answers - FacStaff Home Page for CBU
Transcription
answers - FacStaff Home Page for CBU
Math 110 Some answers to sample test 3 1. Do p. 782 #24. sin( A ) = 3/5 and A is in quadrant 1. cos( B ) = 12/13 and B is in quadrant 4. The triangle with angle A has an adjacent leg of 4 by the Pythagorean theorem. The triangle with angle B has an opposite leg of -5 by the Pythagorean theorem. a) Find sin( A + B ). Use the sine of a sum formula. sin( A + B ) = sin( A ) cos( B ) + cos( A ) sin( B ) = 3/5 * 12/13 + 4/5 * (-5)/13 = 16 / 65 b) Find cos( A - B ). Use the cosine of a difference formula. cos( A - B ) = cos( A ) cos( B ) + sin( A ) sin( B ) = 4/5 * 12/13 + 3/5 * ( -5)/13 = 33 / 65. c) Find tan( A - B ). Use the tangent of a difference formula. tan( A - B ) = tan(A)−tan(B) 1+tan(A)tan(B) = −5 3 4 − 12 1+ 34 · −5 12 = 56 48 1− 15 48 = 56 33 2. Do p. 783 #34. cos(A+B) Show cos(A−B) = 1−tan(A)tan(B) 1+tan(A)tan(B) Start with the right side. Use tan( w ) = right = right = right = sin(A) 1− cos(A) sin(A) 1+ cos(A) sin(B) cos(B) sin(B) cos(B) sin(w) cos(w) . Multiply top and bottom by cos( A ) cos( B ). cos(A)cos(B)−sin(A)sin(B) cos(A)cos(B)+sin(A)sin(B) cos(A+B) cos(A−B) = lef t Use cosine of sum and of difference identities. 3. Do p. 783 #46. Find cos( π8 ). Use the half angle identity for cosine with π8 = 12 · π4 . q 1+cos( π 4) Choose plus since π8 is in quadrant 1. cos( π8 ) = ± 2 q √ 1+ √12 cos( π8 ) = Multiply top and bottom inside the outer sqrt by 2 q√ 2 √ 2+1 √ cos( π8 ) = Multiply top and bottom inside the outer sqrt by 2. 2 2 √ √ 2 cos( π8 ) = 2+ 2 4. Do p. 784 #54. sin( t ) = -4/5 and t is in quadrant 3. The side adjacent to angle t has length -3 by the Pythagorean theorem. Use the double angle formulas. sin( 2t ) = 2 sin( t ) cos( t ) = 2 (-4/5) (-3/5) = 24/25. cos(2t) = 1 − 2sin(t)2 = 1 − 2(−4/5)2 = −7 25 tan( 2t ) = sin( 2t ) / cos( 2t ) = -24/7. π 3π Use the half angle formulas. Since t is in quadrant 3, π < t < 3π 2 and 2 < t/2 < 4 and so t/2 is in quadrant 2. q sin( 2t ) = ± 1−cos(t) Choose plus since t/2 is in quadrant 2 where sine is positive. q −3 2 q q 1− 5 8 4 √2 sin( 2t ) = = = 2 10 5 = 5 For cos( t/2q) choose minus since t/2 is in quadrant 2 where cosine is negative. q q 1+ −3 2 1 −1 5 √ cos( 2t ) = − = − = − 2 10 5 = 5 tan( 2t ) = sin( 2t ) cos( 2t ) = 2 √ 5 −1 √ 5 = −2. 5. Do p. 784 #68. Show 32sin(t)4 cos(t)2 = 2 − cos(2t) − 2cos(4t) + cos(6t) Start by working with each term of the right side. cos(6t) = cos(4t + 2t) = cos(4t)cos(2t) − sin(4t)sin(2t) by the cosine of a sum formula. cos(6t) = (2cos(2t)2 − 1)cos(2t) − 2sin(2t)cos(2t)sin(2t) by double angle formulas for 4t. cos(6t) = 2cos(2t)3 − cos(2t) − 2cos(2t)sin(2t)2 cos(6t) = 2cos(2t)3 − cos(2t) − 2cos(2t)(1 − cos(2t)2 ) since sin(w)2 = 1 − cos(w)2 cos(6t) = 4cos(2t)3 − 3cos(2t) by algebra. Now cos(4t) = 2cos(2t)2 − 1 by double angle formula for cos(4t ). So −2cos(4t) = −4cos(2t)2 + 2 Then right = 2 − cos(2t) − 2cos(4t) + cos(6t) right = 2 − cos(2t) − 4cos(2t)2 + 2 + 4cos(2t)3 − 3cos(2t) So right = 4 − 4cos(2t) − 4cos(2t)2 + 4cos(2t)3 = 4(1 − cos(2t))(1 − cos(2t)2 ) right = 4(1 − cos(2t))(sin(2t)2 )2 by a Pythagorean identity. right = 4(1 − (1 − 2sin(t)2 ))(2sin(t)cos(t))2 right = 4 · 2sin(t)2 · 4sin(t)2 cos(t)2 1 right = 32sin(t)4 cos(t)2 = lef t 6. Do p. 784 #71. cos(t) sin(t) Show sec(2t) = cos(t)+sin(t) + cos(t)−sin(t) Add the fractions on the right side. LCD = ( cos( t ) + sin( t ) )(cos( t ) - sin( t ) ). right = cos(t)·(cos(t)−sin(t))+sin(t)·(cos(t)+sin(t)) Use the distributive law in the top. (cos(t)+sin(t))·(cos(t)−sin(t)) right = right = right = right = cos(t)2 −cos(t)sin(t)+cos(t)sin(t)+sin(t)2 (cos(t)+sin(t))·(cos(t)−sin(t)) 1 FOIL in the bottom. (cos(t)+sin(t))·(cos(t)−sin(t)) 1 Use a double angle formula for cosine. cos(t)2 −sin(t)2 1 cos(2t) = sec(2t) = lef t 7. Do p. 809 #3. y = -2cos(x). Amplitude is 2. Period is 2π. Phase shift is zero. Vertical shift is zero. Five points to plot are ( 0, -2 ), ( π2 , 0 ), ( π, 2 ), ( 3π 2 , 0), ( 2π, -2 ). 8. Do p. 809 #9. y = sin(−x − π4 ) − 2 Use sin( -w ) = -sin( w ). y = −sin(x + π4 ) − 2. Amplitude is 1, period is 2π. Phase shift = - −π 4 . Vertical shift is -2. −π 2π −π 2π , -2 ), ( + , -3 ), ( + , -2 ), Five points to plot are ( −π 4 4 4 4 2 3·2π −π ( −π 4 + 4 , -1 ), ( 4 + 2π, -2 ) π 3π 5π 7π Five points to plot are ( −π 4 , -2 ), ( 4 , -3 ), ( 4 , -2 ), ( 4 , -1 ), ( 4 , -2 ) 9. Do p. 809 #13. y = tan( x - π3 . Period is π. Phase shift is π3 . Domain is all reals except where x - π3 = π2 + kπ for an integer k. Domain is all reals except 5π is all reals. 6 + kπ for an integer k. Range √ √ Five points to plot are ( π3 , 0), ( π3 + π4 , 1 ), ( π3 + π3 , 3), ( π3 − π4 , -1 ), ( π3 − π3 , - 3) √ √ 2π π 3), ( 12 , -1 ), ( 0, - 3) After arithmetic the points are ( π3 , 0), ( 7π 12 , 1 ), ( 3 , 10. Do p. 809 #18. x π y = −1 3 sec( 2 + 3 ) Consider the reciprocal function. y = −3cos( x2 + π3 ) Amplitude is 3. Period is 2π 1 2 = 4π. Phase shift is ( −2π 3 ,-3), Five points to plot are After arithmetic the points are For the secant curve. points to −π 3 1 2 = −2π 3 . Vertical shift is zero −2π −2π −2π ( −2π 3 + π, 0 ), ( 3 + 2π ,3), ( 3 + 3π, 0), ( 3 + 4π −2π π 4π 7π 10π ( 3 ,-3), ( 3 , 0 ), ( 3 ,3), ( 3 , 0), ( 3 ,-3) √ √ 2 −1 4π 1 10π −1 −π − 2 5π plot are ( −2π 3 , 3 ), ( 3 , 3 ), ( 3 , 3 ), ( 6 , 3 , ( 6 , 3 ) 11. Do p. 809 #30. √ f (x) = 23 cos(2x) − 3 2 3 sin(2x) + 6. Write f as one sine and as one cosine function. Use # 36 and 35 on p. 810. √ √ Here b = 32 and a = − 3 2 3 So a2 + b2 = 49 + 27 a2 + b2 = 6. 4 = 9 Then −1 5π 5π tan(φ) = b/a = √3 . So φ = 6 . So S(x) = 6sin(2x + 6 ) + 6. π π By #35 C(x) = 6cos(2x + 5π 6 − 2 ) + 6 = 6cos(2x + 3 ) + 6. 2 ,-3)