 下 列 關 係 : i1 − i2 = 2 A (3.17) 至 於 跨 越 current source 的 電 壓 降 ? > > vx If the unknown voltage across the current source is vx ; Application of KVL around mesh 1 and mesh 2: 10 − 5i1 − vx = 0 v x − 2i2 − 4i2 = 0 (3.18) (3.19) Substituting eq.(3.19) in eq.(3.18), and using eq.(3.17), we obtain the system of equations: 5i1 + 6i2 = 10 − i1 + i2 = −2 ððð i 1 =2 A i2 =0A 3-15 CHAPTER 3 Resistive Network Analysis E xa mple 3 . 7 Me s h Ana ly s i s w i t h C ur r e nt S o ur c e s P ro b le m : Find the mesh currents: G i ve n: Source current and voltage, resistor values. F i nd : Mesh currents? A nal ys i s : Assume clockwise mesh currents i 1 、 i 2 and i 3 . For mesh 1: i1 = I Applying KVL around mesh 2 and mesh 3: − R2(i2 − i1) − R3(i2 − i3) + V = 0 − R1(i3 − i1) − R4i3 − R3(i3 − i2) = 0 ððð i 2 =0 . 9 5 A mesh 2 mesh 3 i3 =0.55A 3-16 CHAPTER 3 Resistive Network Analysis 3. 3 NO DAL AND ME S H ANALY S IS W ITH C O N TR O L L E D S O U R C E S 當 電 路 中 出 現 controlled source 時 , 怎 麼 辦 ? ë ë Treat it as an ideal source and write the node and mesh equations accordingly . Write an equation relating the dependent source to one of the circuit voltage or current( constrain equation) . ððð This constraint equation can be substi tuted in the set of equations obtained by the techniques of nodal and mesh analysis. ððð unknown. These equations can subsequently be solved for the Consider( A simplified model of a bipolar transistor amplifier) Two nodes are easily recognized, and therefore nodal analysis is chosen as the preferred method. Applying KCL at node 1: 1 1 iS = v1 + RS Rb Applying KCL at node 2: β ib + v2 =0 Rc Where i b is obtained by means of a simple current divider. 3-17 CHAPTER 3 Resistive Network Analysis ib = is 1 / Rb Rs = is 1/ Rb + 1 / Rs Rb + Rs ððð 1 1 is = v 1 + Rs Rb − βi s ððð Rs v2 = Rb + Rs Rc Solve v1 and v2 E xa mple 3 . 8 Ana ly s i s w i t h D e pe nde nt S o ur c e s P ro b le m : Find the node voltages: G i ve n: Source current, resistor relationship: v X = 2 × v 3 . values, F i nd : Unknown node voltage v? A nal ys i s : Applying KCL to node v: vx − v v − v3 +I− =0 R1 R3 Applying KCL to node v3 : 3-18 dependent voltage source CHAPTER 3 Resistive Network Analysis v − v3 v3 − =0 R2 R3 Substituting the dependent source relationship into the first equation, we obtain a system of equations in the two unknown v and v3 : 1 + 1 v + − 2 − 1 v 3 = I R1 R2 R1 R 2 − 1 v + 1 + 1 v 3 = 0 R2 R 2 R3 ððð Solve v and v3 3-19 CHAPTER 3 Resistive Network Analysis 3 . 4 TH E P R IN C IP L E O F S U P E R P O S ITIO N The principle of superposition applies to any linear system and for a linear circuit may be stated as follows: In a linear circuit containing N sources, each branch voltage and current is the sum of N voltages and currents each of which may be computed by setting all but one source equal to zero and solving the circuit containing that single source. 在多個電源電路中,某一支路電流或某一節點電壓等於各個電源單獨作用 於此網路時,在該支路的電流或該節點電壓的代數和。說穿了,重 疊 定 理 並 非 一種深奧的理論,只不過是各個擊破而已! 以 下 圖 所 示 的 電 路 為 例 , 該 電 路 中 包 括 兩 個 sources: i= vb 1 + vb 2 vb1 vb 2 = + = ib1 + ib 2 R R R The basic principles are used frequently in the analysis of circuits (當電路中出現多個電壓源與電流源時): ððð Set a voltage source equal to zero Replace it with a short circuit. ððð Set a current source equal to zero Replace it with a open circuit. 3-20 CHAPTER 3 Resistive Network Analysis a 考慮第一個電源,移走其他電源,也就是將其他電源中的電壓源短路, 電流源斷路。 b.求出該電源對元件的效應(指電壓或電流而言)。 c.對電路中的每一個電源,重覆步驟 a 及 b 來處理。 d.電源分別計算完後,將所有求出的電流作相加減,極性方向相同為加, 否則為減。其所得的結果,即為全部電源對此元件的總效應。 3-21 CHAPTER 3 Resistive Network Analysis E xa mple 3 . 9 P r i nc i ple o f S upe r po s i t i o n P ro b le m : Find the current i 2 Part 1: Zero the current source i2 − V = 10 V = 0. 909A 5Ω + 2Ω + 4Ω Part 2: Zero the voltage source( three parallel branches) Using the current divider rule: i2 − I = ððð 1/ 6 × ( −2) = −0.909A 1/ 5 + 1/ 6 i = i2 − V + i2 − I = 0 A 3-22 CHAPTER 3 Resistive Network Analysis 3. 5 O NE - P O RT NE TW O RK S AND RE Q UIVALE NT CIRCUITS Electrical system 的 各 種 表 達 方 式 : 從 上 述 各 種 表 達 方 式 來 看 , 不 管 是 LOAD 或 SOURCE, 都 可 以 將 它們看成是一種 a two-terminals device , 然 後 透 過 i-v characteristics 來描述其性質,並表示如下: This config uration is called a ONE-PORT network and is useful for introducing the notation of equivalent circuits. E xa mple 3 . 1 0 E qui v a le nt R e s i s t a nc e C a lc ula t i o n P ro b le m : Determine the source and load current 3-23 CHAPTER 3 Resistive Network Analysis ððð Load circuit and equivalent load circuit. REQ = 1 1 1 1 + + R1 R2 R3 ððð i = vs REQ 3 . 5 . 1 The v e ni n a nd No r t o n E qui v a le nt C i r c ui t s 這裡所要介紹的是一個在電路分析中非常重要的觀念,那就是「equivalent circuit」。透過這個觀念,我們將可以把一個複雜的電路看成一個簡單且等值的 source 與 load circuits。 這 個 觀 念 下 , 有 兩 個 非 常 重 要 的 理 論 , 分 別 是 Thevenin theorem 與 Norton theorem。 The Thevenin theorem: As far as a load is concerned, any network composed of ideal voltage and current sources, and of linear resistors, may be represented by an equivalent circuit consisting of an ideal voltage source, vT, in series with an equivalent resistance, R T. 在任一含有線性電阻和獨立電源的網路中,任何接於兩點間的電路,皆可 3-24 CHAPTER 3 Resistive Network Analysis 由戴維寧等效電壓 Eth 和戴維寧等效電阻 Rth 串聯而成。如下圖所示: The Norton theorem: As far as a load is concerned, any network composed of ideal voltage and current sources, and of linear resistors, may be represented by an equivalent circuit consisting of an ideal current source, iN, in parallel with an equivalent resistance, R N. 在任一含有線性電阻和獨立電源的網路中,任何接於兩點間的電路,皆可 由諾頓等效電流 IN 和諾頓等效電阻 RN 並聯而成。其中,諾頓等效電流 IN 即為 在元件移去後兩端所能獲得的最大短路電流,而諾頓等效雷阻 RN 與戴維寧等 效電阻 Rth 的求法相同,即是將所有的電壓源短路,電流斷路後的等效電阻。 如下圖所示: 3 . 5 . 2 D e t e r mi na t i o n o f No r t o n o r The v e ni n E qui v a le nt R e s i s t a nc e Computation of equivalent resistance of a oneport network: ë Remove the load. ë Zero all independent voltage and current sources. ë Compute the total resistance between load terminals, with the load removed. 3-25 CHAPTER 3 Resistive Network Analysis ë ë 將欲探討的支路上的元件移走,成為開路。 將網路中所有的電壓源短路,電流源開路,求元件移走後網路兩端的 等效電阻 Rth。 RT = (R1 // R 2 ) + R3 3-26 CHAPTER 3 Resistive Network Analysis E xa mple 3 . 11 The v e ni n E qui v a le nt R e s i s t a nc e P ro b le m : Find the Thevenin equivalent resistance RT = [( (R1 // R2 ) + R3) // R4 ] + R5 E xa mple 3 . 1 2 The v e ni n E qui v a le nt R e s i s t a nc e P ro b le m : Find the Thevenin equivalent resistance RT = ((R1 // R2 ) + R3) // R4 3-27 CHAPTER 3 Resistive Network Analysis 3 . 5 . 3 C o mput i ng t he The v e ni n Vo lt a ge Thevenin voltage v T is defined as: The equivalent( Thevenin) source voltage is equal to the opencircuit voltage present at the load terminals ( with the load removed)。 也就是說,將電壓源、電流源置回原處,再應用各種解電路的方法求出元 件移走後,網路兩端的電壓,即為等效電壓 Eth。 By KVL: v T = RT (0) + vOC = vOC Computation of Thevenin voltage: ë ë ë ë Remove the load, leaving the load terminals open-circuited. Define the open-circuit voltage vo c across the load terminals. Apply any preferred method (nodal analysis) to solve for voc . The Thevenin voltage vT = voc . To compute vo c , we disconnect the load, and immediately observe that no current flows through R3 , since there is no closed circuit connect at that branch. Therefore, vo c must be equal to the voltage across R 2 . 3-28 CHAPTER 3 Resistive Network Analysis ððð v OC = vR 2 = vS R2 R1 + R2 Consider the original circuit and its Thevenin equivalent: iL = vS R2 1 vT = R1 + R 2 (R3 + R1 // R 2 ) + RL RT + RL 3-29 CHAPTER 3 Resistive Network Analysis E xa mple 3 . 1 3 The v e ni n E qui v a le nt Vo lt a ge ( O pe n- C i r c ui t L o a d Vo lt a ge ) P ro b le m : Compute the open-circuit voltage, vOC Since vb is equal to the reference voltage va is equa l to the open-circuit voltage By nodal analysis Applying KCL at two nodes ( v and va ) 12 − v v v − va − − =0 R1 10 R2 v − v a va − =0 R2 R3 ððð Solve v and va 3-30 CHAPTER 3 Resistive Network Analysis E xa mple 3 . 1 4 L o a d C ur r e nt C a lc ula t i o n by Th e v e n i n E q u i v a l e n t M e t h o d P ro b le m : Compute the load current i by the Thevenin equivalent method. Compute the Thevenin equivalent resistance RT = R1 // R2 Compute the Thevenin equivalent voltage By nodal analysis. Applying KCL at node va v − va va +I− =0 R1 R2 ððð v a = vOC = vT = 27 V Assemble the Thevenin equivalent circuit i= vT = 3A RT + RL 3-31 CHAPTER 3 Resistive Network Analysis 3 . 5 . 4 C o mput i ng t he No r t o n C ur r e nt Norton equivalent resistance = Thevenin equivalent resistance Definition Norton equivalent circuit is equal to the short-circuit current that would flow were the load replaced by a short circuit. 將電壓源及電流源放回去,且將移去的負載元件兩端設定為短路,再應用 前述各種求解電路的方法,求出流過此短路線上的電流 iSC,此電流即為等效電 流 IN。 Where isc (flowing through the short circuit replacing the load) = Norton current i N . How to calculate i s c ? 以下圖所示的電路為例: 3-32 CHAPTER 3 Resistive Network Analysis 其 中 , Load 已 經 被 短 路 取 代 了 ! 並 令 i 2 = i s c By mesh analysis method: (R1 + R2 )i1 − R2iSC = vS − R2i1 + (R2 + R3 )iSC = 0 By nodal analysis method: vS − v v v = + R1 R2 RS ððð v = vS R2R3 R1R3 + R2R3 + R1R2 ðððððð iSC = v vSR2 = iN = R3 R1R3 + R2R3 + R1R2 METHODOLOGY: Computing the Norton Current ë Replace the load with a short circuit. ë Define the short circuit current, iSC, to be the Norton equivalent current. ë Apply any preferred method(e.g., nodal analysis) to solve for i SC. ë The Norton current is iN= i SC . 3-33 CHAPTER 3 Resistive Network Analysis E xa mple 3 . 1 5 No r t o n E qui v a le nt C i r c ui t P ro b le m : Determine the Norton current and the Norton equivalent. Compute the Thevenin (Norton) equivalent resistance: RT = RN = R1// R2 + R3 = 4Ω Compute the Norton current: By nodal analysis. Applying KCL at node 1 and node 2: I− v1 −i=0 R1 i− v2 v2 − =0 R2 R3 (Node 1 ) (Node 2) Substitute v2 -V=v1 in the first equation (node 1): 3-34 CHAPTER 3 Resistive Network Analysis I− v2 − V −i = 0 R1 ððð Solve v2 and I ðððððð iN = iSC = v2 = 1. 5A R3 3-35 CHAPTER 3 Resistive Network Analysis 3 . 5 . 5 S o ur c e Tr a ns f o r ma t i o ns Source transformation is a procedure that may be very useful in the computation of equivalent circuits. 在 之 前 的 Thevenin 與 Norton 定 理 介 紹 中 , 我 們 得 知 any one-port network can be represented by a voltage sources in series with a resistance, or by a current source in parallel with a resistance. 由 上 述 結 果 中 , 我 們 可 以 進 一 步 說 : 利 用 vT = RTiN , 我 們 可 以 把 呈 現 Thevenin equivalent form 的 電 路 , 換 成 Norton equivalent form 。 而 以 下 這 個 電 路 就 成 為 看 出 source transformation 效 果 的 最 好 範 例 : 如 此 一 來 , 因 三 個 resistors 是 呈 現 並 聯 , 使 得 i SC 的 計 算 更 是 直 接: According to current divider: iSC = iN = 1/ R 3 vS 1/ R1 + 1/ R2 + 1/ R3 R1 3-36 CHAPTER 3 Resistive Network Analysis 註 : 下 左 圖 為 Thevenin equivalent form 電 路 。 註 : 下 右 圖 則 為 Norton equivalent form 電 路 。 E xa mple 3 . 1 6 S o ur c e Tr a ns f o r ma t i o ns P ro b le m : Compute the Norton equivalent circuit using source transformations Using source transformation technique: ððð 其 中 , the branch consisting of V1 and R1 can be replaced by V1 /R1 ( Norton current source ) and R1 ( Equivalent resistance ) . The series branch between node a’ and b’ can be replaced by V 2 /R 3 ( Norton current source) and R 3 ( equivalent resistance) . 3-37 CHAPTER 3 Resistive Network Analysis ððð The equivalent resistance ( each current source is replaced by an open circuit): RT = R1// R2 // R3 + R4 = 200Ω . The Norton current iN =0.5 -0.025-0.5=-0.025A 3 . 5 . 6 E xpe r i me nt a l D e t e r mi na t i o n o f The v e ni n a nd No r t o n E qui v a le nt s 雖 然 章 節 的 標 題 是 要 透 過 實 驗 的 方 法 來 決 定 Thevenin and Norton equivalents , 但 其 真 正 的 目 的 是 要 去 探 討 Thevenin 或 Norton quivalent circuits 後 面 所 代 表 的 complex 或 unknown circuits。 之 前 的 探 討 中 , 吾 人 已 知 Thevenin voltage v T 為 open-circuit voltage, 而 Norton current i N 為 short-circuit current, 因 此 , 只 要 vT 與 i N 可 以 量 出 來 , Thevenin resistance 即 可 求 出 : 3-38 CHAPTER 3 Resistive Network Analysis RT = vT iN 但 問 題 是 vT 與 i N 如 何 量 測 ? ë ë 利 用 ammeter 去 量 測 short-circuit current( 相 關 於 Norton current i N)。 利 用 voltmeter 去 量 測 open-circuit voltage ( 相 關 於 Thevenin voltage v T ) . 其 中 , 令 人 注 意 的 是 量 測 者 本 身 的 內 部 電 阻 r m。 因 內 部 電 阻 的 存 在 , 使 得 量 出 的 i SC 與 vOC 不 是 ideal current, 也 不 是 ideal voltage; 然 而 其 間 的 關 係 為 何 ? rm iN =" iSC " 1+ RT RT v T =" v OC " 1 + rm Where r m=0 fo r ideal ammeter ,r m=∞ for ideal voltmeter. 3-39 CHAPTER 3 Resistive Network Analysis FOCUS ON MEASUREMENTS Experimental Determination of Thevenin Equivalent Circuit Measured vOC=6.5V Measured i SC=3.75mA rm=15Ω The unknown circuit is replaced by its Thevenin equivalent, and is connected to an ammeter for a measurement of the short-circuit current, and then to a voltmeter for the measurement of the opencircuit voltage. vT = vOC =6.5V rm iN = iSC 1 + RT RT = v T vOC = − rm iN iSC 3-40