Form 5
Transcription
Form 5
HKCEE 1993 Mathematics II 93 1. If f(x) = 102x, then f(4y) = A. B. C. D. E. 93 2. If s = A. B. C. D. E. C. D. 104y . 102 + 4y . 108y . 40y . 402y . E. 93 5. n [2a + (n 1)d], then d = 2 If 3x2 + ax 5 (bx 1)(2 x) 3, then A. B. C. D. E. 2( s an) . n(n 1) 2( s an) . (n 1) s . n(n 1) as n . a(n 1) 4( s an) . n(n 1) b a 2 a b 2 ab a ab ab ab 93 6. a = 5, b = 3 . a = 5, b = 3 . a = 3, b = 5 . a = 5, b = 3 . a = 3, b = 5 . y 5 4 D C 3 B 2 93 3. Simplify (x2 3 x + 1)(x2 + 3 x + 1). 1 A A. B. C. D. E. 93 4. a + a b A. B. O x4 + 1 x4 x2 + 1 x4 + x2 + 1 x4 3x2 2 3 x 1 x4 + 3x3 2 3 x2 + 3 x 1 2 3 4 5 x 3x + 2y = 0 Find the greatest value of 3x + 2y if (x, y) is a point lying in the region OABCD (including the boundary). a . a b A. B. C. D. E. 1 a b a 2 ab b ab 93-CE-MATHS II 1 1 15 13 12 9 8 93 7. y A. B. C. D. E. y = ax2 + bx -1 0 1 2 3 4 x 93 11. 13 . 26 . 33 . 39 . 65 . Find the H.C.F. and L.C.M. of ab2c and abc3 y = cx + d A. B. C. D. E. The diagram shows the graphs of y = ax2 + bx and y = cx + d. The solutions of the equation ax2 + bx = cx + d are A. B. C. D. E. 93 8. C. D. E. p=q=1. q p= . q 1 q p= . q 1 q 1 p= . q q 1 p= . q D. E. 93 13. C. D. E. If 3, a, b, c, 23 are in A.P., then a+b+c= 93-CE-MATHS II 2 3 1 1 3 2 3 3 If the simultaneous equations y x2 k have only one solution, yx find k. A. B. 1 4 12 16 18 L.C.M. a2b3c4 ab2c3 a2b3c4 abc abc If and are the roots of the quadratic equation x2 3x 1 = 0, find the value 1 1 of + . A. B. C. The expression x2 2x + k is divisible by (x + 1). Find the remainder when it is divided by (x + 3). A. B. C. D. E. 93 10. 93 12. If log(p + q) = log p + log q, then A. B. 93 9. 1, 1 1, 2 0, 1 0, 3 1, 3 H.C.F. a abc abc ab2c3 a2b3c4 1 1 4 4 1 4 1 93 14. 93 16. r h h The price of a cylindrical cake of radius r and height h varies directly as the volume. If r = 5 cm and h = 4 cm, the price is $30. Find the price when r = 4 cm and h = 6 cm. A. B. C. D. E. r $25 $28.80 $31.50 $36 $54 In the figure, the base of the conical vessel is inscribed in the bottom of the cubical box. If the box and the conical vessel have the same capacity, find h : r. 93 15. A. B. C. D. E. 24 : 3:1 6: 3: 8 : 3 2 rad 93 17. 1.5 cm h Find the perimeter of the sector in the figure. A. B. C. D. E. r 2.25 cm 3 cm 3 cm 60 4.5 cm 6 cm The figure shows a solid consisting of a cylinder of height h and a hemisphere of radius r. The area of the curved surface of the cylinder is twice that of the hemisphere. Find the ratio volume of cylinder : volume of hemisphere A. B. C. D. E. 93-CE-MATHS II 3 1:3 2:3 3:4 3:2 3:1 93 18. A merchant marks his goods 25% above the cost. He allows 10 % discount on the marked price for a cash sale. Find the percentage profit the merchant makes for a cash sale. A. B. C. D. E. 93 19. 12.5% 15% 22.5% 35% 37.5% D. E. 41 25 The largest value of 3sin2 + 2cos2 1 is C. D. E. cos 1 cos 2 1 sin sin A B cos4 sin4 + 2 sin2 = A. B. C. D. E. C A. B. 93 21. B C. x D. 8 E. 5 In the figure, cosA = A. B. A 4 . Find a. 5 153 137 93-CE-MATHS II P In the figure, AB = BC, BP = CP and BP CP. Find tan . 0 1 (1 sin2)2 (1 cos2)2 (cos2 sin2)2 C 1. 3 . 2 2. 3. 4. 93 23. sin cos tan 1 sin 1 cos E. 89 A. B. 2 A. B. C. D. 93 20. 93 22. C. 4 1 4 1 3 1 2 1 3 3 2 93 24. B. C. D. E. C o 15 2x - D 110o 120o 135o 140o 4x + 5o 93 27. o 2x - 10 A B A. B. C. D. E. In the figure, points A, B, C and D are concyclic. Find x. 20o 22.5o 25o 27.5o 30o A. B. C. D. E. 93 28. 93 25. A o 38 B C E 72o 34o 54o 70o 72o 76o 93 26. 93 29. D A 20o C B 93 30. In the figure, AB is a diameter. Find ADC. A. A(0, 0), B(5, 0) and C(2, 6) are the vertices of a triangle. P(9, 5), Q(6, 6) and R(2, 9) are three points. Which of the following triangles has/have area(s) greater than the area of ABC? I. II. III. ABP ABQ ABR A. B. C. D. E. I only II only III only I and II only II and III only A circle of radius 1 touches both the positive x-axis and the positive y-axis. Which of the following is/are true? I. II. III. Its centre is in the first quadrant. Its centre lies on the line x y = 0. Its centre lies on the line x + y = 1. A. B. C. D. E. I only II only III only I and II only I and III only What is the area of the circle x2 + y2 10x + 6y 2 = 0? A. 100o 93-CE-MATHS II 3. 4. 6. 7. 10 . D In the figure, BA // DE and AC = AD. Find . A. B. C. D. E. If the points (1, 1), (3, 2) and (7, k) are on the same straight line, then k = 5 32 B. C. D. E. 93 31. Two fair dice are thrown. What is the probability of getting a total of 5 or 10? A. B. C. D. E. 93 32. 34 36 134 138 1 9 5 36 1 6 7 36 2 9 93 34. A. B. C. D. E. I only II only III only I and II only II and III only If 9x + 2 = 36, then 3x = A. B. C. D. E. A group of n numbers has mean m. If the numbers 1, 2 and 6 are removed from the group, the mean of the remaining n 3 numbers remains unchanged. Find m. A. B. C. D. E. III. Standard deviation of B Mode of A > Mode of B 93 35. If a : b = 2 : 3 and b : c = 5 : 3, then abc = abc A. B. 1 2 3 6 n3 C. D. E. 93 33. A 93 36. B The figure shows the frequency polygons of two symmetric distributions A and B with the same mean. Which of the following is/are true? I. II. Interquartile range of Interquartile range of B Standard deviation of 93-CE-MATHS II A < A > 2 . 3 4 . 3 2. 6 . 9. 2 . 5 . 2 4. 17 . 2 31 . x Sign of f(x) 3.56 3.58 3.57 3.575 + + + From the table, a root of the equation f(x) = 0 is A. B. C. D. E. 6 3.57 (correct to 3 sig. fig.). 3.575 (correct to 4 sig. fig.). 3.5775 (correct to 5 sig. fig.). 3.5725 (correct to 4 sig. fig.). 3.58 (correct to 3 sig. fig.). 93 37. 93 40. Given that the positive numbers p, q, r, s are in G.P., which of the following must be true? I. II. III. A. B. C. D. E. 93 38. If the solution of the inequality x2 ax + 6 0 is c x 3, then A. B. C. D. E. kp, kq, kr, ks are in G.P., where k is a non-zero constant. ap, aq, ar, as are in G.P., where a is a positive constant. log p, log q, log r, log s are in A.P. a = 5, c = 2 . a = 5, c = 2 . a = 5, c = 2 . a = 1, c = 2 . a = 1, c = 2 . 93 41. D I only II only I and II only I and III only I, II and III only D A C A. x 1 4 1 3 B B. In the figure, the rectangle has perimeter 16 cm and area 15 cm2. Find the length of its diagonal AC. C. 3 8 3 4 3 2 D. A. B. C. D. E. 93 39. B In the figure, ABCD is a square and ABE is an equilateral triangle. Area of ABE = Area of ABCD y A C E 32 cm E. 34 cm 7 cm 226 cm 93 42. 241 cm In factorizing the expression a4 + a2b2 + b4, we find that Q P S A. B. C. D. E. (a b ) is a factor. (a2 + b2) is a factor. (a2 ab b2) is a factor. (a2 ab + b2) is a factor. it cannot be factorized. 2 R 2 93-CE-MATHS II O In the figure, the radii of the sectors OPQ and ORS are 5 cm and 3 cm Area of shaded region respectively. = Area of sector OPQ 7 A. B. C. D. E. 93 43. 4 . 25 2 . 5 9 . 25 16 . 25 21 . 25 Solve tan4 + 2tan2 3 = 0 for 0o < 360o. 45o, 135o only 45o, 225o only 45o, 60o, 225o, 240o 45o, 120o, 225o, 300o 45o, 135o, 225o, 315o A. B. C. D. E. 93 46. y 1 Which of the following gives the compound interest on $ 10 000 at 6% p.a. for one year, compounded monthly? A. B. C. D. E. 93 44. 93 45. 0 80o 170o 260o 350o x -1 0.06 12 12 $ 10 000(1.0612 1) $ 10 000 The figure shows the graph of the function 12 0.06 $ 10 000 1 12 0.06 12 $10 000 1 1 12 y = sin(350o x) . y = sin(x + 10o) . y = cos(x + 10o) . y = sin(x 10o) . y = cos(x 10o) . A. B. C. D. E. 0.6 12 $10 000 1 1 12 93 47. 2 of the students in a class 3 failed in an examination. After taking a re-examination, 40% of the failed students passed. Find the total pass percentage of the class. C Originally A. B. C. D. E. A 2 % 3 1 33 % 3 40% 60% 1 73 % 3 26 93-CE-MATHS II B In the figure, ABC is an equilateral triangle and the radii of the three circles are each equal to 1. Find the perimeter of the triangle. A. B. C. 8 12 3(1 + tan30o) 6(1 + tan30o) D. E. 1 3 1 o tan 30 1 6 1 o tan 30 93 48. E II. III. a : b : c = 1: 2 : 3 sinA : sinB : sinC = 1 : 2 : 3 A. B. C. D. E. I only II only III only I and II only I, II and III only H D 93 50. 3 F P C G A T M 12 B 5 B In the figure, ABCDEFGH is a cuboid. The diagonal AH makes an angle with the base ABCD. Find tan . In the figure, TP and TQ are tangent to the circle at P and Q respectively. if M is a point on the minor arc PQ and PMQ = , then PTQ = A. A. B. C. D. E. 3 5 3 12 3 13 3 178 B. C. D. E. . 2 90o . 180o . 180o 2 . 2 180o . 93 51. H 153 5 O 93 49. M C K b A A a c A : B : C = 1: 2 : 3 93-CE-MATHS II B In the figure, O is the centre of the circle. AB touches the circle at N. Which of the following is/are correct? B In the figure, if arc BC : arc CA : arc AB = 1 : 2 : 3, which of the following is/are true? I. N 9 I. II. III. M, N, K, O are concyclic. HNB ~ NKB OAN = NOB A. B. I only II only C. D. E. III only I and II only I, II and III only 93 52. 93 54. H G X A In the figure, the three circles touch one another. XY is their common tangent. The two larger circles are equal. If the radius of the smaller circle is 4 cm, find the radii of the larger circles. B E F A. B. C. D. E. In the figure ABCD and EFGH are two squares and ACH is an equilateral triangle. Find AB : EF. A. B. C. D. E. 1:2 1:3 1: 2 1: 3 2: 3 93 53. D D C F A B E D A C B F E A B F C E In the figure, a rectangular piece of paper ABCD is folded along EF so that C and A coincide. If AB = 12 cm, BC = 16 cm, find BE. A. B. C. D. E. 3.5 cm 4.5 cm 5 cm 8 cm 12.5 cm 93-CE-MATHS II Y C D 10 8 cm 10 cm 12 cm 14 cm 16 cm