Double Integrals - Short Summary (PowerPoint)
Transcription
Double Integrals - Short Summary (PowerPoint)
Double Integrals Introduction Volume and Double Integral z=f(x,y) ≥ 0 on rectangle R=[a,b]×[c,d] S={(x,y,z) in R3 | 0 ≤ z ≤ f(x,y), (x,y) in R} Volume of S = ? ij’s column: y z (xi, yj) f (xij*, yij*) Rij Sample point (xij*, yij*) x y x Area of Rij is Δ A = Δ x Δ y * * f ( x , y Volume of ij’s column: ij ij )A m n Total volume of all columns: f ( xij* , yij* ) A i 1 j 1 m n V f ( xij* , yij* ) A i 1 j 1 Definition m n V lim f ( xij* , yij* ) A m, n i 1 j 1 Definition: f ( x, y)dA The double integral R of f over the rectangle R is m n f ( x, y)dA lim f ( x , y R m, n i 1 j 1 * ij if the limit exists m Double Riemann sum: n * * f ( x , y ij ij )A i 1 j 1 * ij )A Note 1. If f is continuous then the limit exists and the integral is defined Note 2. The definition of double integral does not depend on the choice of sample points If the sample points are upper right-hand corners then m n f ( x, y)dA lim f ( x , y )A R m, n i 1 j 1 i j Example 1 z=16-x2-2y2 0≤x≤2 0≤y≤2 Estimate the volume of the solid above the square and below the graph m=n=4 V≈41.5 m=n=8 V≈44.875 Exact volume? V=48 m=n=16 V≈46.46875 Example 2 R [1,1] [2,2] 1 x 2 dA ? R z Integrals over arbitrary regions f (x,y) 0 A R A • A is a bounded plane region • f (x,y) is defined on A • Find a rectangle R containing A • Define new function on R: f ( x, y ) if ( x, y ) A f ( x, y ) 0, otherwise f ( x, y)dA f ( x, y)dA R Properties Linearity [ f ( x, y) g ( x, y)]dA f ( x, y)dA g ( x, y)dA A A A cf ( x, y)dA c f ( x, y)dA A A Comparison If f(x,y)≥g(x,y) for all (x,y) in R, then f ( x, y)dA g ( x, y)dA A A Additivity A2 A1 If A1 and A2 are non-overlapping regions then f ( x, y )dA f ( x, y )dA f ( x, y )dA A1 A2 A1 Area 1dA dA area of A A A A2 Computation • If f (x,y) is continuous on rectangle R=[a,b]×[c,d] then double integral is equal to iterated integral d b b d c a a c f ( x, y)dA f ( x, y)dxdy f ( x, y)dydx y R d y fixed c x a x b fixed More general case • If f (x,y) is continuous on A={(x,y) | x in [a,b] and h (x) ≤ y ≤ g (x)} then double integral is equal to iterated integral y b g ( x) g(x) f ( x, y)dA f ( x, y)dydx A A h(x) a x x b a h( x) Similarly • If f (x,y) is continuous on A={(x,y) | y in [c,d] and h (y) ≤ x ≤ g (y)} then double integral is equal to iterated integral y d g ( y) f ( x, y)dA f ( x, y)dxdy d A y h(y) c R c h( y ) g(y) x Note If f (x, y) = φ (x) ψ(y) then R b d f ( x, y )dA ( x) ( y )dxdy ( x)dx ( y )dy c a a c d b Examples y sin( xy ) dA , A [ 1 / 2 , 1 ] [ / 2 , ] R e A x2 dA where A is a triangle with vertices (0,0), (1,0) and (1,1)