File
Transcription
File
CHAB Chapter Homework Assignment S.Hogan Name: ____________________________________ CHAB AP1 HW Due on Friday 5/01/15 by 5:45PM. Directions: Use this sheet as a cover sheet for your homework assignment. If you do not staple this cover sheet to the front of your assignment, you will receive a zero. You may submit your HW early but NO LATE HW will be accepted. Assignment: EXAM 2012 2010 2009 (Form B) 2006 2005 (Form B) 1998 MC NUMBER OF PROBLEMS 6 problems 6 problems 6 problems 6 problems 6 problems 45 problems Grading: Item Possible Points All Problems Completed 2 Problems Labeled and in Numerical Order, Page Numbers are Labeled First Random Problem (correct with sufficient work) 2 Second Random Problem (correct with sufficient work) 4 Third Random Problem (correct with sufficient work) 4 Fourth Random Problem (correct with sufficient work) 4 TOTAL 20 4 Score 2012 AP® CALCULUS AB FREE-RESPONSE QUESTIONS CALCULUS AB SECTION II, Part A Time— 30 minutes Number of problems— 2 A graphing calculator is required for these problems. t (minutes) 0 4 9 15 20 W t (degrees Fahrenheit) 55.0 57.1 61.8 67.9 71.0 1. The temperature of water in a tub at time t is modeled by a strictly increasing, twice-differentiable function W, where W t is measured in degrees Fahrenheit and t is measured in minutes. At time t 0, the temperature of the water is 55F. The water is heated for 30 minutes, beginning at time t 0. Values of W t at selected times t for the first 20 minutes are given in the table above. (a) Use the data in the table to estimate W 12 . Show the computations that lead to your answer. Using correct units, interpret the meaning of your answer in the context of this problem. (b) Use the data in the table to evaluate 20 Ô0 W t dt. Using correct units, interpret the meaning of 20 Ô0 W t dt in the context of this problem. 1 20 W t dt. Use a left Riemann sum 20 Ô0 1 20 W t dt. Does this with the four subintervals indicated by the data in the table to approximate 20 Ô0 approximation overestimate or underestimate the average temperature of the water over these 20 minutes? Explain your reasoning. (c) For 0 t 20, the average temperature of the water in the tub is (d) For 20 t 25, the function W that models the water temperature has first derivative given by W t 0.4 t cos 0.06t . Based on the model, what is the temperature of the water at time t 25 ? © 2012 The College Board. Visit the College Board on the Web: www.collegeboard.org. GO ON TO THE NEXT PAGE. -2- 2012 AP® CALCULUS AB FREE-RESPONSE QUESTIONS 2. Let R be the region in the first quadrant bounded by the x-axis and the graphs of y shown in the figure above. ln x and y 5 x, as (a) Find the area of R. (b) Region R is the base of a solid. For the solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an expression involving one or more integrals that gives the volume of the solid. (c) The horizontal line y k divides R into two regions of equal area. Write, but do not solve, an equation involving one or more integrals whose solution gives the value of k. END OF PART A OF SECTION II © 2012 The College Board. Visit the College Board on the Web: www.collegeboard.org. GO ON TO THE NEXT PAGE. -3- 2012 AP® CALCULUS AB FREE-RESPONSE QUESTIONS CALCULUS AB SECTION II, Part B Time— 60 minutes Number of problems—4 No calculator is allowed for these problems. 3. Let f be the continuous function defined on > 4, 3@ whose graph, consisting of three line segments and a semicircle centered at the origin, is given above. Let g be the function given by g x x Ô1 f t dt. (a) Find the values of g2 and g 2 . (b) For each of g 3 and g 3 , find the value or state that it does not exist. (c) Find the x-coordinate of each point at which the graph of g has a horizontal tangent line. For each of these points, determine whether g has a relative minimum, relative maximum, or neither a minimum nor a maximum at the point. Justify your answers. (d) For 4 x 3, find all values of x for which the graph of g has a point of inflection. Explain your reasoning. © 2012 The College Board. Visit the College Board on the Web: www.collegeboard.org. GO ON TO THE NEXT PAGE. -4- 2012 AP® CALCULUS AB FREE-RESPONSE QUESTIONS 4. The function f is defined by f x 25 x 2 for 5 x 5. (a) Find f x . (b) Write an equation for the line tangent to the graph of f at x 3. Î f x for 5 x 3 Ï Ð x 7 for 3 x 5. 3 ? Use the definition of continuity to explain your answer. (c) Let g be the function defined by g x Is g continuous at x (d) Find the value of 5 Ô0 x 25 x 2 dx. © 2012 The College Board. Visit the College Board on the Web: www.collegeboard.org. GO ON TO THE NEXT PAGE. -5- 2012 AP® CALCULUS AB FREE-RESPONSE QUESTIONS 5. The rate at which a baby bird gains weight is proportional to the difference between its adult weight and its current weight. At time t 0, when the bird is first weighed, its weight is 20 grams. If Bt is the weight of the bird, in grams, at time t days after it is first weighed, then dB dt ! ! Let y 1 100 B . 5 Bt be the solution to the differential equation above with initial condition B0 20. (a) Is the bird gaining weight faster when it weighs 40 grams or when it weighs 70 grams? Explain your reasoning. (b) Find d2B d2B in terms of B. Use to explain why the graph of B cannot resemble the following graph. dt 2 dt 2 (c) Use separation of variables to find y condition B0 20. Bt , the particular solution to the differential equation with initial © 2012 The College Board. Visit the College Board on the Web: www.collegeboard.org. GO ON TO THE NEXT PAGE. -6- 2012 AP® CALCULUS AB FREE-RESPONSE QUESTIONS 6. For 0 t 12, a particle moves along the x-axis. The velocity of the particle at time t is given by ! vt cos t . The particle is at position x 2 at time t 0. 6 (a) For 0 t 12, when is the particle moving to the left? (b) Write, but do not evaluate, an integral expression that gives the total distance traveled by the particle from time t 0 to time t 6. (c) Find the acceleration of the particle at time t. Is the speed of the particle increasing, decreasing, or neither at time t 4 ? Explain your reasoning. (d) Find the position of the particle at time t 4. STOP END OF EXAM © 2012 The College Board. Visit the College Board on the Web: www.collegeboard.org. -7- 2010 AP® CALCULUS AB FREE-RESPONSE QUESTIONS CALCULUS AB SECTION II, Part A Time— 45 minutes Number of problems— 3 A graphing calculator is required for some problems or parts of problems. 1. There is no snow on Janet’s driveway when snow begins to fall at midnight. From midnight to 9 A.M., snow accumulates on the driveway at a rate modeled by f t 7tecos t cubic feet per hour, where t is measured in hours since midnight. Janet starts removing snow at 6 A.M. t 6 . The rate gt , in cubic feet per hour, at which Janet removes snow from the driveway at time t hours after midnight is modeled by g t for 0 t 6 Î0 Ñ Ï125 for 6 t 7 ÑÐ108 for 7 t 9 . (a) How many cubic feet of snow have accumulated on the driveway by 6 A.M.? (b) Find the rate of change of the volume of snow on the driveway at 8 A.M. (c) Let ht represent the total amount of snow, in cubic feet, that Janet has removed from the driveway at time t hours after midnight. Express h as a piecewise-defined function with domain 0 t 9. (d) How many cubic feet of snow are on the driveway at 9 A.M.? WRITE ALL WORK IN THE PINK EXAM BOOKLET. © 2010 The College Board. Visit the College Board on the Web: www.collegeboard.com. GO ON TO THE NEXT PAGE. -2- 2010 AP® CALCULUS AB FREE-RESPONSE QUESTIONS t (hours) 0 2 5 7 8 E t (hundreds of entries) 0 4 13 21 23 2. A zoo sponsored a one-day contest to name a new baby elephant. Zoo visitors deposited entries in a special box between noon t 0 and 8 P.M. t 8. The number of entries in the box t hours after noon is modeled by a differentiable function E for 0 t 8. Values of E t , in hundreds of entries, at various times t are shown in the table above. (a) Use the data in the table to approximate the rate, in hundreds of entries per hour, at which entries were being deposited at time t 6. Show the computations that lead to your answer. (b) Use a trapezoidal sum with the four subintervals given by the table to approximate the value of Using correct units, explain the meaning of 1 8 E t dt. 8 Ô0 1 8 E t dt in terms of the number of entries. 8 Ô0 (c) At 8 P.M., volunteers began to process the entries. They processed the entries at a rate modeled by the function P, where P t t 3 30t 2 298t 976 hundreds of entries per hour for 8 t 12. According to the model, how many entries had not yet been processed by midnight t 12 ? (d) According to the model from part (c), at what time were the entries being processed most quickly? Justify your answer. WRITE ALL WORK IN THE PINK EXAM BOOKLET. © 2010 The College Board. Visit the College Board on the Web: www.collegeboard.com. GO ON TO THE NEXT PAGE. -3- 2010 AP® CALCULUS AB FREE-RESPONSE QUESTIONS 3. There are 700 people in line for a popular amusement-park ride when the ride begins operation in the morning. Once it begins operation, the ride accepts passengers until the park closes 8 hours later. While there is a line, people move onto the ride at a rate of 800 people per hour. The graph above shows the rate, r t , at which people arrive at the ride throughout the day. Time t is measured in hours from the time the ride begins operation. (a) How many people arrive at the ride between t answer. 0 and t 3 ? Show the computations that lead to your (b) Is the number of people waiting in line to get on the ride increasing or decreasing between t t 3 ? Justify your answer. 2 and (c) At what time t is the line for the ride the longest? How many people are in line at that time? Justify your answers. (d) Write, but do not solve, an equation involving an integral expression of r whose solution gives the earliest time t at which there is no longer a line for the ride. WRITE ALL WORK IN THE PINK EXAM BOOKLET. END OF PART A OF SECTION II © 2010 The College Board. Visit the College Board on the Web: www.collegeboard.com. -4- 2010 AP® CALCULUS AB FREE-RESPONSE QUESTIONS CALCULUS AB SECTION II, Part B Time— 45 minutes Number of problems— 3 No calculator is allowed for these problems. 4. Let R be the region in the first quadrant bounded by the graph of y the y-axis, as shown in the figure above. 2 x , the horizontal line y 6, and (a) Find the area of R. (b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y 7. (c) Region R is the base of a solid. For each y, where 0 y 6, the cross section of the solid taken perpendicular to the y-axis is a rectangle whose height is 3 times the length of its base in region R. Write, but do not evaluate, an integral expression that gives the volume of the solid. WRITE ALL WORK IN THE PINK EXAM BOOKLET. © 2010 The College Board. Visit the College Board on the Web: www.collegeboard.com. GO ON TO THE NEXT PAGE. -5- 2010 AP® CALCULUS AB FREE-RESPONSE QUESTIONS 5. The function g is defined and differentiable on the closed interval > 7, 5@ and satisfies g0 5. The graph of y g x , the derivative of g, consists of a semicircle and three line segments, as shown in the figure above. (a) Find g3 and g 2 . g x on the interval 7 x 5. (b) Find the x-coordinate of each point of inflection of the graph of y Explain your reasoning. 1 2 x . Find the x-coordinate of each critical point of h, where 2 7 x 5, and classify each critical point as the location of a relative minimum, relative maximum, or neither a minimum nor a maximum. Explain your reasoning. (c) The function h is defined by h x g x dy d2y xy3 also satisfy dx dx 2 dy xy3 with f 1 2. solution to the differential equation dx 6. Solutions to the differential equation (a) Write an equation for the line tangent to the graph of y y3 1 3 x 2 y 2 . Let y f x at x f x be a particular 1. (b) Use the tangent line equation from part (a) to approximate f 1.1 . Given that f x ! 0 for 1 x 1.1, is the approximation for f 1.1 greater than or less than f 1.1 ? Explain your reasoning. (c) Find the particular solution y f x with initial condition f 1 2. WRITE ALL WORK IN THE PINK EXAM BOOKLET. END OF EXAM © 2010 The College Board. Visit the College Board on the Web: www.collegeboard.com. -6- 2009 AP® CALCULUS AB FREE-RESPONSE QUESTIONS (Form B) CALCULUS AB SECTION II, Part A Time— 45 minutes Number of problems— 3 A graphing calculator is required for some problems or parts of problems. 1. At a certain height, a tree trunk has a circular cross section. The radius Rt of that cross section grows at a rate modeled by the function dR dt centimeters per year 1 3 sin t 2 16 for 0 t 3, where time t is measured in years. At time t cross section at time t is denoted by At . 0, the radius is 6 centimeters. The area of the (a) Write an expression, involving an integral, for the radius Rt for 0 t 3. Use your expression to find R3 . (b) Find the rate at which the cross-sectional area At is increasing at time t measure. (c) Evaluate 3 years. Indicate units of 3 Ô0 At dt. Using appropriate units, interpret the meaning of that integral in terms of cross- sectional area. WRITE ALL WORK IN THE EXAM BOOKLET. © 2009 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com. GO ON TO THE NEXT PAGE. -2- 2009 AP® CALCULUS AB FREE-RESPONSE QUESTIONS (Form B) 2. A storm washed away sand from a beach, causing the edge of the water to get closer to a nearby road. The rate at which the distance between the road and the edge of the water was changing during the storm is modeled by f t t cos t 3 meters per hour, t hours after the storm began. The edge of the water was 35 meters from 1 sin t. the road when the storm began, and the storm lasted 5 hours. The derivative of f t is f t 2 t (a) What was the distance between the road and the edge of the water at the end of the storm? (b) Using correct units, interpret the value f 4 of the water. 1.007 in terms of the distance between the road and the edge (c) At what time during the 5 hours of the storm was the distance between the road and the edge of the water decreasing most rapidly? Justify your answer. (d) After the storm, a machine pumped sand back onto the beach so that the distance between the road and the edge of the water was growing at a rate of g p meters per day, where p is the number of days since pumping began. Write an equation involving an integral expression whose solution would give the number of days that sand must be pumped to restore the original distance between the road and the edge of the water. WRITE ALL WORK IN THE EXAM BOOKLET. © 2009 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com. GO ON TO THE NEXT PAGE. -3- 2009 AP® CALCULUS AB FREE-RESPONSE QUESTIONS (Form B) 3. A continuous function f is defined on the closed interval 4 x 6. The graph of f consists of a line segment and a curve that is tangent to the x-axis at x 3, as shown in the figure above. On the interval 0 x 6, the function f is twice differentiable, with f x ! 0. (a) Is f differentiable at x answer. 0 ? Use the definition of the derivative with one-sided limits to justify your (b) For how many values of a, 4 a 6, is the average rate of change of f on the interval >a, 6@ equal to 0 ? Give a reason for your answer. (c) Is there a value of a, 4 a 6, for which the Mean Value Theorem, applied to the interval >a, 6@, 1 guarantees a value c, a c 6, at which f c ? Justify your answer. 3 (d) The function g is defined by g x x Ô0 f t dt for 4 x 6. On what intervals contained in > 4, 6@ is the graph of g concave up? Explain your reasoning. WRITE ALL WORK IN THE EXAM BOOKLET. END OF PART A OF SECTION II © 2009 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com. -4- 2009 AP® CALCULUS AB FREE-RESPONSE QUESTIONS (Form B) CALCULUS AB SECTION II, Part B Time— 45 minutes Number of problems— 3 No calculator is allowed for these problems. 4. Let R be the region bounded by the graphs of y x and y x , as shown in the figure above. 2 (a) Find the area of R. (b) The region R is the base of a solid. For this solid, the cross sections perpendicular to the x-axis are squares. Find the volume of this solid. (c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is rotated about the horizontal line y 2. WRITE ALL WORK IN THE EXAM BOOKLET. © 2009 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com. GO ON TO THE NEXT PAGE. -5- 2009 AP® CALCULUS AB FREE-RESPONSE QUESTIONS (Form B) 5. Let f be a twice-differentiable function defined on the interval 1.2 x 3.2 with f 1 2. The graph of f , the derivative of f, is shown above. The graph of f crosses the x-axis at x 1 and x 3 and has a horizontal tangent at x e f x. 2. Let g be the function given by g x (a) Write an equation for the line tangent to the graph of g at x 1. (b) For 1.2 x 3.2, find all values of x at which g has a local maximum. Justify your answer. (c) The second derivative of g is g x 2 e f x ËÍ f x f x ÛÝ . Is g 1 positive, negative, or zero? Justify your answer. (d) Find the average rate of change of g, the derivative of g, over the interval >1, 3@. WRITE ALL WORK IN THE EXAM BOOKLET. © 2009 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com. GO ON TO THE NEXT PAGE. -6- 2009 AP® CALCULUS AB FREE-RESPONSE QUESTIONS (Form B) t (seconds) 0 8 20 25 32 40 v t (meters per second) 3 5 –10 –8 –4 7 6. The velocity of a particle moving along the x-axis is modeled by a differentiable function v, where the position x is measured in meters, and time t is measured in seconds. Selected values of vt are given in the table above. The particle is at position x 7 meters when t 0 seconds. (a) Estimate the acceleration of the particle at t Indicate units of measure. (b) Using correct units, explain the meaning of 36 seconds. Show the computations that lead to your answer. 40 Ô20 vt dt in the context of this problem. Use a trapezoidal sum with the three subintervals indicated by the data in the table to approximate 40 Ô20 vt dt. (c) For 0 t 40, must the particle change direction in any of the subintervals indicated by the data in the table? If so, identify the subintervals and explain your reasoning. If not, explain why not. (d) Suppose that the acceleration of the particle is positive for 0 t 8 seconds. Explain why the position of the particle at t 8 seconds must be greater than x 30 meters. WRITE ALL WORK IN THE EXAM BOOKLET. END OF EXAM © 2009 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com. -7- 2006 AP® CALCULUS AB FREE-RESPONSE QUESTIONS CALCULUS AB SECTION II, Part A Time— 45 minutes Number of problems— 3 A graphing calculator is required for some problems or parts of problems. 1. Let R be the shaded region bounded by the graph of y ln x and the line y x 2, as shown above. (a) Find the area of R. (b) Find the volume of the solid generated when R is rotated about the horizontal line y 3. (c) Write, but do not evaluate, an integral expression that can be used to find the volume of the solid generated when R is rotated about the y-axis. WRITE ALL WORK IN THE PINK EXAM BOOKLET. © 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents). 2 GO ON TO THE NEXT PAGE. 2006 AP® CALCULUS AB FREE-RESPONSE QUESTIONS 2. At an intersection in Thomasville, Oregon, cars turn left at the rate Lt time interval 0 t 18 hours. The graph of y 60 t sin 2 Lt is shown above. 3t cars per hour over the (a) To the nearest whole number, find the total number of cars turning left at the intersection over the time interval 0 t 18 hours. (b) Traffic engineers will consider turn restrictions when Lt 150 cars per hour. Find all values of t for which Lt 150 and compute the average value of L over this time interval. Indicate units of measure. (c) Traffic engineers will install a signal if there is any two-hour time interval during which the product of the total number of cars turning left and the total number of oncoming cars traveling straight through the intersection is greater than 200,000. In every two-hour time interval, 500 oncoming cars travel straight through the intersection. Does this intersection require a traffic signal? Explain the reasoning that leads to your conclusion. WRITE ALL WORK IN THE PINK EXAM BOOKLET. © 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents). 3 GO ON TO THE NEXT PAGE. 2006 AP® CALCULUS AB FREE-RESPONSE QUESTIONS 3. The graph of the function f shown above consists of six line segments. Let g be the function given by g x x Ô0 f t dt. (a) Find g 4 , g 4 , and g 4 . (b) Does g have a relative minimum, a relative maximum, or neither at x 1 ? Justify your answer. (c) Suppose that f is defined for all real numbers x and is periodic with a period of length 5. The graph above shows two periods of f. Given that g 5 2, find g 10 and write an equation for the line tangent to the graph of g at x 108. WRITE ALL WORK IN THE PINK EXAM BOOKLET. END OF PART A OF SECTION II © 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents). 4 2006 AP® CALCULUS AB FREE-RESPONSE QUESTIONS CALCULUS AB SECTION II, Part B Time— 45 minutes Number of problems— 3 No calculator is allowed for these problems. t (seconds) 0 10 20 30 40 50 60 70 80 vt (feet per second) 5 14 22 29 35 40 44 47 49 4. Rocket A has positive velocity vt after being launched upward from an initial height of 0 feet at time t 0 seconds. The velocity of the rocket is recorded for selected values of t over the interval 0 t 80 seconds, as shown in the table above. (a) Find the average acceleration of rocket A over the time interval 0 t 80 seconds. Indicate units of measure. (b) Using correct units, explain the meaning of 70 Ô10 vt dt in terms of the rocket’s flight. Use a midpoint Riemann sum with 3 subintervals of equal length to approximate 70 Ô10 vt dt. 3 feet per second per second. At time t 1 t 0 seconds, the initial height of the rocket is 0 feet, and the initial velocity is 2 feet per second. Which of the two rockets is traveling faster at time t 80 seconds? Explain your answer. (c) Rocket B is launched upward with an acceleration of at WRITE ALL WORK IN THE PINK EXAM BOOKLET. © 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents). 5 GO ON TO THE NEXT PAGE. 2006 AP® CALCULUS AB FREE-RESPONSE QUESTIONS 5. Consider the differential equation 1 y , where x 0. x dy dx (a) On the axes provided, sketch a slope field for the given differential equation at the eight points indicated. (Note: Use the axes provided in the pink exam booklet.) (b) Find the particular solution y state its domain. f x to the differential equation with the initial condition f 1 1 and 6. The twice-differentiable function f is defined for all real numbers and satisfies the following conditions: f 0 2, f 0 4, and f 0 3. (a) The function g is given by g x e ax f x for all real numbers, where a is a constant. Find g 0 and g 0 in terms of a. Show the work that leads to your answers. (b) The function h is given by h x cos kx f x for all real numbers, where k is a constant. Find h x and write an equation for the line tangent to the graph of h at x 0. WRITE ALL WORK IN THE PINK EXAM BOOKLET. END OF EXAM © 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents). 6 !"!#$!%$&%&'#!(# )**+#'$,-./0#0&.12%./2'#34567#(8# * 9:;<=>5?#@# * D1)* !* 3;4* "* /1*)(1*>C;:)&";7*'&81;*/$* ! ( # ) = E + 7&; ( , # ) *3;4* " ( # ) = $ # , 5 *D1)* %* /1*)(1*7(3414*%1'&";*&;*)(1*>&%7)*FC34%3;)*1;:0"714*/$* )(1*'%3#(7*">* !* 3;4* "* 37*7("A;*&;*)(1*>&'C%1*3/"815* =3@* G&;4*)(1*3%13*">* %5* =/@* G&;4*)(1*8"0C<1*">*)(1*7"0&4*'1;1%3)14*A(1;* %* &7*%18"0814*3/"C)*)(1* #H3I&75* =:@* J(1*%1'&";* %* &7*)(1*/371*">*3*7"0&45*G"%*)(&7*7"0&4K*)(1*:%"77*71:)&";7* #1%#1;4&:C03%*)"*)(1* #H3I&7*3%1*71<&:&%:017*A&)(*4&3<1)1%7*1I)1;4&;'* >%"<* & = ! ( # ) *)"* & = " ( # ) 5 *G&;4*)(1*8"0C<1*">*)(&7*7"0&45* * J(1*'%3#(7*">*!*3;4*"*&;)1%71:)*&;*)(1*>&%7)*FC34%3;)*3)* ( ' K ( ) = (E5EL.MNK E5OMPPM ) 5 * * * * =3@* 6%13* = ³- R³ * * * ' ' - * ( ! ( # ) − " ( # ) ) )# E*Q*&;)1'%3;4 * ,*Q* ® ¯ E*Q*3;7A1% * (E + 7&; ( , # ) − $ # , ) )# = -5P,N =/@* 9"0C<1* = π ' ³- µ = π´ ( ( ! ( # ) ), − ( " ( # ) ), ) )# ' ¶- * * * ((E + 7&; ( ,# )) , ( − $# * * ) , , ) )# ) * ' ' *,*Q*&;)1'%3;4 ° ****** −E *13:(*1%%"% ° ° *****S")1Q* - , *&>*&;)1'%30*;")*">*>"%< L*Q* ® * * , , ° *****************, ³+ % ( # ) − - ( # ) )# ° ° *E*Q*3;7A1% ¯ ( = P5,MM*"%*P5,MO , ´ π § ! ( #) − "( #) · =:@* 9"0C<1* = µ )# ¨ ¸ , ¹ ¶- , © ,*Q*&;)1'%3;4 L*Q* ® * ¯ E*Q*3;7A1% * , ´ π § E + 7&; ( , # ) − $ # , · =µ ¸ )# ,¨ , ¹ ¶- © * E*Q*:"%%1:)*0&<&)7*&;*3;*&;)1'%30*&;*=3@K*=/@K* "%*=:@* = -5-OO*"%*-5-OT * !"#$%&'()*+*,--.*/$*!"001'1*2"3%45*600*%&'()7*%171%8145* 9&7&)*3#:1;)%305:"001'1/"3%45:"<*=>"%*6?*#%">177&";307@*3;4*AAA5:"001'1/"3%45:"<B3#7)C41;)7*=>"%*6?*7)C41;)7*3;4*#3%1;)7@5* )# !"!#$!%$&%&'#!(# )**+#'$,-./0#0&.12%./2'#34567#(8# * :;<=>?5@#)# * 6*A3)1%*)3;D*3)*!3<#*E1A)";*("047*F,--*'300";7*">*A3)1%*3)*)&<1* ! = -5 *GC%&;'*)(1*)&<1*&;)1%830* - ≤ ! ≤ FH *("C%7I*A3)1%*&7*#C<#14*&;)"*)(1*)3;D*3)*)(1*%3)1* " ( ! ) = J. ! 7&; , ( K! ) *'300";7*#1%*("C%5* GC%&;'*)(1*73<1*)&<1*&;)1%830I*A3)1%*&7*%1<"814*>%"<*)(1*)3;D*3)*)(1*%3)1* #( ! ) = ,L.7&; , ( M! ) *'300";7*#1%*("C%5* =3@* N7*)(1*3<"C;)*">*A3)1%*&;*)(1*)3;D*&;:%137&;'*3)*)&<1* ! = F. O *P($*"%*A($*;")O* =/@* Q"*)(1*;13%17)*A("01*;C</1%I*("A*<3;$*'300";7*">*A3)1%*3%1*&;*)(1*)3;D*3)*)&<1* ! = FH O * =:@* 6)*A(3)*)&<1* !I* >"%* - ≤ ! ≤ FHI *&7*)(1*3<"C;)*">*A3)1%*&;*)(1*)3;D*3)*3;*3/7"0C)1*<&;&<C<O*R("A*)(1* A"%D*)(3)*01347*)"*$"C%*:";:0C7&";5* =4@* S"%* ! > FHI *;"*A3)1%*&7*#C<#14*&;)"*)(1*)3;DI*/C)*A3)1%*:";)&;C17*)"*/1*%1<"814*3)*)(1*%3)1* #( ! ) * C;)&0*)(1*)3;D*/1:"<17*1<#)$5*T1)* $* /1*)(1*)&<1*3)*A(&:(*)(1*)3;D*/1:"<17*1<#)$5*P%&)1I*/C)*4"*;")* 7"081I*3;*1UC3)&";*&;8"08&;'*3;*&;)1'%30*1V#%177&";*)(3)*:3;*/1*C714*)"*>&;4*)(1*830C1*">* $5* * =3@* E"W*)(1*3<"C;)*">*A3)1%*&7*;")*&;:%137&;'*3)* ! = F. * 7&;:1* " (F. ) − # (F. ) = −F,F5-J < -5 * F*X*3;7A1%*A&)(*%137";* * * =/@* F,-- + FH ³- * (" ( ! ) − #( ! ) ) %! = FM-J5LHH * *F*X*0&<&)7 ° M*X* ® F*X*&;)1'%3;4 * °¯ F*X*3;7A1% FMF-*'300";7* * * =:@* " ( ! ) − #( ! ) = - * ! = -I K5YJYHI F,5JLYH * *F*X*&;)1%&"%*:%&)&:30*#"&;)7 °° *F*X*3<"C;)*">*A3)1%*&7*0137)*3) * M*X* ® ° ****** ! = K5YJY*"%*K5YJ. ¯° F*X*3;30$7&7*>"%*3/7"0C)1*<&;&<C< !&=("C%7@* '300";7*">*A3)1%* -* K5YJ.* F,5JL.* FH* F,--* .,.* FKJL* FMF-* * Q(1*830C17*3)*)(1*1;4#"&;)7*3;4*)(1*:%&)&:30*#"&;)7* 7("A*)(3)*)(1*3/7"0C)1*<&;&<C<*"::C%7*A(1;* ! = K5YJY*"%*K5YJ.5* * * * =4@* $ ³FH * #( ! ) %! = FMF- * F*X*0&<&)7 * ,*X* ® ¯ F*X*1UC3)&"; * * !"#$%&'()*+*,--.*/$*!"001'1*2"3%45*600*%&'()7*%171%8145* 9&7&)*3#:1;)%305:"001'1/"3%45:"<*=>"%*6?*#%">177&";307@*3;4*AAA5:"001'1/"3%45:"<B3#7)C41;)7*=>"%*6?*7)C41;)7*3;4*#3%1;)7@5* 9# !"!#$!%$&%&'#!(# )**+#'$,-./0#0&.12%./2'#34567#(8# * :;<=>?5@#A# * 6*#3%)&:01*<"817*30";'*)(1* !D3E&7*7"*)(3)*&)7*810":&)$* "* 3)*)&<1* #F*>"%* - ≤ # ≤ .F *&7*'&81;*/$* ( ) "( # ) = 0; # , − G# + G 5 *H(1*#3%)&:01*&7*3)*#"7&)&";* ! = I *3)*)&<1* # = -5 * =3@* J&;4*)(1*3::101%3)&";*">*)(1*#3%)&:01*3)*)&<1* # = K5 * =/@* J&;4*300*)&<17* #* &;*)(1*"#1;*&;)1%830* - < # < . *3)*A(&:(*)(1*#3%)&:01*:(3;'17*4&%1:)&";5*LC%&;'*A(&:(* )&<1*&;)1%8307F*>"%* - ≤ # ≤ .F *4"17*)(1*#3%)&:01*)%3810*)"*)(1*01>)M* =:@* J&;4*)(1*#"7&)&";*">*)(1*#3%)&:01*3)*)&<1* # = ,5 * =4@* J&;4*)(1*381%3'1*7#114*">*)(1*#3%)&:01*"81%*)(1*&;)1%830* - ≤ # ≤ ,5 * * . =3@* $( K ) = "′( K ) = * N * * * O*P*3;7A1%* =/@* "( # ) = - * *O*P*71)7* "( # ) = ° G*P* ® O*P*4&%1:)&";*:(3;'1*3)* # = OF , * °¯ *O*P*&;)1%830*A&)(*%137"; , # − G# + G = O * # , − G# + , = - * ( # − , ) ( # −O) = - * # = OF , * * "( # ) > - *>"%* - < # < O * "( # ) < - *>"%*O < # < , * "( # ) > - *>"%* , < # < . * * H(1*#3%)&:01*:(3;'17*4&%1:)&";*A(1;* # = O *3;4* # = ,5 * H(1*#3%)&:01*)%38107*)"*)(1*01>)*A(1;*O < # < ,5 * * * * ( ³- 0; ( & − G& + G) '& * , % ( , ) = I + ³ 0; ( & , − G& + G) '& * - =:@* % ( # ) = % ( - ) + # = I5GQI*"%*I5GQR =4@* ) *O*P* , 0; & , − G& + G '& ³°° G*P* ® * O*P*(3;4017*&;&)&30*:";4&)&"; ° ¯° *O*P*3;7A1% * * * , * O , "( # ) '# = -5GN-*"%*-5GNO * , ³- O*P*&;)1'%30 * ,*P* ® ¯ O*P*3;7A1% * * !"#$%&'()*+*,--.*/$*!"001'1*2"3%45*600*%&'()7*%171%8145* 9&7&)*3#:1;)%305:"001'1/"3%45:"<*=>"%*6?*#%">177&";307@*3;4*AAA5:"001'1/"3%45:"<B3#7)C41;)7*=>"%*6?*7)C41;)7*3;4*#3%1;)7@5* 9# !"!#$!%$&%&'#!(# )**+#'$,-./0#0&.12%./2'#34567#(8# * 9:;<=>5?#@# * D(1*'%3#(*">*)(1*>C;:)&";* !* 3/"81*:";7&7)7*">*)(%11*0&;1* 71'<1;)75* =3@* E1)* "* /1*)(1*>C;:)&";*'&81;*/$* " ( # ) = # ³− F ! ( $ ) %$5 * G"%*13:(*">* " ( −H) I * " ′( −H) I *3;4* " ′′( −H) I *>&;4*)(1* 830C1*"%*7)3)1*)(3)*&)*4"17*;")*1J&7)5* =/@* G"%*)(1*>C;:)&";* "* 41>&;14*&;*#3%)*=3@I*>&;4*)(1** #K:""%4&;3)1*">*13:(*#"&;)*">*&;>01:)&";*">*)(1*'%3#(* ">* "* ";*)(1*"#1;*&;)1%830* − F < # < L5 *MJ#03&;* $"C%*%137";&;'5 * =:@* E1)* &* /1*)(1*>C;:)&";*'&81;*/$* &( # ) = L ³ # ! ( $ ) %$5 *G&;4*300*830C17*">* #*&;*)(1*:0"714*&;)1%830* − F ≤ # ≤ L *>"%*A(&:(* &( # ) = -5 * =4@* G"%*)(1*>C;:)&";* &* 41>&;14*&;*#3%)*=:@I*>&;4*300*&;)1%8307*";*A(&:(* &* &7*41:%137&;'5*MJ#03&;*$"C%* %137";&;'5* * −H H H. ³− F ! ( $ ) %$ = − , ( L)( .) = − , * " ′( −H) = ! ( −H) = −, * " ′′( −H) *4"17*;")*1J&7)*/1:3C71* !* &7*;")*4&>>1%1;)&3/01** *3)* # = −H5 * * * * =3@* " ( −H) = * H*N* " ( −H) ° L*N* ® H*N* " ′( −H) * °¯ H*N* " ′′( −H) * =/@* # = H * " ′ = ! *:(3;'17*>%"<*&;:%137&;'*)"*41:%137&;'** *3)* # = H5 * * * * H*N* # = H*=";0$@ * ,*N* ® ¯*H*N*%137"; =:@* # = −HI HI L * ,*N*:"%%1:)*830C17* −H *13:(*<&77&;'*"%*1J)%3*830C1* * * * =4@* *&* &7*41:%137&;'*";* [ -I ,] * &′ = − ! < - *A(1;* ! > - * * * H*N*&;)1%830 * ,*N* ® ¯ H*N*%137"; * * !"#$%&'()*+*,--.*/$*!"001'1*2"3%45*600*%&'()7*%171%8145* 9&7&)*3#:1;)%305:"001'1/"3%45:"<*=>"%*6?*#%">177&";307@*3;4*AAA5:"001'1/"3%45:"<B3#7)C41;)7*=>"%*6?*7)C41;)7*3;4*#3%1;)7@5* +# !"!#$!%$&%&'#!(# )**+#'$,-./0#0&.12%./2'#34567#(8# * :;<=>?5@#+# * !";7&41%*)(1*:C%81*'&81;*/$* ! , = , + "!5 * =3@* D("A*)(3)* #! ! = 5* #" , ! − " G =/@* E&;4*300*#"&;)7* ( "F ! ) *";*)(1*:C%81*A(1%1*)(1*0&;1*)3;'1;)*)"*)(1*:C%81*(37*70"#1* 5 * , =:@* D("A*)(3)*)(1%1*3%1*;"*#"&;)7* ( "F ! ) *";*)(1*:C%81*A(1%1*)(1*0&;1*)3;'1;)*)"*)(1*:C%81*&7*("%&H";)305* =4@* I1)* "* 3;4* !* /1*>C;:)&";7*">*)&<1* $* )(3)*3%1*%103)14*/$*)(1*1JC3)&";* ! , = , + "!5 *6)*)&<1* $ = .F *)(1* #! #" = L5 *E&;4*)(1*830C1*">* *3)*)&<1* $ = .5 * 830C1*">* !* &7*K*3;4* #$ #$ * =3@* , ! ! ′ = ! + " ! ′ * ( , ! − " ) !′ = ! * ! !′ = * ,! − " * =/@* G*M*&<#0&:&)*4&>>1%1;)&3)&"; ,*M* ® * ¯*G*M*7"0817*>"%* ! ′ G *G*M* ! = ° ,! − " , * ,*M* ® °¯ *G*M*3;7A1% ! G = * ,! − " , ,! = ,! − " * " = -* ! = ± ,* ( -F , ) F ( -F − , ) * * =:@* * ! = -* ,! − " ! = -* N(1*:C%81*(37*;"*("%&H";)30*)3;'1;)*7&;:1* *G*M* ! = * ,*M* ® ¯ G*M*1O#03;3)&"; -, ≠ , + " ⋅ - *>"%*3;$*"5* * =4@* P(1;* ! = KF * K, = , + K " *7"* " = * Q 5* K G*M*7"0817*>"%* " ° K*M* ® G*M*:(3&;*%C01 * °¯ *G*M*3;7A1% #! #! #" ! #" * = ⋅ = ⋅ , ! − " #$ #$ #" #$ K R #" #" 6)* $ = .F * L = ⋅ = ⋅ * Q #$ GG #$ L− K #" ,, = * #$ $ = . K * !"#$%&'()*+*,--.*/$*!"001'1*2"3%45*600*%&'()7*%171%8145* 9&7&)*3#:1;)%305:"001'1/"3%45:"<*=>"%*6?*#%">177&";307@*3;4*AAA5:"001'1/"3%45:"<B3#7)C41;)7*=>"%*6?*7)C41;)7*3;4*#3%1;)7@5* 9# !"!#$!%$&%&'#!(# )**+#'$,-./0#0&.12%./2'#34567#(8# * :;<=>?5@#A# * !" − #" , 5 *E1)* = !# , " = $ ( # ) */1*)(1*#3%)&:C03%*7"0C)&";*)"*)(&7*4&>>1%1;)&30* 1DC3)&";*A&)(*)(1*&;&)&30*:";4&)&";* $ ( −F) = ,5 * !";7&41%*)(1*4&>>1%1;)&30*1DC3)&";* =3@* G;*)(1*3H17*#%"8&414I*7J1):(*3*70"#1*>&104*>"%*)(1* '&81;*4&>>1%1;)&30*1DC3)&";*3)*)(1*)A1081*#"&;)7* &;4&:3)145* !"#$%&''()%'$*%'+,%)'-.#/01%1'02'$*%'$%)$'3##45%$67' =/@* K%&)1*3;*1DC3)&";*>"%*)(1*0&;1*)3;'1;)*)"*)(1*'%3#(*">* $* 3)* # = −F5 * =:@* L&;4*)(1*7"0C)&";* " = $ ( # ) *)"*)(1*'&81;*4&>>1%1;)&30*1DC3)&";*A&)(*)(1*&;&)&30*:";4&)&";* $ ( −F) = ,5 * * =3@* * *F*M*N1%"*70"#17 * ,*M* ® ¯ F*M*;";N1%"*70"#17 * * * * * * * * * * * * * − ( −F) P = ,* , " − , = , ( # + F) * =/@* O0"#1* = =:@* F*M*1DC3)&";* * F # !" = − !# * , , " *F*M*71#3%3)17*83%&3/017 ° *,*M*3;)&41%&83)&817 ° R*M* ® F*M*:";7)3;)*">*&;)1'%3)&"; * ° F*M*C717*&;&)&30*:";4&)&"; ° ¯° *F*M*7"0817*>"%* " F #, =− + %* P " F F F − = − + %Q % = − * , P P F P "= , = , * F # # +F + P P − * S")1M*<3H* T R *UFV,V-V-V-W*&>*;"* :";7)3;)*">*&;)1'%3)&";* S")1M* - R &>*;"*71#3%3)&";*">*83%&3/017* * !"#$%&'()*+*,--.*/$*!"001'1*2"3%45*600*%&'()7*%171%8145* 9&7&)*3#:1;)%305:"001'1/"3%45:"<*=>"%*6?*#%">177&";307@*3;4*AAA5:"001'1/"3%45:"<B3#7)C41;)7*=>"%*6?*7)C41;)7*3;4*#3%1;)7@5* 9# ! ! ! 1998 AP Calculus AB: Section I, Part A ""!#$%&'()*+,!-./0&/.',1! ! !"#$"!!#$%&''!()*&+,-'&!'.&/-0-&12!)*&!1(34-$!(0!4!05$/)-($!%&!!-'!4''53&1!)(!6&!)*&!'&)!(0!4%%!+&4%! $536&+'!!'!!0(+!,*-/*!!& 7'8!!-'!4!+&4%!$536&+9! ! : > ' @ ' ? ?A B! :9! ;*4)!-'!)*&!'</((+1-$4)&!(0!)*&!.(-$)!(0!-$0%&/)-($!($!)*&!=+4.*!(0! ( > ! :E 7F8! ! 7G8! H@! 7I8! :E ! ! 7C8! @! 7D8! E ! > ! ?9! ! J*&!=+4.*!(0!4!.-&/&,-'&<%-$&4+!05$/)-($!!&%2!0(+! : d ' d A 2!-'!'*(,$!46(K&9!;*4)!-'!)*&!K4%5&!(0! ! ³ : & 7 '8!)' B! ! ! ! 7C8! :! >9! ³: ! ! A ? : '? 7D8! ?9@! 7F8! A! 7G8! @9@! 7I8! L! 7G8! :! 7I8! ? %$ ? ! )' ! : 7C8! ! ? 7D8! M ! ?A 7F8! : ! ? ! ! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 125! !!!!!!! ! ! "#! ! 1998 AP Calculus AB: Section I, Part A $%!!!!!&'!()*+&*,),'!%)-! " d # d $ !.*/!/&%%0-0*+&.120!%)-! " # $ 3!45&(5!)%!+50!%)22)4&*6!(),2/!10! %.2'07! ! ! 8$: ! 8": !%)-!');0!%!',(5!+5.+! " % $# ! $" ! 89:! ! c8%: ! 8<:! ! c8%: = !%)-!');0!%!',(5!+5.+! " % $# ! ! 8>:! ! !5.'!.!;&*&;,;!?.2,0!)*! " d # d $# ! ! 8@:! ! !5.'!.!;.A&;,;!?.2,0!)*! " d # d $# ! ! 8B:! ³" $ ! 8 #: &# !0A&'+'#! ! # C#! ³ = '&* ' &' ! ! ! 89:!! '&* # ! E#! $%! # F #( D=3 !+50*!450*! # ! 8<:!! ()' # !!!!!!! 8>:!! ()' # !!!!! F3!! &( &# 8@:!! ()' # D !!!!! 8B:!! D ()' # ! ! ! ! G 89:! ! F 8<:! HF! 8>:! F ! G 8>:! )F D ) ! F F 8@:! I ! F 8B:! G ! F ! G#! ) ³D § #F D · ¨¨ ¸¸ &# ! # © ¹ ! ! D 89:! ) ! ) F 8<:! ) ) ! F !!8@:! !! ) F ! )F I 8B:! ! F F ! J#! ! ! ! ! ! ! ! K0+!!!!.*/!*!10!/&%%0-0*+&.120!%,*(+&)*'!4&+5!+50!%)22)4&*6!L-)L0-+&0'M! ! ! ! ! 8&:! 8&&:! $%! +8 #: 89:! * 8 #: ! = !!%)-!.22!!#! ! 8=: D ! ! 8 #: * 8 #: !.*/! +c8 #: ! c8 #: ! ! 8 #: * c8 #:3 !+50*! ! 8 #: ! 8<:! * 8 #: ! 8>:! )# ! 8@:! = ! 8B:! D ! ! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 126! !!!!!!! ! ! "#! ! ! ! ! 1998 AP Calculus AB: Section I, Part A ! $%&!'()*!)'!)+(,!+-!./00&(1!2&0!%)30,!4%0)35%!/!2+2&(+-&!)-!63(7!"!+1!5+8&-!.7!4%&!50/2%!1%)*-! /.)8&#!9'!4%&!')(()*+-5,!*%+:%!.&14!/220);+</4&1!4%&!4)4/(!-3<.&0!)'!./00&(1!)'!)+(!4%/4!2/11&=! 4%0)35%!4%&!2+2&(+-&!4%/4!=/7>! ?@A! BCC ! ?DA! ECC ! ?FA! G, HCC ! ?IA! J, CCC ! ?KA! H,LCC ! G !)'!4%&!'3-:4+)-!!"!!5+8&-!.7! " ? !A MC#! N%/4!+1!4%&!+-14/-4/-&)31!0/4&!)'!:%/-5&!/4! ! !G G !>! ! M ! ! ?@A! G ! ?DA! M ! E M ! G ?FA! ?IA! G! ?KA! E! ?IA! $ # ! ?KA! ?IA! H! ?KA! -)-&;+14&-4! ! $ MM#! O'!!"!!+1!/!(+-&/0!'3-:4+)-!/-=! C # $, !4%&-! ³ " cc? !A %! ! # ! ! ?@A! C ! ?DA! M! ?FA! #$ ! G $G # G ! G ! MG#! O'! " ? !A ! ! ° (- ! ')0!C ! d G !!4%&-! (+< " ? !A !+1! ® G ! oG °¯ ! (- G ')0!G ! d H, ?@A! (- G ! ?DA! (- L ! ?FA! (-ME ! ! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 127! !!!!!!! ! ! ! 1998 AP Calculus AB: Section I, Part A ! "#$! %&'!()*+&!,-!.&'!-/01.2,0!!!!!3&,40!20!.&'!-2(/)'!*5,6'!&*3!*!6').21*7!.*0('0.!*.!.&'!+,20.! 89 : !*0;! &,)2<,0.*7!.*0('0.3!*.!.&'!+,20.3! "9 " !*0;! #9" $!=,)!4&*.!6*7/'3!,-!!"9! 8 " > 9!23!!!!!0,.! ;2--')'0.2*57'?! ! ! ! @AB!!:!,07C!!!!!@DB!!:!*0;!8!,07C!!!!!@EB!!"!*0;!#!,07C!!!!!@FB!!:9!"9!*0;!#!,07C!!!!!!@GB! :9 "9 89 !*0;!!# ! ">$! A!+*).217'!H,6'3!*7,0(!.&'!"I*J23!3,!.&*.!2.3!+,32.2,0!*.!.2H'!#!23!(26'0!5C! "@# B # 8 K# L $!=,)! 4&*.!6*7/'!,-!#!23!.&'!6'7,12.C!,-!.&'!+*).217'!<'),?! ! ! @AB! "! @DB! 8! @EB! #! @FB! >! @GB! L! ! "L$! M-!! $ @ "B ! ! ! " ³: # # " %# 9 !.&'0! $ c@8B ! @DB! 8 ! @AB! # ! @EB! 8! @FB! #! @GB! "N! "K$! M-! ! @ "B 320 & " 9 !.&'0! ! c@"B!O ! ! ! @AB! 1,3@& " B ! ! @DB! 1,3@& " B & " ! ! @EB! 1,3@& " B & " ! ! @FB! & " 1,3@& " B ! ! @GB! & " 1,3@& " B ! ! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 128! !!!!!!! ! ! 1998 AP Calculus AB: Section I, Part A ! ! ! "#$! %&'!()*+&!,-!*!./01'230--')'4.0*56'!-741.0,4!!!""08!8&,/4!04!.&'!-0(7)'!*5,9'$!:&01&!,-!.&'! -,66,/04(!08!.)7';! ! ! <=>! ! " ! c " ! cc " ! ! <?>! ! " ! cc " ! c " ! ! <@>! ! c " ! " ! cc " ! ! <A>! ! cc " ! " ! c " ! ! <B>! ! cc " ! c " ! " ! ! "C$! =4!'D7*.0,4!,-!.&'!604'!.*4('4.!.,!.&'!()*+&!,-! # ! ! ! G $ "! <=>! # "H$! I-! ! cc< $> ! ! ! <?>! # $ "! # $! <A>! # $ "! <B>! # E! $ $ " $ G F!.&'4!.&'!()*+&!,-!!!!!&*8!04-6'1.0,4!+,04.8!/&'4! $ ! G <=>!!!J"!,46K!!!!<?>!!!G!,46K!!!!!!<@>!!!J"!*43!E!,46K!!!!!!<A>!!!J"!*43!G!,46K!!!!<B>!!!J"F!EF!*43!G!,46K! GE$! :&*.!*)'!*66!9*67'8!,-!%!-,)!/&01&!! ³ ! ! ! <@>! $ 1,8 $ !*.!.&'!+,04.! EF" !08! <=>! JL! G"$! I-! &# &' <?>! E ! % L $ G &$ E ;! <@>! L! <A>! JL!*43!L! <B>! JLF!EF!*43!L! %# !*43!%!08!*!4,4M'),!1,48.*4.F!.&'4!#!1,763!5'! ! ! <=>! G( %'# ! <?>! G( %' ! <@>! ( %' L ! <A>! %'# N ! <B>! " G " %# ! G G ! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 129! !!!!!!! ! ! ! ""#! $%&!'()*+,-)!!!!!,.!/,0&)!12! ! 4 "5 ,)*9&:.,)/;! ! § = · > f¸! ! 4<5! ¨ " © ¹ ! = · § = 4?5! ¨ > ¸! " "¹ © ! 4@5! A> f ! ! 4B5! f> A ! ! = · § 4C5! ¨ f> ¸! "¹ © 1998 AP Calculus AB: Section I, Part A " 3 " " " #!6)!7%,*%!-'!+%&!'-88-7,)/!,)+&90:8.!,.!!!!! ! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 130! !!!!!!! ! ! ! 1998 AP Calculus AB: Section I, Part A ! "#$! %&'!()*+&!,-!!!!!./!/&,01!.1!2&'!-.(3)'!*4,5'$!6&.7&!,-!2&'!-,88,0.1(!7,389!4'!2&'!()*+&!,-!2&'! 9').5*2.5'!,-!!!":! ! ! ! ! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 131! !!!!!!! ! ! 1998 AP Calculus AB: Section I, Part A ! "#$! %&'!()*+(,(!)--'.'/)0+12!)00)+2'3!12!0&'!+20'/4).! 5 d ! d 6 !78!0&'!9)/0+-.'!:&1;'!4'.1-+08!+;!<+4'2! 78! "=! > ! 6 6! " ?"! # !+;! ! ! ! =@>! A! =B>! ?"! =C>! ?#! =D>! "?! $ " !)23! # "F$! G&)0!+;!0&'!)/')!1H!0&'!/'<+12!7'0:''2!0&'!</)9&;!1H! # ! " K ! =B>! ! =C>! #! ! =@>! 6 6 ! =D>! $! 5! ?! "! % = $> ?! &' "! =E>! #5! $ !H/1(!$!I!5!01!$!I!"J! ?# ! 6 =E>! ?L ! 6 ! "L$! %&'!H,2-0+12!!%!!+;!-120+2,1,;!12!0&'!-.1;'3!+20'/4).! > 5M "@ !)23!&);!4).,';!0&)0!)/'!<+4'2!+2!0&'!0)7.'! )714'$!%&'!'N,)0+12! % = $> ? !(,;0!&)4'!)0!.');0!0:1!;1.,0+12;!+2!0&'!+20'/4).! > 5M "@ !+H!! & ! " ! ! =@>! 5 ! =B>! ? ! " =C>! ?! =D>! "! =E>! 6! ! "O$! G&)0!+;!0&'!)4'/)<'!4).,'!1H! # $ " $6 ? !12!0&'!+20'/4).! > 5M "@ J! ! ! =@>! "L ! A =B>! F" ! A =C>! "L ! 6 =D>! F" ! 6 =E>! "#! ! "K$! PH! % = $> ! ! =@>! §S· 0)2=" $>M !0&'2! % c ¨ ¸ ! ©L¹ 6! =B>! " 6 ! =C>! #! =D>! # 6 ! =E>! K! ! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 132! !!!!!!! ! ! ! 1998 AP Calculus AB: Section I, Part B "#!$%&'()*+,-./0%&1!2.34'3.(5-!6)7'%-)8! ! !"#$%"!!#$%!&'(!()*+,!-./(01+*2!3*2.(!45!,'(!+400(+,!*-67(0!84(6!-4,!*27*96!*::(*0!*/4-;!,'(!+'41+(6! ;13(-<!='(-!,'16!'*::(-6>!6(2(+,!504/!*/4-;!,'(!+'41+(6!,'(!-./?(0!,'*,!?(6,!*::04)1/*,(6! ,'(!()*+,!-./(01+*2!3*2.(<! ! ! #@%!A-2(66!4,'(0716(!6:(+151(8>!,'(!84/*1-!45!*!5.-+,14-!&'!!16!*66./(8!,4!?(!,'(!6(,!45!*22!0(*2! -./?(06!!(!!540!7'1+'!!' #(%!!16!*!0(*2!-./?(0<! ! ! ! BC<! !&'(!;0*:'!45!*!5.-+,14-!!'!!16!6'47-!*?43(<!='1+'!45!,'(!5422471-;!6,*,(/(-,6!*?4.,!!'!!16!5*26(D! ! ! #E%! ' !16!+4-,1-.4.6!*,! ( ) <! ' &'*6!*!0(2*,13(!/*)1/./!*,! ( ! #F%! ! #G%! ( ! #H%! ! #J%! ) <! ) !16!1-!,'(!84/*1-!45!!'<! 21/ ' # (% !16!(I.*2!,4! 21/ ' # (% <! ( o) ( o) 21/ ' # (%!!()16,6 <! ( o) ! BB<! K(,!!'!!?(!,'(!5.-+,14-!;13(-!?9! ' # (% L$ @ ( !*-8!2(,!*!?(!,'(!5.-+,14-!;13(-!?9! * # (% C (L <!E,!7'*,! 3*2.(!45!(!84!,'(!;0*:'6!45!!'!!*-8!*!'*3(!:*0*22(2!,*-;(-,!21-(6D! ! ! ! ! ! ! #E%! #F%! #G%! #H%! #J%! M<BM$ ! M<NCB ! M<LO$ ! M<LM@ ! M<@NP ! ! ! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 133! !!!!!!! ! ! 1998 AP Calculus AB: Section I, Part B ! "#$! %&'!()*+,-!./!)!0+(01'!+-!*'0(')-+23!)4!)!0.2-4)24!()4'!./!5$6!0'24+7'4'(!8'(!-'0.2*$!92!4'(7-!./!4&'! 0+(0,7/'('20'!!:!;&)4!+-!4&'!()4'!./!0&)23'!./!4&'!)(')!./!4&'!0+(01':!+2!-<,)('!0'24+7'4'(-!8'(! -'0.2*=! ! ! >?@! 5$A S ! ! ! >B@! 5$6 ! ! ! >C@! ! >D@! !!! 5$6 ! ! ! >E@! !!! 5$6 S ! ! 5$6 ! ! AS A A ! ! "F$! %&'!3()8&-!./!4&'!*'(+G)4+G'-!./!4&'!/,204+.2-!!"#$%#$)2*!&!)('!-&.;2!)H.G'$!I&+0&!./!4&'!/,204+.2-! "#$%#$.(!&!&)G'!)!('1)4+G'!7)J+7,7!.2!4&'!.8'2!+24'(G)1! ' ( ) =! ! ! >?@! "!!.21K! ! >B@! %!.21K! ! >C@! &!.21K! ! >D@! "!!)2*!%!.21K! ! >E@! "#$%#$)2*!&! ! #5$! %&'!/+(-4!*'(+G)4+G'!./!4&'!/,204+.2$$"$$+-!3+G'2!HK! " c> (@ *.'-!!"!!&)G'!.2!4&'!.8'2!+24'(G)1! 5:65 =! ! ! ! ! ! ! >?@! >B@! >C@! >D@! >E@! 0.- A ( 6 $$M.;!7)2K!0(+4+0)1!G)1,'-! ( L N2'! %&(''! O.,(! O+G'! P'G'2! ! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 134! !!!!!!! ! ! 1998 AP Calculus AB: Section I, Part B ! ! "#$! ! ! ! ! ! ! ! %&'!!!!!(&!')&!*+,-'./,!0.1&,!(2! ! 3 "4 ! =$! ! ==$! ! ===$! " $!5).-)!/*!')&!*/66/7.,0!8'9'&:&,'8!9(/+'!!!!!9;&!';+&<! !!!.8!-/,'.,+/+8!9'! " > $! !!!.8!?.**&;&,'.9(6&!9'! " > $! !!!)98!9,!9(8/6+'&!:.,.:+:!9'! " > $! 3@4! =!/,62!!!!!!3A4!!!==!/,62!!!!!!3B4!!!===!/,62!!!!!!3C4!!!=!9,?!===!/,62!!!!!!3D4!!!==!9,?!===!/,62! "E$! =*!!!!!.8!9!-/,'.,+/+8!*+,-'./,!9,?!.*! # c3 "4 ! ! 3@4! E # 3G4 E # 3#4 ! ! 3A4! ! 3B4! E # 3H4 E # 3E4 ! ! 3C4! # 3H4 # 3E4 ! ! 3D4! ! 3 "4 !*/;!966!;&96!,+:(&;8!"F!')&,! ³ G # ! E " $" ! # # # 3G4 # 3#4 ! E E # # # 3H4 # 3E4 ! E E ! "G$! =*! % z >F !')&,! 6.: " o% ! ! 3@4! # %E ! "E %E "I %I 3A4! !.8! # E% E ! 3B4! # H% E ! 3C4! > ! 3D4! ,/,&J.8'&,'! ! $& '& F!7)&;&!'!.8!9!-/,8'9,'!9,?!(!.8!:&98+;&?!.,! $( 2&9;8$!=*!')&!L/L+69'./,!?/+(6&8!&1&;2!#>!2&9;8F!')&,!')&!196+&!/*!'!.8! "I$! K/L+69'./,!&!0;/78!9--/;?.,0!'/!')&!&M+9'./,! ! ! ! 3@4! >$>HN! 3A4! >$E>>! 3B4! >$G>#! 3C4! G$GEE! 3D4! O$>>>! ! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 135! !!!!!!! ! ! 1998 AP Calculus AB: Section I, Part B ! ! "! !! " & !' #! $! %! () *) +) ") ! %#,! -./!01234562!!"!!57!3624521617!62!4./!3867/9!524/:;<8! > "=%@ !<29!.<7!;<81/7!4.<4!<:/!>5;/2!52!4./!4<?8/! <?6;/,!@752>!4./!71?524/:;<87! > "=#@ = >#= $ @ = !<29! > $=%@ =!A.<4!57!4./!4:<B/C659<8!<BB:6D5E<4562!60! % ³ " " & !' #! F! ! ! ! &G'! (()! &H'! (*)! &I'! (J)! &K'! (L)! &M'! "()! ! ! %J,! -./!?<7/!60!<!76859!57!<!:/>562!52!4./!05:74!N1<9:<24!?6129/9!?O!4./!!P<D57=!4./!$P<D57=!<29!4./!852/! ! " $ % =!<7!7.6A2!52!4./!05>1:/!<?6;/,!Q0!3:677!7/345627!60!4./!76859!B/:B/295318<:!46!4./!!P<D57! <:/!7/E535:38/7=!A.<4!57!4./!;681E/!60!4./!76859F! ! ! &G'! (",#JJ! &H'! (+,JJ(! &I'! (J,$##! &K'! J$,)"(! &M'! (*+,)+(! ! %$,! R.53.!60!4./!06886A52>!57!<2!/N1<4562!60!4./!852/!4<2>/24!46!4./!>:<B.!60! " & !' B6524!A./:/! " c& !' (F ! ! &G'! $ % ! # ! ! ! &H'! $ ! $ ! ! &I'! $ ! ),$J* ! ! &K'! $ ! ),("" ! ! &M'! $ ! ",(+J ! ! %%,! * 82 ! S/4!! % & !' &&?/!<2!<2459/:5;<45;/!60! ,!Q0! % &(' ! ! &G'! ),)+%! ! &H'! ),(++! ! + " ! " !<4!4./! )= !4./2! % &L' ! &I'! #,%"$! &K'! "*,*)%! &M'! (=J+),"#)! ! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 136! !!!!!!! ! ! 1998 AP Calculus AB: Section I, Part B ! "#$! %&!!!'(!)!*'&&+,+-.')/0+!&1-2.'3-!(124!.4).! ! 5 "6 7 !&3,!)00!,+)0!-18/+,(!"!)-*!'&! "9 : ! 5 "6 ;!<4'24!3&!.4+!&3003<'-=!'(!.,1+>! # c5 "6 ! ! ! ! ! ! ! 5?6! 5B6! 5C6! 5D6! 5E6! #!!4)(!)!,+0).'@+!8)A'818!).! " 9 !)-*!)!,+0).'@+!8'-'818!).! " #!!4)(!)!,+0).'@+!8'-'818!).! " 9 !)-*!)!,+0).'@+!8)A'818!).! " #!!4)(!,+0).'@+!8'-'8)!).! " 9 !)-*!).! " 9 $! #!!4)(!,+0).'@+!8)A'8)!).! " 9 !)-*!).! " 9 $!! %.!2)--3.!/+!*+.+,8'-+*!'&!!#!!4)(!)-F!,+0).'@+!+A.,+8)$! 9 $! 9 $! #7$! %&!.4+!/)(+!$!3&!)!.,')-=0+!'(!'-2,+)('-=!).!)!,).+!3&!G!'-24+(!H+,!8'-1.+!<4'0+!'.(!4+'=4.!%!'(! *+2,+)('-=!).!)!,).+!3&!G!'-24+(!H+,!8'-1.+;!<4'24!3&!.4+!&3003<'-=!81(.!/+!.,1+!)/31.!.4+!),+)!&!3&! .4+!.,')-=0+>! ! ! 5?6! &!'(!)0<)F(!'-2,+)('-=$! ! 5B6! &!'(!)0<)F(!*+2,+)('-=$! ! 5C6! &!'(!*+2,+)('-=!3-0F!<4+-! $ % $! ! 5D6! &!'(!*+2,+)('-=!3-0F!<4+-! $ ! % $! ! 5E6! &!,+8)'-(!23-(.)-.$! ! #I$! J+.!!#!!/+!)!&1-2.'3-!.4).!'(!*'&&+,+-.')/0+!3-!.4+!3H+-!'-.+,@)0! I;I7 $!%&! # 596 K ;!<4'24!3&!.4+!&3003<'-=!81(.!/+!.,1+>! # 5#6 ! ! ! ! ! ! ! ! ! ! ! ! %$! ! %%$! ! %%%$! 5?6! 5B6! 5C6! 5D6! 5E6! #!!4)(!).!0+)(.!9!L+,3($! M4+!=,)H4!3&!!#!!4)(!).!0+)(.!3-+!43,'L3-.)0!.)-=+-.$! N3,!(38+!'() 9 ' K; # 5'6 G *) O3-+! %!3-0F! %!)-*!%%!3-0F! %!)-*!%%%!3-0F! %;!%%;!)-*!%%%! #9$! %&! 7 d + ! ! ! ! ! ! K; # 5K6 K; !)-*! S !)-*!.4+!),+)!1-*+,!.4+!21,@+! , 9 5?6! I$:PI! 5B6! I$:I:! 23( " !&,38! " 5C6! I$9PP! + !.3! " S !'(!7$I;!.4+-! + ! 9 5D6! I$I97! 5E6! 7$:GQ! ! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 137! !!!!!!! !! 1998 Answer Key! 1998 AB ! "#! $! %#! &! '#! (! )#! &! *#! +! ,#! -! .#! +! /#! +! 0#! $! "1#!$! ""#!-! "%#!+! "'#!&! ")#!(! "*#!$! ",#!+! ".#!$! "/#!&! "0#!(! %1#!-! %"#!&! %%#!(! %'#!-! ! 1998 BC ! ! %)#!$! %*#!$! %,#!-! %.#!-! %/#!+! .,#!-! ..#!(! ./#!&! .0#!-! /1#!&! /"#!$! /%#!+! /'#!&! /)#!-! /*#!(! /,#!(! /.#!$! //#!(! /0#!&! 01#!$! 0"#!+! 0%#!$! ! "#! (! %#! -! '#! $! )#! -! *#! -! ,#! +! .#! +! /#! &! 0#! $! "1#!+! ""#!-! "%#!+! "'#!&! ")#!+! "*#!&! ",#!(! ".#!$! "/#!&! "0#!$! %1#!+! %"#!(! %%#!-! %'#!+! ! ! ! %)#!(! %*#!(! %,#!+! %.#!$! %/#!(! .,#!$! ..#!+! ./#!&! .0#!-! /1#!&! /"#!&! /%#!&! /'#!(! /)#!&! /*#!(! /,#!(! /.#!$! //#!(! /0#!-! 01#!-! 0"#!+! 0%#!$ ! ! ! ! ! ! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 159! !!!!!!! !! 1998 Calculus AB Solutions: Part A ! "#! ! $! !c %#! 2! ³ " # 4 "5$" ³ " # 4 "5$" ³ % ! ! ! ! ?#! @! ³" ! 3#! ! 2! A)/.!B9CD=!E-!:*D.-!/:!!#!!B*.!*!D/+-*8!:C+(0/9+!B/0)!+9+F<-89!.D9;-#! 1#! G! ³ & ./+ % $% ! H#! 7! ICE.0/0C0-!" $ % " "! $" " % "& " ' !cc % " "&' !cc!()*+,-.!./,+!*0!" 3 % 3 1 ! # 4 "5$" ! 6!78-*!9:!08*;-<9/=4"5!>!78-*!9:!08*;-<9/=4%5!6! 3 "#1 %#1 ! % " " % $" % % ³" " " $" (9. % " & " " % " " ! % (9. " 4 (9. &5 (9. " " " (9. " ! %!/+09!0)-!-JC*0/9+!09!:/+=!! % " "!c ! ?# !A*K/+,!0)-!=-8/L*0/L-!/M;D/(/0DN!,/L-.! & !#!ICE.0/0C0-!:98!"!*+=&!&*+=!.9DL-!:98! !c #! O 3 % !c ? &' !c ! % ! ' "% " $" " ' ³" ' " §" · " $" ¨ " % D+ " ¸ " ©% ¹" §" % · §" · ¨ ' "¸ ¨ & ¸ ©% ¹ ©% ¹ " % ? ' ! % % O#! G! ³" ! P#! G! (4 "5 # 4 "5 ) 4 "5!!.9Q!!(c4 "5 # c4 "5 ) 4 "5 # 4 "5 ) c4 "5 #!R0!/.!,/L-+!0)*0! (c4 "5 # 4 "5 ) c4 "5 #!! A)C.Q! # c4 "5 ) 4 "5 & #!I/+(-! ) 4 "5 ! &!!:98!*DD!!"Q !!# c4 "5 & #!A)/.!M-*+.!0)*0!!#!!!/.!(9+.0*+0#!R0! /.!,/L-+!0)*0! # 4&5 " Q!0)-8-:98-! # 4 "5 " #! ! S#! $! T-0! * 4% 5 !E-!0)-!8*0-!9:!9/D!:D9B!*.!,/L-+!EN!0)-!,8*;)Q!B)-8-!%!/.!M-*.C8-=!/+!)9C8.#!A)-!090*D! +CME-8!9:!E*88-D.!/.!,/L-+!EN! ³ %3 & * 4% 5$% #!A)/.!(*+!E-!*;;89U/M*0-=!EN!(9C+0/+,!0)-!.JC*8-.! E-D9B!0)-!(C8L-!*+=!*E9L-!0)-!)98/<9+0*D!*U/.#!A)-8-!*8-!*;;89U/M*0-DN!:/L-!.JC*8-.!B/0)! *8-*!H&&!E*88-D.#!A)C.!0)-!090*D!/.!*E9C0! ?Q &&& !E*88-D.#! ! "&#! $! ! ""#! 7! # c4 "5 4 " "54% "5 4 " % %54"5 4 " "5 % ' # c4%5 4% "5435 43 %54"5 4% "5 % %! I/+(-!!#!!/.!D/+-*8Q!/0.!.-(9+=!=-8/L*0/L-!/.!<-89#!A)-!/+0-,8*D!,/L-.!0)-!*8-*!9:!*!8-(0*+,D-!B/0)! <-89!)-/,)0!*+=!B/=0)! 4+ ,5 #!A)/.!*8-*!/.!<-89#! ! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 228! !!!!!!! !! 1998 Calculus AB Solutions: Part A ! "#$! %! ! "7$! 8! ! ",$! D! ! "G! H! ! "E$! %! ! "M$! ! ! "P$! ! "L$! &'( " ) !* &+ # z , &+ # ! o# 93!!!:!;!<+4!!!:!#!2+&=$!-./!>0<?.!.<5!<!+2+@A/03'B<&!3<+>/+3!&'+/!<3!/A/0=!23./0!?2'+3!'+!3./! '+3/0A<&!<+4!52!.<5!<!4/0'A<3'A/!<3!/<B.!21!3./5/!23./0!!C5$! #$ EF #)$ * ;!120!$ #)$ * 7! !7 "K!3.J5!% c)#* 8=!3./!IJ+4<(/+3<&!-./20/(!21!D<&BJ&J5K % c) !* " c) !* B25)' ! * & ! & § · )' * B25)' ! * ¨ ' ! ) !* ¸ &! &! © ¹ #7 " L 7 $! ' ! B25)' ! * ! H! ! I02(!3./!>0<?.! " )"* ; $!N'+B/! " c)"*!!0/?0/5/+35!3./!5&2?/!21!3./!>0<?.!<3!!! " K! " c)"* ! ; $!!! 9&52K!5'+B/! " cc)"* !0/?0/5/+35!3./!B2+B<A'3=!21!3./!>0<?.!<3! ! " K! " cc)"*!O; $! 8! (c " 5'+ ! !52! (c);* " !<+4!3./!&'+/!Q'3.!5&2?/!"!B2+3<'+'+>!3./!?2'+3!);K"*!'5! ( D! R2'+35!21!'+1&/B3'2+!2BBJ0!Q./0/! " cc !B.<+>/5!5'>+$!-.'5!'5!2+&=!<3! ! +2!5'>+!B.<+>/!<3! ! #$ ! ! #;$! 9! ! #"$! 8! ! &'( " ) !* $!-./0/120/!3./!&'('3!42/5!+23!/6'53$! ! o # ! ! ##$! D! ! ! ! #7$! 9! ) ³ 7 ! # &! " 7 ! 7 ) 7 " 7 ) )7*7 7 "7 ) 7 #M ; !2+&=!Q./+! ) ; !<+4! ! ! " $! " $!-./0/!'5! 7$ ! -./!52&J3'2+!32!3.'5!4'11/0/+3'<&!/SJ<3'2+!'5!T+2Q+!32!U/!21!3./!120(! ( ( );* ')$ $!V?3'2+!)8*! '5!3./!2+&=!2+/!21!3.'5!120($!W1!=2J!42!+23!0/(/(U/0!3./!120(!21!3./!52&J3'2+K!3./+!5/?<0<3/! 3./!A<0'<U&/5!<+4!<+3'4'11/0/+3'<3/$!! &( ) &$ F &+ ( )$ *"F ( ')$ *" ')$ '*" F ( *')$ $! ( "!!'5!'+B0/<5'+>!2+!<+=!'+3/0A<&!Q./0/! " c) !* ! ; $! " c) !* , !7 # ! # !)# ! # "* ! ; $! N'+B/! ) ! # "* ! ; !120!<&&!!K! " c) !* ! ; !Q./+/A/0! ! ! ; $! -./!>0<?.!5.2Q5!3.<3!!"!!'5!'+B0/<5'+>!2+!<+!'+3/0A<&! )+K ** !<+4!4/B0/<5'+>!2+!3./!'+3/0A<&! )*K ,* K!Q./0/! + * , $!-.'5!(/<+5!3./!>0<?.!21!3./!4/0'A<3'A/!21!!"!!'5!?25'3'A/!2+!3./! '+3/0A<&! )+K ** !<+4!+/><3'A/!2+!3./!'+3/0A<&! )*K ,* K!52!3./!<+5Q/0!'5!)9*!20!)%*$!-./!4/0'A<3'A/! '5!+23!)%*K!.2Q/A/0K!5'+B/!3./+!3./!>0<?.!21!!"!!Q2J&4!U/!B2+B<A/!42Q+!120!3./!/+3'0/!'+3/0A<&$! ! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 229! !!!!!!! !! ! "#$! %! "A$! %! ! ">$! E! 1998 Calculus AB Solutions: Part A &'(!)*+,)-)!*..(/(0*1,23!4,//!2..-0!4'(3!,15!6(0,7*1,7(!.'*38(5!902)!:25,1,7(!12!3(8*1,7(! 20!*1!*3!(36:2,31!29!1'(!,31(07*/$! ! ;" < #c;" < =" " >" ?" =;" " "" #< !4',.'!,5!*/4*@5! :25,1,7($!&'-5!1'(!*..(/(0*1,23!,5!*/4*@5!,3.0(*5,38$!&'(!)*+,)-)!)-51!2..-0!*1! " = ! 4'(0(! !;=< "? ! &'(!*0(*!,5!8,7(3!B@! ³ " " $ C ? · §? ; $< %$ ¨ $= $ " ¸ " ¹ ©= " C D ?# $! " = = E3@!7*/-(!29!&!/(55!1'*3!?F"!4,//!0(G-,0(!1'(!9-3.1,23!12!*55-)(!1'(!7*/-(!29!?F"!*1!/(*51!14,.(! B(.*-5(!29!1'(!H31(0)(6,*1(!I*/-(!&'(20()!23!1'(!,31(07*/5!JCK?L!*36!J?K"L$!M(3.(! & C !,5! 1'(!23/@!2:1,23$! ! "N$! E! ? " " = $ $ ? %$ " ³C ? ? " = §? · ; $ ?< " ¨ = $ " ¸ %$ ³ C " ©= ¹ = " ? ? " = ; $ ?< " " = = C = = ?§ " " · ¨ O ? ¸ ¸ O¨ © ¹ "> ! O ! "D$! P! ' c; $< 5(." ;" $< % ;" $< %$ §S· "5(. " ;" $<Q ' c ¨ ¸ ©>¹ §S· "5(. " ¨ ¸ ©=¹ ";#< D ! ! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 230! !!!!!!! !! ! "#$! %! ! ""$! 6! 1998 Calculus AB Solutions: Part B &'()!*+,!-'./+!0*!01!23,.'!*+.*!!!!!01!4(*!2(4*045(51!.*! " # $!%33!(*+,'1!.',!*'5,$!! 7.'.33,3!*.4-,4*1!8033!(225'!8+,4!*+,!13(/,1!(9!!!!!.4:!$!.',!,;5.3$! ! c= "> #% < " !.4:! $ c= "> ?@ " < $!A+,!-'./+1!(9!*+,1,!:,'0B.*0B,1!',B,.3!*+.*!*+,C!.',!,;5.3!(43C!.*! " D$EF? $! ! "@$! G! ! "F$! %! ! @D$! G! &' &) ' S( < <S ( &( $!H(8,B,'I! * &) <S( !.4:! &( &) D$? $!A+51! &' &) D$?* $! A+,!-'./+!(9!*+,!:,'0B.*0B,!8(53:!+.B,!*(!2+.4-,!9'()!/(10*0B,!*(!4,-.*0B,$!A+01!01!(43C!*'5,! 9('!*+,!-'./+!(9! ! c $! J((K!.*!*+,!-'./+!(9! ! c= "> !(4!*+,!04*,'B.3!=DI?D>!.4:!2(54*!*+,!45)L,'!(9!!"M04*,'2,/*1!04!*+,! 04*,'B.3$!!! ! @?$! N! ! O43C!PP!01!9.31,!1042,!*+,!-'./+!(9!*+,!.L1(35*,!B.35,!9542*0(4!+.1!.!1+.'/!2('4,'!.*!"!Q!D$! @<$! R! S042,!+!01!.4!.4*0:,'0B.*0B,!(9!!!I! ³ ! =< "> &" ? E + =< "> ? < E ? ? + =#> + =<> ! < ! @E$! G! ! @T$! %! 30) " o# "< #< T " # T 30) " o# = " "< #< < < < < # >= " # > 30) "o# = " ? < ? < # > %!K4(84!1(35*0(4!*(!*+01!:099,',4*0.3!,;5.*0(4!01! - =) > /(/53.*0(4!01! < - =D> !8+,4! ) ?D$ !A+,4! < - =D> - =D>%, =?D> %?D , < , <# < ! - =D>% , ) $!U1,!*+,!9.2*!*+.*!*+,! =D$?> 34 < D$D#F ! ! @V$! 6! ! @#$! 6! ? ? ? A+,',!.',!E!*'./,W(0:1$!! E ! =<> ! =V> < ! =V> ! ="> ? ! ="> ! =@> ! < < < R.2+!2'(11!1,2*0(4!01!.!1,)020'23,!80*+!.!:0.),*,'!(9!-$!A+,!B(35),!8(53:!L,!-0B,4!LC! @ ³D ! @"$! N! < ? § -· S ¨ ¸ &" < ©<¹ < S @ §@ " · ¨ ¸ &" ?#$"VV ! @ ³D © < ¹ &04:!*+,!"!9('!8+02+! ! c= "> ? $! ! c= "> T "E T " ? !(43C!9('! " D$<E" $!A+,4! ! =D$<E"> D$??V $!S(!*+,!,;5.*0(4!01! - D$??V " D$<E" $!A+01!01!,;50B.3,4*!*(!(/*0(4!=N>$! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 231! !!!!!!! !! 1998 Calculus AB Solutions: Part B ""#! $! ! ! ! ! "&#! J! " (&+ " ('+ & ³' ()* ! +% #! ! ,#"-. !/01*2!3!43)4/)3567#!81*49! " ('+ : ;! " (&+ ,#"-.# ! <7!06)=9!5>9!?1@@979*513)!9A/3516*!B15>!3*!1*1513)!46*?1516*!CD!@1*?1*2!3*!3*51?971=351=9!@67! ()* $+% ' #!E>10!10!6@!5>9!@67F! % %#% !B>979! % )* $ #!G9*49! " ( $+ ()* $+ H & !3*?!01*49! $ H ' " ('+ : ;!&!I!:#!E>979@679! " (&+ ()* &+ H ,#"-. ! H E>9!273K>!6@! ' $ - H !10!3!K373C6)3!5>35!4>3*290!@76F!K60151=9!56!*92351=9!35! $ - !3*?! @76F!*92351=9!56!K60151=9!35! $ - #!81*49!(!10!3)B3D0!*92351=9;! ) c !4>3*290!012*!6KK60159!56! 5>9!B3D! ' 35! $ - #! $ - H !?690#!E>/0!!)!!>30!3!79)351=9!F1*1F/F!35! $ - !3*?!3!79)351=9!F3L1F/F! ! &:#! M! ' +, #!E3N1*2!5>9!?971=351=9!B15>!790K945!56!!!6@!C65>! #* ' § #+ #, · 01?90!6@!5>9!9A/3516*!D19)?0! ¨ , + ¸ #!8/C0515/59!5>9!21=9*!73590!56!295! #! - © #! #! ¹ #* % #* ' : #!E>10!10!57/9! (%, %++ (, ++ #!E>9!3793!B1))!C9!?9479301*2!B>9*9=97! #! #! B>9*9=97! + ! , #! E>9!3793!6@!3!5713*2)9!10!21=9*!CD! * ! &'#! O! ! ! ! ! ! ! ! PP#! E7/9#!!QKK)D!5>9!U93*!R3)/9!E>9679F!56!5>9!1*597=3)!S-;&T #! &-#! M! ³ P#! E7/9#!!QKK)D!5>9!P*597F9?1359!R3)/9!E>9679F!56!934>!6@!5>9!1*597=3)0!S-;,T!3*?!S,;&T #! PPP#!E7/9#!!!QKK)D!5>9!P*597F9?1359!R3)/9!E>9679F!56!5>9!1*597=3)!S-;,T#! S - 460 $ #$ - §S· :#' 01* ¨ ¸ 01* ©-¹ :#' 01* - :#& #!E>979@679! - 01* ' (:#&+ '#'-: #! ! AP Calculus Multiple-Choice Question Collection! ! Copyright © 2005 by College Board. All rights reserved. Available at apcentral.collegeboard.com. 232! !!!!!!!