G.C.2 Wkst 6
Transcription
G.C.2 Wkst 6
G.C.2 STUDENT NOTES WS #6 1 Inscribed Angles Properties An inscribed angle is an angle that has its vertex on the circle and its sides contain chords of the circle. The intercepted arc is the arc that lies in the interior of the inscribed angle and has endpoints on the angle. Inscribed ∠ABC and intercepted AC . B B C A C A Intercepted Arc Intercepted Arc Theorem – If an angle is inscribed in a circle, then its measure is half the measure of its intercepted arc (or half the central angle on that same intercepted arc). 1 1 m AC = m∠ABC m∠ADC = m∠ABC 2 2 m∠ADC = 2m∠ABC B B 1 2 x° D D x° A C A C x° Proof of the Theorem B By inserting radius DB we split ∠ABC into two parts, m∠ABC = x + o . Also two isosceles triangles are formed. The vertex angles of the two isosceles triangle are 180° − 2x and 180° − 2o . Thus to determine the m∠ADC we use: m∠ADC + m∠ADB + m∠CDB = 360° Thus establishing that m∠ADC + (180° − 2 x) + (180 − 2o) = 360° m∠ADC = 2m∠ABC. m∠ADC = 2 x + 2o x o D o x C A Theorem – If two inscribed angles of a circle intercept the same arc, then those two angles are congruent. B D Proof of Theorem -- An inscribed angle is half of its intercepted arc. 1 1 m∠ABC = m AC and m∠ADC = mAC and so m∠ADC = m∠ABC . 2 2 A C Theorem – If one side of an inscribed triangle is a diameter, then the angle opposite it is a right triangle. Proof of Theorem -- When an angle subtends a diameter, it also subtends an arc of 180°. The inscribed angle is half of its arc which is 90°. EXAMPLES Find the angles & arcs 1a) b) F G E c) 1 2 1 1 38° 2 2 114° m∠1 = 19° half of central ∠ ⌢ m2 = 38° equal to central ∠ m∠1 = 57° half of arc m∠2 = 114° equal to arc 134° 100° 18° ⌢ m1 = 36 double the inscribed ∠ m∠2 = 45 (360 – 100 – 36 – 134)/2 G.C.2 STUDENT NOTES WS #6 2 Theorem – If a quadrilateral is inscribed in a circle, then opposite angles are supplementary. B A Proof of Theorem -- The quadrilateral is made up of 4 inscribed angles. We will look specifically at ∠DAB and ∠DCB. D C m∠DAB = 1 mDCB 2 m∠DCB = B 1 mDB 2 1 1 mDCB + mDB 2 2 1 m∠DAB + m∠DCB = mDCB + mDB 2 1 m∠DAB + m∠DCB = ( 360° ) 2 m∠DAB + m∠DCB = 180° m∠DAB + m∠DCB = B A ( A D D C ) C We would use the same technique to prove that m∠ADC + m∠ABC = 180° . EXAMPLES -- Find the requested angle and arc values. a) b) c) 118° 64° 1 1 258° 58° 1 m∠1 = 116° 102° 2 180 – 64 m∠2 = 122° 180 - 58 2 2 m∠1 = 90° inscribed on diameter m∠2 = 62° 180 - 118 m∠1 = 51° half of central ∠ m∠2 = 129° half of central ∠ G.C.2 WORKSHEET #6 Name: ________________________________ Period _______ 1. Determine the requested value(s). a) b) c) 1 d) 1 50° 50° 37° 2 1 1 1 120° 2 3 2 20° 2 m∠1 = _______ m∠2 = _______ e) m∠1 = _______ m∠2 = _______ m∠1 = _______ m∠2 = _______ f) m∠1 = _______ m∠2 = _______ m∠3 = _______ h) i) 1 1 E 35° 1 2 74° 3 64° 1 2 2 2 3 33° m∠1 = _______ m∠2 = _______ m∠3 = _______ j) m∠1 = _______ m∠2 = _______ m∠1 = _______ m∠2 = _______ k) m∠1 = _______ m∠2 = _______ m∠3 = _______ l) m) 116° 1 1 2 1 2 50° 2 30° 3 1 m∠1 = _______ m∠2 = _______ n) 80° 2 m∠1 = _______ ⌢ m2 = _______ m∠1 = _______ m∠2 = _______ o) m∠1 = _______ m∠2 = _______ m∠3 = _______ p) 1 q) 60° 3 2 2 1 1 1 60° 82° 3 100° 124° 2 ⌢ m1 = _______ m∠1 = _______ ⌢ m2 = _______ m∠1 = _______ m∠2 = _______ m∠3 = _______ m∠1 = _______ m∠2 = _______ ⌢ m3 = _______ G.C.2 WORKSHEET #6 2 2. Determine the requested value(s). a) b) c) d) 48° 98° 2 74° 1 1 62° 1 2 80° 2 1 124° 62° 41° 2 m∠1 = _______ m∠2 = _______ ⌢ m1 = _______ ⌢ m2 = _______ m∠1 = _______ m∠2 = _______ e) f) g) m∠1 = _______ ⌢ m2 = _______ h) 1 36° 40° 109° 18° 30° 2 1 2 2 1 2 18° 1 m∠1 = _______ m∠2 = _______ m∠1 = _______ m∠2 = _______ m∠1 = _______ m∠2 = _______ 3. Determine the requested value(s). a) b) m∠1 = _______ m∠2 = _______ c) 2 1 38° 1 2 m∠1 = _______ m∠2 = _______ 48° 76° 2 m∠1 = _______ m∠2 = _______ 3 1 m∠1 = _______ m∠2 = _______ m∠3 = _______ 4. Prove that m∠ADC = 2(m∠ABC) B 1 2 D A C G.C.2 WORKSHEET #6 3 1. Determine the requested value(s). a) b) c) 3 1 1 4 1 102° 110° 3 60° 2 2 78° 2 3 66° m∠1 = _______ m∠2 = _______ m∠3 = _______ m∠1 = _______ m∠2 = _______ m∠3 = _______ d) ⌢ m4 = _______ e) f) 2 2 42° m∠1 = _______ m∠2 = _______ ⌢ m3 = _______ 143° 48° 125° 1 1 1 80° 3 24° 2 ⌢ m2 = _______ m∠1 = _______ d) m∠1 = _______ ⌢ m2 = _______ m∠3 = _______ m∠1 = _______ m∠2 = _______ e) f) 47° 3 1 2 60° 16° 85° 62° 2 m∠1 = _______ m∠2 = _______ ⌢ m3 = _______ 1 3 24° 1 2 3 115° m∠1 = _______ m∠2 = _______ m∠3 = _______ m∠1 = _______ m∠2 = _______ m∠3 = _______ G.C.2 WORKSHEET #6 4 2. Determine the requested value(s). a) b) c) 34° 1 250° 1 2 2 1 40° 2 51° m∠1 = _______ m∠2 = _______ m∠1 = _______ m∠2 = _______ m∠1 = _______ m∠2 = _______ d) e) f) 1 2 1 216° 28° 144° B 3 1 2 56° 81° 2 m∠1 = _______ m∠2 = _______ m∠1 = _______ m∠2 = _______ m∠3 = _______ 3. Determine the requested value(s). a) b) c) D D x + 34 A x + 34 5x - 81 C B B C 2x x - 25 F 4x + 8 A ⌢ m1 = _______ m∠2 = _______ C B A x = __________ x = __________ x = __________ m∠ADC = ___________ m∠ABC = ___________ m∠ACB = ___________ *o*", G.C.2 WORKSHEET #6 ky period 1. Determine the requested value(s). a) b) = mZL (O" ._o mZZ= b\ mZ1- = 55" mZ2 = ,) ml3 = mll-= ml2 = mT = tt" bo N l3o" mZ.I= mZ2 = &4o" mll = ml2= mZ! mZZ (rO" = = bb" 53' mZt = m/2 = m/3 = mZI = mZ2 = ml3 = (a" mZt ?o' m/.2 mZ3 = mZl = = = = fo" mlT = 3o" mZ.2 = = i m3= mZL mZ3 [@o 2 G.C.2 WORKSHEET #6 2. Determine the requested value(s). c) b) a) = ilL' *i = {2b' = Vq'' mlT = to' mT mZL mlL mlL mlL = 65,t" ml2 = 511.€ mlL ml2 = = = = mlL mlL LVz" l8' = = 3. Determine the requested value(s). a) c) b) = V?-' mlL= qtr' ml3=T- mlL mlL= ry mlZ= ,?' 4. Prove that mZADC = 2(mlABCl ml1,= mlT = G.C,z WORKSHEET #6 3 1. Determine the requested value(s). a) b) mZL mZ2 = 33" = 6q" 21" m./-3 = mlt mlT = m./3 -_ mlL = 5A = ml2= ttt' *4= = a) *3 e) = tb" f) 125" mZL m2= = mlL = 17' mZ1. = mz.z = '/b" *) ml3 d) -- = e) LL5" mZ!= Vl" mZ2= 7V' mi = ll,l' mZL mZZ = = mZ.3 = ml1-- o 24,) ml2 = lza" )la, mz3 = G.C.2 WORKSHEET #6 2. Determine the requested value(s)' b) a) mlZ ml1. = = 31" ml2 = mlL 18' = e) mlt mlL = lf ml| = ml2 = ml3 @Y' = *i = tLlf = 3. Determine the requested value(s)' c) b) a) mtZ= il,tWl 's1 /-t =3Y aa nIADC = "rl'IABC = s( x= nIACB = 1t'